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Abstract
In this paper, we prove some exponential inequalities involving the sinc function. We
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1 Introduction
Inequalities related to the sinc function, sinc x = sin x

x (x �= 0), occur in many fields of math-
ematics and engineering [1–7] such as Fourier analysis and its applications, information
theory, radio transmission, optics, signal processing, sound recording, etc.

The following inequalities are proved in [8]:

cos2 x
2

≤ sin x
x

≤ cos3 x
3

≤ 2 + cos x
3

(1)

for every x ∈ (0,π ). In [9], the authors considered possible refinements of inequality (1) by
a real analytic function ϕa(x) = ( sin x

x )a for x ∈ (0,π ) and parameter a ∈ R and proved the
following inequalities:

Statement 1 ([9], Theorem 10) For all x ∈ (0,π ) and a ∈ (1, 3
2 ),

cos2 x
2

≤
(

sin x
x

)a

≤ sin x
x

. (2)

In [9], based on the analysis of the sign of the analytic function

Fa(x) =
(

sin x
x

)a

– cos2 x
2

in the right neighborhood of zero, the corresponding inequalities for parameter values
a ≥ 3

2 are discussed.
In this paper, in Sect. 3.1, using the power series expansions and the Wu–Debnath the-

orem, we prove that inequality (2) holds for a = 3
2 . At the same time, this proof represents
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another proof of Statement 1. Also, we analyze the cases a ∈ ( 3
2 , 2) and a ≥ 2 and prove

the corresponding inequalities.
In Sect. 3.2, we introduce and prove a new double-sided inequality of similar type in-

volving polynomial exponents.
Finally, in Sect. 3.3, we establish a relation between the cases of constant and polynomial

exponents.

2 Preliminaries
In this section, we review some results that we use in our study.

In accordance with [10], the following expansions hold:

ln
sin x

x
= –

∞∑
k=1

22k–1|B2k|
k(2k)!

x2k (0 < x < π ), (3)

ln cos x = –
∞∑

k=1

22k–1(22k – 1)|B2k|
k(2k)!

x2k (–π/2 < x < π/2), (4)

where Bi (i ∈N) are Bernoulli’s numbers.
In our proofs, we use the following theorem proved by Wu and Debnath [11].

Theorem WD ([11], Theorem 2) Suppose that f (x) is a real function on (a, b) and that n
is a positive integer such that f (k)(a+), f (k)(b–) (k ∈ {0, 1, 2, . . . , n}) exist.

(i) Suppose that (–1)(n)f (n)(x) is increasing on (a, b). Then, for all x ∈ (a, b), we have the
following inequality:

n–1∑
k=0

f (k)(b–)
k!

(x – b)k +
1

(a – b)n

(
f (a+) –

n–1∑
k=0

(a – b)kf (k)(b–)
k!

)
(x – b)n

< f (x) <
n∑

k=0

f (k)(b–)
k!

(x – b)k . (5)

Furthermore, if (–1)nf (n)(x) is decreasing on (a, b), then the reversed inequality of (5)
holds.

(ii) Suppose that f (n)(x) is increasing on (a, b). Then, for all x ∈ (a, b), we have the
following inequality:

n∑
k=0

f (k)(a+)
k!

(x – a)k

< f (x)

<
n–1∑
k=0

f (k)(a+)
k!

(x – a)k +
1

(b – a)n

(
f (b–) –

n–1∑
k=0

(b – a)kf (k)(a+)
k!

)
(x – a)n. (6)

Furthermore, if f (n)(x) is decreasing on (a, b), then the reversed inequality of (6) holds.

Remark 1 Note that inequalities (5) and (6) hold for n ∈N and for n = 0.
Here, and throughout this paper, a sum where the upper bound of summation is lower

than its lower bound is understood to be zero.
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The following theorem, which is a consequence of Theorem WD, was proved in [12].

Theorem 2 ([12], Theorem 1) Let a function f : (a, b) −→R have the following power series
expansion:

f (x) =
∞∑

k=0

ck(x – a)k (7)

for x ∈ (a, b), where the sequence of coefficients {ck}k∈N0 has a finite number of nonpositive
terms, and their indices are in the set J = {j0, . . . , j�}.

Then, for the function

F(x) = f (x) –
�∑

i=0

cji (x – a)ji =
∑

k∈N0\J

ck(x – a)k (8)

and the sequence {Ck}k∈N0 of the nonnegative coefficients defined by

Ck =

⎧⎨
⎩

ck , ck > 0,

0, ck ≤ 0,
(9)

we have

F(x) =
∞∑

k=0

Ck(x – a)k (10)

for every x ∈ (a, b).
Also, F (k)(a+) = k!Ck , and the following inequalities hold:

n∑
k=0

Ck(x – a)k

< F(x) <
n–1∑
k=0

Ck(x – a)k +
1

(b – a)n

(
F(b–) –

n–1∑
k=0

Ck(b – a)k

)
(x – a)n (11)

for all x ∈ (a, b) and n ∈N0, that is,

m∑
k=0

Ck(x – a)k +
�∑

i=0

cji (x – a)ji

< f (x)

<
m–1∑
k=0

Ck(x – a)k +
�∑

i=0

cji (x – a)ji

+
(x – a)m

(b – a)m

(
f (b–) –

m–1∑
k=0

Ck(b – a)k –
�∑

i=0

cji (b – a)ji

)
(12)

for all x ∈ (a, b) and m > max{j0, . . . , j�}.
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3 Main results
3.1 Inequalities with constants in the exponents
First, we consider a connection between the number of zeros of a real analytic function
and some properties of its derivatives. It is well known that the zeros of a nonconstant
analytic function are isolated [13]; see also [14] and [15].

We prove the following statement.

Theorem 3 Let f : (0, c) −→R be a real analytic function such that f (k)(x) > 0 for x ∈ (0, c)
and k = m, m + 1, . . . (for some m ∈N).

Suppose that the following conditions hold:
(1) there is a right neighborhood of zero in which f (x) < 0, f ′(x) < 0, . . . , f (m–1)(x) < 0, and
(2) f (c–) > 0, f ′(c–) > 0, . . . , f (m–1)(c–) > 0.

Then there exists exactly one zero x0 ∈ (0, c) of the function f .

Proof As f (m)(x) > 0 for x ∈ (0, c), it follows that f (m–1)(x) is an increasing function for
x ∈ (0, c). From conditions (1) and (2) we conclude that there exists exactly one zero
xm–1 ∈ (0, c) of the function f (m–1)(x). Next, we can conclude that function f (m–2)(x) is
decreasing for x ∈ (0, xm–1) and increasing for x ∈ (xm–1, c). It is clear that the function
f (m–2)(x) has exactly one minimum in the interval (0, c) at point xm–1 and f (m–2)(xm–1) < 0.
From condition (2) it follows that the function f (m–2)(x) has exactly one root xm–2 on the
interval (0, c) and xm–2 ∈ (xm–1, c).

By repeating the described procedure, we get the statement of the theorem. �

Let us consider the family of functions

fa(x) = a ln
sin x

x
– 2 ln cos

x
2

(13)

for x ∈ (0,π ) and parameter a ∈ (1, +∞).
Obviously, the following equivalence is true:

a1 < a ⇐⇒ fa(x) < fa1 (x) (14)

for a, a1 > 1 and x ∈ (0,π ).
Thus

3
2

< a ⇐⇒ fa(x) < f 3
2

(x) for x ∈ (0,π ). (15)

By the power series expansions (3) and (4), we have

fa(x) =
∞∑

k=1

Ekx2k (16)

for a > 1 and x ∈ (0,π ), where

Ek =
((2 – a)4k – 2)|B2k|

2k · (2k)!
(k ∈N). (17)
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For a = 3
2 , we have E1 = 0 and Ek > 0 for k = 2, 3, . . . . Thus from (16) we have

f 3
2

(x) > 0 for x ∈ (0,π ),

and consequently we have the following result.

Theorem 4 For all x ∈ (0,π ), we have

cos2 x
2

≤
(

sin x
x

) 3
2 ≤ sin x

x
.

Since

(
sin x

x

) 3
2 ≤

(
sin x

x

)a

for x ∈ (0,π ) and a ∈ (1, 3
2 ], the previous theorem can be thought of as a new proof of

Statement 1.
Consider now the family of functions fa(x) = a ln sin x

x – 2 ln cos x
2 for x ∈ (0,π ) and pa-

rameter a > 3
2 .

It easy to check that for the sequence

αk = 2 –
2
4k , k ∈N, (18)

the following equivalences are true:

a = αk ⇐⇒ Ek = 0,

a ∈ (αk ,αk+1) ⇐⇒ (∀i ∈ {1, 2, . . . , k}) Ei < 0 ∧ (∀i > k) Ei > 0. (19)

Let us now consider the function m : [ 3
2 , 2) −→N0 defined by

m(a) = k if and only if a ∈ (αk ,αk+1]. (20)

It is not difficult to check that lima→2– m(a) = +∞, whereas for a fixed a ∈ ( 3
2 , 2), the

number of negative elements of the sequence {Ek}k∈N is m(a), and their indices are in the
set {1, . . . ,m(a)}. For this reason, we distinguish two cases a ∈ ( 3

2 , 2) and a ≥ 2.
As for the parameter a = 2 and x ∈ (0,π ), we have

(
sin x

x

)2

≤ cos2 x
2

⇐⇒ sin2 x
2

≤
(

x
2

)2

,

whereas for a > 2 and x ∈ (0,π ), we have

(
sin x

x

)a

≤
(

sin x
x

)2

.

Hence, we have proved the following theorem.
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Theorem 5 For all a ≥ 2 and x ∈ (0,π ), we have
(

sin x
x

)a

≤ cos2 x
2

. (21)

Consider now the case where the parameter a ∈ ( 3
2 , 2). As noted before, for any fixed

a ∈ ( 3
2 , 2), there is a finite number of negative coefficients in the power series expansion

(17), so it is possible to apply Theorem 2.
According to Theorem 2, we have the following inequalities:

n∑
k=m(a)+1

Ekxk +
m(a)–1∑

i=0

Eixi

< fa(x)

<

(
fa(c–) –

n–1∑
k=m(a)+1

Ekck –
m(a)–1∑

i=0

Eici

)
xn

cn +
n–1∑

k=m(a)+1

Ekxk +
m(a)–1∑

i=0

Eixi (22)

for all x ∈ (0, c), c ∈ (0,π ), n > m(a) + 1, and a ∈ ( 3
2 , 2).

The family of functions fa(x) for x ∈ (0,π ) and a ∈ ( 3
2 , 2) satisfy conditions (1) and (2) of

Theorem 3, as we prove in the following lemma.

Lemma 1 Consider the family of functions fa(x) = a ln sin x
x – 2 ln cos x

2 for x ∈ (0,π ) and
parameter a ∈ ( 3

2 , 2). Let m = m(a), where m(a) is defined as in (20).
Then dk

dxk fa(x) > 0 for k = m, m + 1, . . . and x ∈ (0,π ), and the following assertions hold:
(1) There is a right neighborhood of zero in which the following inequalities hold:

fa(x) < 0, d
dx fa(x) < 0, . . . , dm–1

dxm–1 fa(x) < 0;
(2) fa(π–) > 0, d

dx fa(π–) > 0, . . . , dm–1

dxm–1 fa(π–) > 0.

Proof Let us recall that, for any fixed a ∈ ( 3
2 , 2), there is a finite number of negative coeffi-

cients in the power series expansion (17). Also, we have
(

d
dx

fa

)
(x) = a

(
cot x –

1
x

)
+ tan

x
2

.

For the derivatives of the function fa(x) in the left neighborhood of π , it suffices to observe
that

(
d

dx
fa

)
(π – x) = a

(
– cot x –

1
π – x

)
+ cot

x
2

=
2 – a

x
–

a
π

+
(

a
(

1
3

–
1
π2

)
–

1
6

)
x + · · · .

From this the conclusions of the lemma can be directly derived. �

Thus, for every a ∈ ( 3
2 , 2), the corresponding function fa(x) = a ln sin x

x – 2 ln cos x
2 has

exactly one zero on the interval (0,π ). Let us denote it by xa.
The following theorem is a direct consequence of these considerations.

Theorem 6 For every a ∈ ( 3
2 , 2) and all x ∈ (0, xa], where 0 < xa < π , we have

(
sin x

x

)a

≤ cos2 x
2

. (23)
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Table 1 Values xa andma for some specified a ∈ ( 32 , 2) related to Theorems 6 and 10, respectively

a 1.501 1.502 1.503 1.504 1.505 1.506 1.507 1.508 1.509 1.510
xa 0.282. . . 0.398. . . 0.487. . . 0.561. . . 0.626. . . 0.685. . . 0.738. . . 0.788. . . 0.834. . . 0.878. . .
ma 0.140. . . 0.198. . . 0.243. . . 0.280. . . 0.314. . . 0.344. . . 0.371. . . 0.397. . . 0.421. . . 0.444. . .

a 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.65
xa 1.220. . . 1.468. . . 1.666. . . 1.831. . . 1.973. . . 2.096. . . 2.205. . . 2.302. . . 2.302. . . 2.302. . .
ma 0.628. . . 0.769. . . 0.888. . . 0.993. . . 1.088. . . 1.175. . . 1.256. . . 1.256. . . 1.256. . . 1.256. . .

a 1.70 1.75 1.80 1.85 1.90 1.92 1.94 1.96 1.98 1.9999
xa 2.911. . . 3.034. . . 3.103. . . 3.133. . . 3.141. . . 3.141. . . 3.141. . . 3.141. . . 3.141. . . 3.141. . .
ma 1.986. . . 2.221. . . 2.433. . . 2.628. . . 2.809. . . 2.879. . . 2.947. . . 3.013. . . 3.087. . . 3.141. . .

For the selected discrete values of a ∈ ( 3
2 , 2), the zeros xa of the corresponding func-

tions fa(x) are shown in Table 1. Although the values xa can be obtained by any numerical
method, the following remark can also be used to locate them.

Remark 7 For a fixed a ∈ ( 3
2 , 2), select n > m(a) + 1 and consider inequalities (22). Denote

the corresponding polynomials on the left- and right-hand sides of (22) by PL(x) and PR(x),
respectively. These polynomials are of negative sign in a right neighborhood of zero (see
[15], Theorem 2.5), and they have positive leading coefficients. Then, the root xa of the
equation fa(x) = 0 is always localized between the smallest positive roots of the equations
PL(x) = 0 and PR(x) = 0.

3.2 Inequalities with polynomial exponents
In this subsection, we propose and prove a new double-sided inequality involving the sinc
function with polynomial exponents.

To be more specific, we find two polynomials of the second degree that, when placed in
the exponent of the sinc function, give an upper and a lower bound for cos2 x

2 .

Theorem 8 For every x ∈ (0, 3.1), we have the double-sided inequality

(
sin x

x

)p1(x)

< cos2 x
2

<
(

sin x
x

)p2(x)

, (24)

where p1(x) = 3
2 + x2

2π2 and p2(x) = 3
2 + x2

80 .

Proof Consider the equivalent form of inequality (24)

p1(x) ln
sin x

x
< 2 ln cos

x
2

< p2(x) ln
sin x

x
.

Now, let us denote

Gi(x) = pi(x) ln
sin x

x
– 2 ln cos

x
2

for i = 1, 2.
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Based on Theorem WD, from (3) we obtain

–
m–1∑
k=1

22k–1|B2k|
k(2k)!

x2k +
(

1
c

)2m
(

ln
sin c

c
–

m–1∑
k=1

22k–1|B2k|
k(2k)!

c2k

)
x2m

< ln
sin x

x
< –

n∑
k=1

22k–1|B2k|
k(2k)!

x2k (25)

for x ∈ (0,π ), where n, m ∈N, m, n ≥ 2.
Based on Theorem WD, from (4) we obtain

–
m–1∑
k=1

22k–1(22k – 1)|B2k|
k(2k)!

x2k +
(

1
c

)2m
(

ln cos c –
m–1∑
k=1

22k–1(22k – 1)|B2k|
k(2k)!

c2k

)
x2m

< ln cos x < –
n∑

k=1

22k–1(22k – 1)|B2k|
k(2k)!

x2k (26)

for x ∈ (0, c), where 0 < c < π
2 , n, m ∈ N, m, n ≥ 2, that is,

n∑
k=1

(22k – 1)|B2k|
2k(2k)!

x2k

< – ln cos
x
2

<
m–1∑
k=1

(22k – 1)|B2k|
2k(2k)!

x2k –
(

2
c

)2m
(

ln cos
c
2

–
m–1∑
k=1

(22k – 1)|B2k|
2k(2k)!

c2k

)
x2m (27)

for x ∈ (0, c) and 0 < c < π , n, m ∈N, m, n ≥ 2.
Now, let us introduce the notation

H1(x, m1, n1, c1)

= –p1(x)
m1–1∑
k=1

22k–1|B2k|
k(2k)!

x2k

– 2

(
–

m1–1∑
k=1

(22k – 1)|B2k|
2k(2k)!

x2k +
1

c2m1
1

(
ln

c1

2
+

n1–1∑
k=1

(22k – 1)|B2k|
2k(2k)!

c2k
1

)
x2m1

)

for m1, n1 ∈N, m1, n1 ≥ 2, c1 ∈ (0,π ), and x ∈ (0, c1);

H2(x, m2, n2, c2)

= p2(x)

(
–

m2–1∑
k=1

22k–1|B2k|
k(2k)!

x2k +
1

c2m2
2

(
ln

sin c2

c2
+

m2–1∑
k=1

22k–1|B2k|
k(2k)!

c2k
2

)
x2m2

)

+ 2
n2∑

k=1

(22k – 1)|B2k|
2k(2k)!

x2k

for m2, n2 ∈N, m2, n2 ≥ 2, c2 ∈ (0,π ), and x ∈ (0, c2).
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By inequalities (25) and (27) we have

G1(x) < H1(x, m1, n1, c1),

G2(x) > H2(x, m2, n2, c2),

for m1, n1, m2, n2 ∈N and c1, c2 ∈ (0,π ).
For c1 = c2 = 3.1, m1 = 25, and n1 = 10 and for m2 = 13 and n2 = 27, it is easy to prove

that H1(x, m1, n1, c1) < 0 and H2(x, m2, n2, c2) > 0 for every x ∈ (0, c1).
Hence we conclude that G1(x) < 0 and G2(x) > 0 for every x ∈ (0, 3.1), and the double-

sided inequality (24) holds. �

Remark 9 Note that this method can be used to prove that inequality (24) of Theorem 8
holds on any interval (0, c) where c ∈ (0,π ), but the degrees of the polynomials H1 and H2

get larger as c approaches π .

3.3 Constant vs. polynomial exponents
Let us observe the inequalities in Theorems 6 and 8 and inequality (24) containing con-
stants and polynomials in the exponents, respectively.

A question of establishing a relation between these functions, with different types of
exponents, comes up naturally. The following theorem addresses this question.

Theorem 10 For all a ∈ ( 3
2 , 2) and x ∈ (0, ma), where ma =

√
2π2(a – 3

2 ), we have the fol-
lowing double-sided inequality:

(
sin x

x

)a

<
(

sin x
x

) 3
2 + x2

2π2
< cos2 x

2
. (28)

Proof Let a = 3
2 + ε, ε ∈ (0, 1

2 ), and x > 0. Then

(
3
2

+
x2

2π2

)
ln

sin x
x

– a ln
sin x

x

=
(

3
2

+
x2

2π2

)
ln

sin x
x

–
(

3
2

+ ε

)
ln

sin x
x

=
(

x2

2π2 – ε

)
ln

sin x
x

=
1

2π2

(
x –

√
2π2ε

)(
x +

√
2π2ε

)
ln

sin x
x

.

Now we have

x ∈ (
0,

√
2π2ε

) ⇐⇒
(

3
2

+ αx2
)

ln
sin x

x
>

(
3
2

+ ε

)
ln

sin x
x

⇐⇒
(

sin x
x

) 3
2 + x2

2π2
>

(
sin x

x

) 3
2 +ε

.

Hence, applying Theorem 8, the double-sided inequality (28) holds for all a ∈ ( 3
2 , 2) and

x ∈ (0, ma). �

In Table 1 we show the values xa and ma for some specified a ∈ ( 3
2 , 2).
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Remark 11 Note that Theorem 10 represents another proof of the following assertion
from [9]:

(∀a ∈ (3/2, 2)
)

(∃δ > 0)
(∀x ∈ (0, δ)

) (
sin x

x

)a

< cos2 x
2

.

4 Conclusion
In this paper, using the power series expansions and the application of the Wu–Debnath
theorem, we proved that inequality (2) holds for a = 3

2 . At the same time, this proof repre-
sents a new short proof of Statement 1.

We analyzed the cases a ∈ ( 3
2 , 2) and a ≥ 2, and we proved the corresponding inequal-

ities. We introduced and proved a new double-sided inequality of similar type involving
polynomial exponents. Also, we established a relation between the cases of constant and
polynomial exponents.
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