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Abstract
In this paper, we first prove an integral majorization theorem related to integral
inequalities for functions defined on rectangles. We then apply the result to establish
some new integral inequalities for functions defined on rectangles. The results
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190:248–262, 1995) in an earlier paper.
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1 Introduction
There is a certain intuitive appeal to the vague notion that the components of an n-tuple x
are less spread out, or more nearly equal, than the components of an n-tuple y. The notion
arises in a variety of contexts, and it can be made precise in a number of ways. In remark-
ably many cases, the appropriate statement is that x is majorized by y (or y majorizes x).
Namely, for two n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), x is said to be majorized
by y (denoted x ≺ y) if

∑m
i=1 x[i] ≤ ∑m

i=1 y[i] for m = 1, 2, . . . , n – 1 and
∑n

i=1 xi =
∑n

i=1 yi,
where x[1] ≥ x[2] ≥ · · · ≥ x[n] and y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of x and y
in descending order. A mathematical origin of majorization is illustrated by the work of
Schur [35] on Hadamard’s determinant inequality. Many mathematical characterization
problems are known to have solutions that involve majorization. Complete and superb
references on the subject are the books [9, 28]. The comprehensive survey by Ando [7]
provides alternative derivations, generalizations, and a different viewpoint.

The following theorem is known in the literature as the majorization theorem (see [20,
22, 23, 33, 35]).

Theorem 1.1 Let f : I → R be a continuous convex function on the interval I , and let
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two n-tuples such that xi, yi ∈ I (i = 1, 2, . . . , n).
If x is majorized by y, then

n∑

i=1

f (xi) ≤
n∑

i=1

f (yi). (1.1)
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The inequality asserted by Theorem 1.1 is also called majorization inequality. It is an
inequality in elementary algebra for convex real-valued functions defined on an interval
of the real line, and it generalizes the finite form of Jensen’s inequality. This majorization
ordering is equivalently described in Kemperman’s review [25]. An extension of this fact
for arbitrary real weights and decreasing n-tuples x and y can be found in [19]. General
results of this type are obtained by Dragomir [17] and Niezgoda [30]. In recent years, many
formulas such as Taylor formula, Hermite interpolating, Montgommery identities and in-
equalities for means, etc. have been used and generalized by majorization inequalities for
n-convex functions; see [1–8, 10–15, 21, 24, 29, 31, 36, 37, 41–45] and references therein.

Recently, it has come to our attention that certain integral majorization theorems, we
begin with recalling some relevant results. In 1947, Fuchs [19] gave the following integral
majorization theorem for convex functions and two monotonic sequences.

Theorem 1.2 ([19]) Let κ(τ ),ν(τ ) : [a, b] →R be continuous and increasing functions, and
let μ : [a, b] →R be a function of bounded variation.

(i) If

∫ b

x
κ(τ ) dμ(τ ) ≤

∫ b

x
ν(τ ) dμ(τ ) for x ∈ [a, b]

and

∫ b

a
κ(τ ) dμ(τ ) =

∫ b

a
ν(τ ) dμ(τ ),

then for every continuous convex function φ, we have

∫ b

a
φ
[
κ(τ )

]
dμ(τ ) ≤

∫ b

a
φ
[
ν(τ )

]
dμ(τ ). (1.2)

(ii) If

∫ b

x
κ(τ ) dμ(τ ) ≤

∫ b

x
ν(τ ) dμ(τ ) for x ∈ [a, b],

then for every continuous increasing convex function φ, we have

∫ b

a
φ
[
κ(τ )

]
dμ(τ ) ≤

∫ b

a
φ
[
ν(τ )

]
dμ(τ ). (1.3)

In 1995, Maligranda, Pečarić, and Persson [27] established the following analogue of the
Fuchs inequality.

Theorem 1.3 ([27]) Let w be a weight function, and let f and g be positive integrable func-
tions on [a, b]. Suppose that ϕ : [0,∞) →R is a convex function and that

∫ x

a
f (t)w(t) dt ≤

∫ x

a
g(t)w(t) dt for x ∈ [a, b]
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and

∫ b

a
f (t)w(t) dt =

∫ b

a
g(t)w(t) dt.

(i) If f is a decreasing function on [a, b], then

∫ b

a
ϕ
[
f (t)

]
w(t) dt ≤

∫ b

a
ϕ
[
g(t)

]
w(t) dt. (1.4)

(ii) If g is an increasing function on [a, b], then

∫ b

a
ϕ
[
g(t)

]
w(t) dt ≤

∫ b

a
ϕ
[
f (t)

]
w(t) dt. (1.5)

In 1933, Favard [18] proved the following results.

Theorem 1.4 Let � be a nonnegative continuous concave function on [a, b], not identically
zero, and let ϒ be a convex function on [0, �̃], where

�̃ =
2

b – a

∫ b

a
�(x) dx.

Then

1
b – a

∫ b

a
ϒ

[
�(x)

]
dx ≤

∫ 1

0
ϒ(s�̃) ds. (1.6)

As a consequence of Theorem 1.4, the following inequality was also established in [18].

Theorem 1.5 Let � be a concave nonnegative function on [a, b] ⊂R. If q > 1, then

1
b – a

∫ b

a
�q(x) dx ≤ 2q

q + 1

(
1

b – a

∫ b

a
�(x) dx

)q

. (1.7)

Maligranda, Pečarić, and Persson [27] gave the following generalization of the Favard
inequality.

Theorem 1.6 ([27])
(i) Let � be a positive increasing concave function on [a, b], and let ϒ be a convex

function on [0, �̃], where

�̃ = (b – a)
∫ b

a
�(t)w(t) dt

/∫ b

a
(t – a)w(t) dt.

Then

1
b – a

∫ b

a
ϒ

[
�(t)

]
w(t) dt ≤

∫ 1

0
ϒ(s�̃)w

[
a(1 – s) + bs

]
ds. (1.8)
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(ii) Let � be a positive decreasing concave function on [a, b], and let ϒ be a convex
function on [0, �̃], where

�̃ = (b – a)
∫ b

a
�(t)w(t) dt

/∫ b

a
(b – t)w(t) dt.

Then

1
b – a

∫ b

a
ϒ

[
�(t)

]
w(t) dt ≤

∫ 1

0
ϒ(s�̃)w

[
as + b(1 – s)

]
ds. (1.9)

For further results related to generalizations, extensions, and refinements of the integral
inequalities of majorization type, we refer the reader to [1–6, 26, 28, 32, 34, 38–40, 46–48].

In this paper, we extend majorization and Favard inequalities from functions defined on
intervals to functions defined on rectangles. The results presented in this paper generalize
the results of Maligranda, Pečarić, and Persson [27].

2 Preliminaries
In this section, we introduce some notions and lemmas.

Definition 2.1 A function φ : 	 → R defined on a convex subset 	 of Rn is said to be
convex if

φ
(
λx + (1 – λ)y

) ≤ λφ(x) + (1 – λ)φ(y) (2.1)

for all x, y ∈ 	 and λ ∈ [0, 1].

In this paper, convex functions considered are supposed to be twice differentiable. It is
well know that if the function φ is convex, then

φ(x) – φ(y) ≥ ∇+φ(y)(x – y) for all x, y ∈ 	, (2.2)

where

∇+φ(y)(x – y) =
〈
∂φ+(y)

∂y
, (x – y)

〉

,
∂φ+(y)

∂y
=

(
∂φ+(y)

∂y1
,
∂φ+(y)

∂y2
, . . . ,

∂φ+(y)
∂yn

)

,

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ 	, and 〈·, ·〉 is the usual inner product in R
n.

In the literature, there are many generalizations of convex functions in different direc-
tions. One of them is coordinate convex functions introduced by Dragomir [16].

Definition 2.2 ([16]) Let us consider a bidimensional interval S = [a, b] × [c, d] ⊂ R
2.

A function φ : S →R is said to be coordinate convex if the partial functions φy : [a, b] →R

defined as φy(u) = φ(u, y) and φx : [c, d] → R defined as φx(v) = φ(x, v) are convex where
defined for all y ∈ [c, d] and x ∈ [a, b].

Lemma 2.3 ([16]) Every convex function φ : S →R is coordinate convex.

Lemma 2.4 ([27]) Let v be a weight function on [a, b].
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(i) If h is a decreasing function on [a, b], then

∫ b

a
h(t)v(t) dt

∫ x

a
v(t) dt ≤

∫ x

a
h(t)v(t) dt

∫ b

a
v(t) dt for x ∈ [a, b]. (2.3)

(ii) If h is an increasing function on [a, b], then

∫ x

a
h(t)v(t) dt

∫ b

a
v(t) dt ≤

∫ b

a
h(t)v(t) dt

∫ x

a
v(t) dt for x ∈ [a, b]. (2.4)

3 Majorization inequalities for functions defined on rectangles
In this section, we establish some majorization integral inequalities for functions defined
on rectangles. The following theorem is a generalization of Theorem 1.3 mentioned in the
Introduction.

Theorem 3.1 Let w and p be positive continuous functions on [a, b] and [c, d] respectively,
and let f , g and h, k be positive differentiable functions on [a, b] and [c, d] respectively.
Suppose that φ : [0,∞) × [0,∞) →R is a convex function and that

∫ x

a
g(t)w(t) dt ≤

∫ x

a
f (t)w(t) dt for x ∈ [a, b],

∫ y

c
k(s)p(s) ds ≤

∫ y

c
h(s)p(s) ds for y ∈ [c, d],

∫ b

a
g(t)w(t) dt =

∫ b

a
f (t)w(t) dt,

and

∫ d

c
k(s)p(s) ds =

∫ d

c
h(s)p(s) ds.

(i) If g and k are decreasing functions on [a, b] and [c, d] respectively, then

∫ b

a

∫ d

c
φ
(
g(t), k(s)

)
w(t)p(s) dt ds ≤

∫ b

a

∫ d

c
φ
(
f (t), h(s)

)
w(t)p(s) dt ds. (3.1)

(ii) If f and h are increasing functions on [a, b] and [c, d] respectively, then

∫ b

a

∫ d

c
φ
(
f (t), h(s)

)
w(t)p(s) dt ds ≤

∫ b

a

∫ d

c
φ
(
g(t), k(s)

)
w(t)p(s) dt ds. (3.2)

Proof
(i) Since φ : [0,∞) × [0,∞) →R is a convex function, we have

φ(x, y) – φ(w, z) ≥ 〈∇+φ(w, z), (x – w, y – z)
〉
, ∀(x, y), (w, z) ∈ [0,∞) × [0,∞)
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⇐⇒ φ(x, y) – φ(w, z) ≥ ∂φ+(w, z)
∂w

(x – w) +
∂φ+(w, z)

∂z
(y – z).

Put x = f (t), y = h(s), w = g(t), z = k(s) in the last inequality and assume that

ψ1
s (t) =

∂φ(u, v)
∂u

∣
∣
∣
∣
u=g(t),v=k(s)

, ψ3
s (t) =

∂2φ(u, v)
∂2u

∣
∣
∣
∣
u=g(t),v=k(s)

,

ψ2
s (t) =

∂φ(u, v)
∂v

∣
∣
∣
∣
u=g(t),v=k(s)

, ψ4
s (t) =

∂2φ(u, v)
∂2v

∣
∣
∣
∣
u=g(t),v=k(s)

.

Then we have

φ
(
f (t), h(s)

)
– φ

(
g(t), k(s)

) ≥ ψ1
s (t)

(
f (t) – g(t)

)
+ ψ2

s (t)
(
h(s) – k(s)

)
. (3.3)

Set

F(x) =
∫ x

a

(
f (t) – g(t)

)
w(t) dt, x ∈ [a, b]

and

G(y) =
∫ y

c

(
h(s) – k(s)

)
p(s) ds, y ∈ [c, d].

Then, from the assumptions in Theorem 3.1 we conclude that

F(x) ≥ 0, G(y) ≥ 0 for x ∈ [a, b], y ∈ [c, d],

F(a) = F(b) = G(c) = G(d) = 0.

Multiplying both sides of inequality (3.3) by w(t)p(s), we get

[
φ
(
f (t), h(s)

)
– φ

(
g(t), k(s)

)]
w(t)p(s)

≥ ψ1
s (t)

[
f (t) – g(t)

]
w(t)p(s) + ψ2

s (t)
[
h(s) – k(s)

]
w(t)p(s). (3.4)

Integrating both sides of inequality (3.4) gives

∫ b

a

∫ d

c

[
φ
(
f (t), h(s)

)
– φ

(
g(t), k(s)

)]
w(t)p(s) dt ds

≥
∫ b

a

∫ d

c
ψ1

s (t)
[
f (t) – g(t)

]
w(t)p(s) dt ds

+
∫ b

a

∫ d

c
ψ2

s (t)
[
h(s) – k(s)

]
w(t)p(s) dt ds.

By Fubini’s theorem we have

∫ b

a

∫ d

c

[
φ
(
f (t), h(s)

)
– φ

(
g(t), k(s)

)]
w(t)p(s) dt ds

≥
∫ d

c
p(s)

[∫ b

a
ψ1

s (t) dF(t)
]

ds +
∫ b

a
w(t)

[∫ d

c
ψ2

s (t) dG(s)
]

dt.
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Using integration by parts, we obtain

∫ b

a

∫ d

c

[
φ
(
f (t), h(s)

)
– φ

(
g(t), k(s)

)]
w(t)p(s) dt ds

≥
∫ d

c
p(s)

[

ψ1
s (t)F(t)

∣
∣
∣
∣

b

a
–

∫ b

a
ψ3

s (t)g ′(t)F(t) dt
]

ds

+
∫ b

a
w(t)

[

ψ2
s (t)G(s)

∣
∣
∣
∣

d

c
–

∫ d

c
ψ4

s (t)k′(s)G(s) ds
]

dt,

which yields

∫ b

a

∫ d

c

[
φ
(
f (t), h(s)

)
– φ

(
g(t), k(s)

)]
w(t)p(s) dt ds

≥ –
∫ d

c

∫ b

a
ψ3

s (t)g ′(t)F(t)p(s) dt ds –
∫ b

a

∫ d

c
ψ4

s (t)k′(s)G(s)w(t) ds dt. (3.5)

Since φ is convex on [0,∞) × [0,∞), by Lemma 2.3 we conclude that φ is
coordinate convex on [0,∞) × [0,∞), and thus ψ3

s (t) ≥ 0, ψ4
s (t) ≥ 0. Also, k and g

are decreasing, so that k′(s) ≤ 0 and g ′(t) ≤ 0. Thus it follows that

–
∫ d

c

∫ b

a
ψ3

s (t)g ′(t)F(t)p(s) dt ds ≥ 0 (3.6)

and

–
∫ b

a

∫ d

c
ψ4

s (t)k′(s)G(s)w(t) ds dt ≥ 0. (3.7)

Combining (3.5), (3.6), and (3.7) yields

∫ b

a

∫ d

c

[
φ
(
f (t), h(s)

)
– φ

(
g(t), k(s)

)]
w(t)p(s) dt ds ≥ 0,

which implies the desired inequality (3.1).
(ii) Inequality (3.2) can be proved in the same way as inequality (3.1). Theorem 3.1 is

proved. �

Theorem 3.2 Let w and u be positive continuous functions on [a, b] and [c, d], respectively,
and let f , g and k, l be positive differentiable functions on [a, b] and [c, d], respectively.
Suppose that ψ : [0,∞) × [0,∞) →R is a convex function.

(i) Let f /g and l/k be decreasing functions on [a, b] and [c, d], respectively. If f and l are
increasing functions on [a, b] and [c, d], respectively, then

∫ b

a

∫ d

c
ψ

(
f (t)

∫ b
a f (t)w(t) dt

,
l(s)

∫ d
c l(s)u(s) ds

)

w(t)u(s) dt ds

≤
∫ b

a

∫ d

c
ψ

(
g(t)

∫ b
a g(t)w(t) dt

,
k(s)

∫ d
c k(s)u(s) ds

)

w(t)u(s) dt ds. (3.8)
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If g and k are decreasing functions on [a, b] and [c, d], respectively, then the reverse
inequality of (3.8) holds.

(ii) Let f /g and l/k be increasing functions on [a, b] and [c, d], respectively. If g and k are
increasing functions on [a, b] and [c, d], respectively, then

∫ b

a

∫ d

c
ψ

(
g(t)

∫ b
a g(t)w(t) dt

,
k(s)

∫ d
c k(s)u(s) ds

)

w(t)u(s) dt ds

≤
∫ b

a

∫ d

c
ψ

(
f (t)

∫ b
a f (t)w(t) dt

,
l(s)

∫ d
c l(s)u(s) ds

)

w(t)u(s) dt ds. (3.9)

If f and l are decreasing functions on [a, b] and [c, d], respectively, then the reverse inequal-
ity of (3.9) holds.

Proof
(i) Using Lemma 2.4 with substitution v(t) = g(t)w(t) and h(t) = f (t)/g(t) in (2.3), we

obtain

∫ b

a
f (t)w(t) dt

∫ x

a
g(t)w(t) dt

≤
∫ x

a
f (t)w(t) dt

∫ b

a
g(t)w(t) dt, x ∈ [a, b]. (3.10)

Also, putting v(s) = k(s)u(s) and h(s) = l(s)/k(s) in (2.3) gives

∫ d

c
l(s)u(s) ds

∫ y

c
k(s)u(s) ds ≤

∫ y

c
l(s)u(s) ds

∫ d

c
k(s)u(s) ds, y ∈ [c, d]. (3.11)

From (3.10) and (3.11) we deduce that

∫ x

a

(
g(t)

∫ b
a g(t)w(t) dt

)

w(t) dt ≤
∫ x

a

(
f (t)

∫ b
a f (t)w(t) dt

)

w(t) dt, x ∈ [a, b], (3.12)

∫ y

c

(
k(s)

∫ d
c k(s)u(s) ds

)

u(s) ds ≤
∫ x

c

(
l(s)

∫ d
c l(s)u(s) ds

)

u(s) ds, y ∈ [c, d]. (3.13)

Additionally, it is easy to observe that

∫ b

a

(
g(t)

∫ b
a g(t)w(t) dt

)

w(t) dt =
∫ b

a

(
f (t)

∫ b
a f (t)w(t) dt

)

w(t) dt, (3.14)

∫ d

c

(
k(s)

∫ d
c k(s)u(s) ds

)

u(s) ds =
∫ d

c

(
l(s)

∫ d
c l(s)u(s) ds

)

u(s) ds. (3.15)

By relations (3.12), (3.13), (3.14), and (3.15), using inequality (3.2) given in
Theorem 3.1, we obtain

∫ b

a

∫ d

c
ψ

(
f (t)

∫ b
a f (t)w(t) dt

,
l(s)

∫ d
c l(s)u(s) ds

)

w(t)u(s) dt ds
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≤
∫ b

a

∫ d

c
ψ

(
g(t)

∫ b
a g(t)w(t) dt

,
k(s)

∫ d
c k(s)u(s) ds

)

w(t)u(s) dt ds,

which is the desired inequality (3.8).
Using the majorization relations (3.12), (3.13), (3.14), and (3.15) and inequality

(3.1), we get the reversed inequality of (3.8).
(ii) If we perform an interchange f �−→ g (g �−→ f ) and k �−→ l (l �−→ k), then inequality

(3.9) follows immediately from (3.8). The reversed inequality of (3.9) can be
deduced from the reversed inequality of (3.8) by using the same interchange. This
completes the proof of Theorem 3.2. �

4 Applications to the generalization of Favard’s inequality
As an application of Theorem 3.2, we establish some Favard-type inequalities for func-
tions defined on rectangles, which generalize the results of Theorem 1.4 described in the
Introduction.

Corollary 4.1 Let w and u be positive continuous functions on [a, b] and [c, d], respectively,
and let f and l be positive differentiable functions on [a, b] and [c, d], respectively. Suppose
that ψ : [0,∞) × [0,∞) →R is a convex function.

(i) Let f (t)/(t – a) and l(s)/(s – c) be decreasing functions on (a, b] and (c, d], respectively.
If f and l are increasing functions on [a, b] and [c, d], respectively, then

∫ b

a

∫ d

c
ψ

(
f (t), l(s)

)
w(t)u(s) dt ds

≤
∫ b

a

∫ d

c
ψ

( ∫ b
a f (t)w(t) dt

∫ b
a (t – a)w(t) dt

(t – a),

∫ d
c l(s)u(s) ds

∫ d
c (s – c)u(s) ds

(s – c)
)

w(t)u(s) dt ds. (4.1)

(ii) Let f (t)/(b – t) and l(s)/(d – s) be increasing function on [a, b) and [c, d), respectively.
If f and l are decreasing functions on [a, b] and [c, d], respectively, then

∫ b

a

∫ d

c
ψ

(
f (t), l(s)

)
w(t)u(s) dt ds

≤
∫ b

a

∫ d

c
ψ

( ∫ b
a f (t)w(t) dt

∫ b
a (b – t)w(t) dt

(b – t),

∫ d
c l(s)u(s) ds

∫ d
c (d – s)u(s) ds

(d – s)
)

w(t)u(s) dt ds. (4.2)

Proof Note the simple fact that if ψ(x, y) (ψ : [0,∞) × [0,∞) → R) is a convex function,
then ψ(θ1x, θ2y) (θ1, θ2 > 0) is also a convex function. Using Theorem 3.2 with substitution

ψ(x, y) �−→ ψ

((∫ b

a
f (t)w(t) dt

)

x,
(∫ d

c
l(s)u(s) ds

)

y
)
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in inequality (3.8) and choosing g(t) = t – a and k(s) = s – c, we get the required inequality
(4.1). Applying the above substitution to the reverse inequality of (3.9) and choosing g(t) =
b – t and k(s) = d – s, we derive inequality (4.2). �

Corollary 4.2 Let w and u be positive continuous functions on [a, b] and [c, d], respectively,
and let f and l be positive differentiable functions on [a, b] and [c, d], respectively. Suppose
that ψ : [0,∞) × [0,∞) →R is a convex function.

(i) Let f (t)/(t – a) and l(s)/(s – c) be decreasing functions on (a, b] and (c, d],
respectively. If f and l are increasing functions on [a, b] and [c, d], respectively, then

1
(b – a)(d – c)

∫ b

a

∫ d

c
ψ

(
f (t), l(s)

)
w(t)u(s) dt ds

≤
∫ 1

0

∫ 1

0
ψ(ξ f̃ , η̃l)w

(
a(1 – ξ ) + bξ

)
u
(
c(1 – η) + dη

)
dξ dη, (4.3)

where f̃ = (b – a)
∫ b

a f (t)w(t) dt/
∫ b

a (t – a)w(t) dt and
l̃ = (d – c)

∫ d
c l(s)u(s) ds/

∫ d
c (s – c)u(s) ds.

(ii) Let f (t)/(b – t) and l(s)/(d – s) be increasing functions on [a, b) and [c, d),
respectively. If f and l are decreasing functions on [a, b] and [c, d], respectively, then

1
(b – a)(d – c)

∫ b

a

∫ d

c
ψ

(
f (t), l(s)

)
w(t)u(s) dt ds

≤
∫ 1

0

∫ 1

0
ψ(ξ f̃ , η̃l)w

(
aξ + b(1 – ξ )

)
u
(
cη + d(1 – η)

)
dξ dη, (4.4)

where f̃ = (b – a)
∫ b

a f (t)w(t) dt/
∫ b

a (b – t)w(t) dt and
l̃ = (d – c)

∫ d
c l(s)u(s) ds/

∫ d
c (d – s)u(s) ds.

Proof Substituting ξ = t–a
b–a and η = s–c

d–c into the right-hand sides of (4.1), we get

∫ b

a

∫ d

c
ψ

( ∫ b
a f (t)w(t) dt

∫ b
a (t – a)w(t) dt

(t – a),
∫ d

c l(s)u(s) ds
∫ d

c (s – c)u(s) ds
(s – c)

)

w(t)l(s) dt ds

=
∫ 1

0

∫ 1

0
ψ

(

ξ
(b – a)

∫ b
a f (t)w(t) dt

∫ b
a (t – a)w(t) dt

,

η
(d – c)

∫ d
c l(s)u(s) ds

∫ d
c (s – c)u(s) ds

)

w
(
a(1 – ξ ) + bξ

)
l
(
c(1 – η) + dη

)
dξ dη,

which, together with inequality (4.1), leads to the desired inequality (4.3).
Similarly, we can deduce inequality (4.4) by substituting ξ = b–t

b–a and η = d–s
d–c into the

right-hand sides of (4.2). �

Corollary 4.3 Let w and u be positive continuous functions on [a, b] and [c, d], respectively.
Suppose that ψ : [0,∞) × [0,∞) →R is a convex function.
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(i) If f and l are positive increasing concave functions on [a, b] and [c, d], respectively,
then

1
(b – a)(d – c)

∫ b

a

∫ d

c
ψ

(
f (t), l(s)

)
w(t)u(s) dt ds

≤
∫ 1

0

∫ 1

0
ψ(ξ f̃ , η̃l)w

(
a(1 – ξ ) + bξ

)
u
(
c(1 – η) + dη

)
dξ dη, (4.5)

where f̃ = (b – a)
∫ b

a f (t)w(t) dt/
∫ b

a (t – a)w(t) dt and
l̃ = (d – c)

∫ d
c l(s)u(s) ds/

∫ d
c (s – c)u(s) ds.

(ii) If f and l are positive decreasing concave functions on [a, b] and [c, d], respectively,
then

1
(b – a)(d – c)

∫ b

a

∫ d

c
ψ

(
f (t), l(s)

)
w(t)u(s) dt ds

≤
∫ 1

0

∫ 1

0
ψ(ξ f̃ , η̃l)w

(
aξ + b(1 – ξ )

)
u
(
cη + d(1 – η)

)
dξ dη, (4.6)

where f̃ = (b – a)
∫ b

a f (t)w(t) dt/
∫ b

a (b – t)w(t) dt and l̃ = (d – c)
∫ d

c l(s)u(s) ds/
∫ d

c (d – s)u(s) ds.

Proof
(i) By the first part of Corollary 4.2, to prove inequality (4.5), it suffices to prove that

f (t)/(t – a) and l(s)/(s – c) are decreasing functions on (a, b] and (c, d], respectively.
Consider the function

P(t) =
f (t)
t – a

, t ∈ (a, b].

Differentiation of P(t) with respect to t gives

P′(t) =
f ′(t)(t – a) – f (t)

(t – a)2

=
f ′(t)(t – a) – f (t) + f (a)

(t – a)2 –
f (a)

(t – a)2

=
f ′(t) – f (t)–f (a)

t–a
t – a

–
f (a)

(t – a)2

=
f ′(t) – f ′(θ )

t – a
–

f (a)
(t – a)2 (a < θ < t).

It follows that P′(t) < 0 for t ∈ (a, b] since f is a positive concave function on
[a, b]. Thus we conclude that P(t) = f (t)/(t – a) is a decreasing function on (a, b]. In
the same way, we can prove that l(s)/(s – c) is a decreasing function on (c, d]. This
proves inequality (4.5).

(ii) Similarly, we have

Q′(t) =
(

f (t)
b – t

)′
=

f ′(t) – f ′(ζ )
b – t

+
f (a)

(b – t)2 (t < ζ < b).
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We deduce that Q′(t) > 0 for t ∈ [a, b), since f is positive concave function on [a, b].
Thus, Q(t) = f (t)/(b – t) is an increasing function on [a, b). In the same way, we can
prove that l(s)/(d – s) is an increasing function on [c, d). Therefore inequality (4.6)
follows from the second part of Corollary 4.2. �

5 Final remarks
Obviously, the results of Corollary 4.3 are generalizations of those given in Theorem 1.6
relating to Favard’s inequality. Indeed, if we put w(t) = 1, u(s) = 1, f = �, and ψ(x, y) = ϒ(x)
in (4.5) and (4.6), respectively, then we obtain the Favard inequality (1.6). Further, we can
deduce the Favard inequality (1.7) by taking ϒ(x) = xq (q > 1). It is worth noting that the
majorization inequalities asserted in Theorem 3.1 play a key role in proving Theorem 3.2.
Further, with the help of Theorem 3.2, we obtain some significant results in Corollaries
4.1, 4.2, and 4.3.
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