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1 Introduction
We first recall two definitions.

Definition 1.1 ([1]) For fixed n ≥ 2, let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two
n-tuples of real numbers.

(i) x is said to be majorized by y (in symbols, x ≺ y) if

k∑

i=1

x[i] ≤
k∑

i=1

y[i] for k = 1, 2, . . . , n – 1, and
n∑

i=1

xi =
n∑

i=1

yi,

where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in
descending order.

(ii) Let � ⊂Rn. A function � : � →R is said to be a Schur-convex function (shortly, an
S-convex function) if

x ≺ y ⇒ �(x) ≤ �(y).

For example:

a(2) =
(

a1 + a2

2
,

a2 + a3

2
, . . . ,

an + a1

2

)
,

a(3) =
(

a1 + a2 + a3

3
,

a2 + a3 + a4

3
, . . . ,

an + a1 + a2

3

)
.

In 2006, I. Olkin, one of the authors of the book [1], wrote a letter to K. Z. Guan, referring
to the following interesting question: is it true that

a(k+1) ≺ a(k), 1 ≤ k ≤ n – 1? (1)
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However, a proof for a(k+1) ≺ a(k) remains elusive (see [1], p. 63).
In 2010, Shi [2] proved that (1) holds when n = 4, k = 2 and n = 5, k = 3. In this paper, we

prove that (1) holds for any n ≥ 2 and 1 ≤ k ≤ n – 1.
For any 1 ≤ k ≤ n, let

a(k)
[1] ≥ a(k)

[2] ≥ · · · ≥ a(k)
[n]

be the ordered component of the sequence a(k)
1 , a(k)

2 , . . . , a(k)
n . We denote

S(k)
h =

h∑

i=1

a(k)
[i] , 1 ≤ h ≤ n.

2 Lemmas and corollaries
For proving our main results, we need the following lemmas.

Lemma 2.1 Let n ≥ 2 and 1 ≤ k ≤ n – 1. Then

⎧
⎪⎪⎨

⎪⎪⎩

a(k)
1 ≥ a(k)

2 ≥ · · · ≥ a(k)
n–k+1,

a(k)
n ≥ a(k)

n–1 ≥ · · · ≥ a(k)
n–k+1,

a(k)
1 ≥ a(k)

n .

(2)

Proof For any 1 ≤ k ≤ n – 1 and 1 ≤ i ≤ n, we have

k
(
a(k)

i – a(k)
i+1

)
= (ai + ai+1 + · · · + ai+k–1) – (ai+1 + ai+2 + · · · + ai+k) = ai – ai+k .

Note that a1 ≥ a2 ≥ · · · ≥ an, so we can induce that
(1) if i + k ≤ n, that is, 1 ≤ i ≤ n – k, then ai ≥ ai+k . It follows that a(k)

i ≥ a(k)
i+1.

(2) if i + k > n, that is, n – k < i ≤ n, then ai+k = an+(i+k–n) = ai+k–n. Since 1 ≤ k ≤ n – 1,
we have n ≥ i > i + k – n. So ai ≥ ai+k–n = ai+k . It follows that a(k)

i ≥ a(k)
i+1.

(3) k(a(k)
1 – a(k)

n ) = (a1 + a2 + · · · + ak) – (an + a1 + · · · + ak–1) = ak – an ≥ 0. Therefore (2)
holds. �

From the proof of Lemma 2.1 it is easy to deduce the following:

Corollary 2.2 Let n ≥ 2, 1 ≤ k ≤ n – 1, and let
∑–1

i=0 a(k)
n–i = 0. For any 1 ≤ h ≤ n – 1, there

exist 1 ≤ h1 ≤ n – k and –1 ≤ h2 ≤ k – 2 such that h = h1 + h2 + 1 and

S(k)
h =

h1∑

i=1

a(k)
i +

h2∑

i=0

a(k)
n–i.

Lemma 2.3 Let n ≥ 4, 2 ≤ k ≤ n – 2, and 0 ≤ r ≤ k – 2.
(i) If

a(k)
2 ≤ a(k)

n–r ≤ a(k)
1 , (3)

then

a(k+1)
2 ≤ a(k+1)

n–r ≤ a(k+1)
1 .



Zhang et al. Journal of Inequalities and Applications  (2018) 2018:152 Page 3 of 13

(ii) If

a(k)
n–k+1 ≤ a(k)

n–r ≤ a(k)
n–k , (4)

then

a(k+1)
n–k ≤ a(k+1)

n–r–1 ≤ a(k+1)
n–k–1.

(iii) For 2 ≤ m ≤ n – k – 1, if

a(k)
m+1 ≤ a(k)

n–r ≤ a(k)
m , (5)

then

a(k+1)
m+1 ≤ a(k+1)

n–r , a(k+1)
n–r–1 ≤ a(k+1)

m–1 . (6)

(iv) If

a(k)
n ≤ a(k)

n–k , (7)

then

a(k+1)
n–1 ≤ a(k+1)

n–k–1.

(v) For 2 ≤ m ≤ n – k – 1, if

a(k)
n ≤ a(k)

m , (8)

then

a(k+1)
n–1 ≤ a(k+1)

m .

(vi) For 2 ≤ m ≤ n – k, if

a(k)
n–r–1 ≤ a(k)

m ≤ a(k)
n–r , (9)

then

a(k+1)
n–r–2 ≤ a(k+1)

m–1 , a(k+1)
m ≤ a(k+1)

n–r .

Proof
(i) By Lemma 2.1 we have

⎧
⎪⎪⎨

⎪⎪⎩

a(k+1)
1 ≥ a(k+1)

2 ≥ · · · ≥ a(k+1)
n–k ,

a(k+1)
n ≥ a(k+1)

n–1 ≥ · · · ≥ a(k+1)
n–k ,

a(k+1)
1 ≥ a(k+1)

n .
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It follows that

a(k+1)
1 = max

{
a(k+1)

1 , a(k+1)
2 , . . . , a(k+1)

n
}

.

Thus we have

a(k+1)
n–r ≤ a(k+1)

1 .

By the left inequality of (3) we have

a2 + · · · + ak+1 ≤ an–r + · · · + an–r+k–1.

Note that ak+2 ≤ ak–r = an+k–r , so we have

a2 + · · · + ak+1 + ak+2 ≤ an–r + · · · + an–r+k–1 + an+k–r .

Therefore

a(k+1)
2 ≤ a(k+1)

n–r .

(ii) By Lemma 2.1 we have

a(k+1)
n–k ≤ a(k+1)

n–r–1.

By the right inequality of (4) we get

an–r + · · · + an–r+k–1 ≤ an–k + · · · + an–1.

Note that an–r–1 ≤ an–k–1, so we have

an–r + · · · + an–r+k–1 + an–r–1 ≤ an–k + · · · + an–1 + an–k–1.

This means that

a(k+1)
n–r–1 ≤ a(k+1)

n–k–1.

(iii) By (5) we get

am+1 + · · · + am+k ≤ an–r + · · · + an–r+k–1 ≤ am + · · · + am+k–1.

Note that n ≥ m + k + 1 ≥ k – r ≥ 1 and n ≥ n – r – 1 ≥ m – 1 ≥ 1, so we have

am+k+1 ≤ an–r+k = ak–r, an–r–1 ≤ am–1.

It follows that

am+1 + · · · + am+k + am+k+1 ≤ an–r + · · · + an–r+k–1 + an–r+k
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and

an–r–1 + an–r + · · · + an–r+k–1 ≤ am–1 + am + · · · + am+k–1.

Therefore (6) holds.
(iv) By (7) we get

an + · · · + an+k–1 ≤ an–k + · · · + an–1.

Since an–1 ≤ an–k–1, we have

an + · · · + an+k–1 + an–1 ≤ an–k + · · · + an–1 + an–k–1.

It follows that

a(k+1)
n–1 ≤ a(k+1)

n–k–1.

(v) By (8) we have

an + · · · + an+k–1 ≤ am + · · · + am+k–1.

Note that n – 1 ≥ m + k and an–1 ≤ am+k , so we have

an + · · · + an+k–1 + an–1 ≤ am + · · · + am+k–1 + am+k .

This means that

a(k+1)
n–1 ≤ a(k+1)

m .

(vi) By (9) we get

an–r–1 + · · · + an–r+k–2 ≤ am + · · · + am+k–1 ≤ an–r + · · · + an–r+k–1.

Note that 0 ≤ r ≤ k – 2 and 2 ≤ m ≤ n – k, so we have

n ≥ n – r – 2 ≥ n – k ≥ m ≥ m – 1 ≥ 1.

It follows that

an–r–2 ≤ am–1.

So we get

an–r–2 + an–r–1 + · · · + an–r+k–2 ≤ am–1 + am + · · · + am+k–1.

Therefore

a(k+1)
n–r–2 ≤ a(k+1)

m–1 .
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Note that m ≤ n – k, so we have

k – r ≤ m + k ≤ n, am+k ≤ ak–r = an+k–r .

It follows that

am + · · · + am+k–1 + am+k ≤ an–r + · · · + an–r+k–1 + an+k–r .

Therefore

a(k+1)
m ≤ a(k+1)

n–r . �

Lemma 2.4 Let n ≥ 4, 2 ≤ k ≤ n – 1, 1 ≤ m ≤ n – k, and 0 ≤ r ≤ k – 2.
(i) If a(k)

m+1 ≤ a(k)
n–r ≤ a(k)

m , then

S(k)
m+r+1 =

m∑

i=1

a(k)
i +

r∑

i=0

a(k)
n–i. (10)

(ii) If a(k)
n ≤ a(k)

m , then

S(k)
m =

m∑

i=1

a(k)
i .

(iii) For 2 ≤ m ≤ n – k, if a(k)
n–r–1 ≤ a(k)

m ≤ a(k)
n–r , then

S(k)
m+r+1 =

m∑

i=1

a(k)
i +

r∑

i=0

a(k)
n–i.

Proof We only prove (i). Using a similar method, we can obtain (ii) and (iii).
By Lemma 2.1 we have

⎧
⎨

⎩
a(k)

1 ≥ a(k)
2 ≥ · · · ≥ a(k)

m ≥ a(k)
n–r ≥ a(k)

m+1,

a(k)
n ≥ a(k)

n–1 ≥ · · · ≥ a(k)
n–r+1 ≥ a(k)

n–r ≥ a(k)
m+1.

(11)

By Corollary 2.2 we let

S(k)
m+r+1 =

h1∑

i=1

a(k)
i +

h2∑

i=0

a(k)
n–i, (12)

where 1 ≤ h1 ≤ n – k + 1, –1 ≤ h2 ≤ k – 2, and
∑–1

i=0 a(k)
n–i = 0. It is clear that

m + r + 1 = h1 + h2 + 1. (13)

Next, we prove that h1 = m and h2 = r.
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(1) If h1 ≥ m + 1, which means that the right-hand side of (12) includes a(k)
m+1, then by

(11) the right-hand side of (12) should include a(k)
1 , a(k)

2 , . . . , a(k)
m+1 and

a(k)
n–r , a(k)

n–r+1, . . . , a(k)
n , so we have

h1 + h2 + 1 ≥ m + r + 2 > m + r + 1.

This is a contradiction with (13).
(2) If h1 ≤ m – 1, then by (13) we have k – 2 ≥ h2 ≥ r + 1. Together with (11), we get

a(k)
n–h2

≤ a(k)
n–r–1 ≤ a(k)

n–r ≤ a(k)
m .

So the right-hand side of (12) must include a(k)
m , which means that h1 ≥ m. This is a

contradiction with h1 ≤ m – 1.
Therefore h1 = m and h2 = r. So (10) holds. �

Corollary 2.5 Let n ≥ 4, 2 ≤ k ≤ n – 2, 1 ≤ m ≤ n – k, and 0 ≤ r ≤ k – 2, and let

a(k)
m+1 ≤ a(k)

n–r ≤ a(k)
m . (14)

(i) For m = 1, we have

S(k+1)
r+2 = a(k+1)

1 +
r∑

i=0

a(k+1)
n–i . (15)

(ii) For m = n – k, we have

S(k+1)
n–k+r+1 =

n–k–1∑

i=1

a(k+1)
i +

r+1∑

i=0

a(k+1)
n–i . (16)

(iii) For 2 ≤ k ≤ n – 3 and 2 ≤ m ≤ n – k – 1, S(k+1)
m+r+1 must be one of the following two

cases:

S(k+1)
m+r+1 =

m∑

i=1

a(k+1)
i +

r∑

i=0

a(k+1)
n–i ,

or

S(k+1)
m+r+1 =

m–1∑

i=1

a(k+1)
i +

r+1∑

i=0

a(k+1)
n–i .

Proof
(i) If m = 1, by (14) we have

a(k)
2 ≤ a(k)

n–r ≤ a(k)
1 .
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By Lemma 2.3(i) we have

a(k+1)
2 ≤ a(k+1)

n–r ≤ a(k+1)
1 ,

and then by Lemma 2.4(i) we can induce that (15) holds.
(ii) If m = n – k, then by (14) we have

a(k)
n–k+1 ≤ a(k)

n–r ≤ a(k)
n–k .

By Lemma 2.3(ii) we have

a(k+1)
n–k ≤ a(k+1)

n–r–1 ≤ a(k+1)
n–k–1,

and then by Lemma 2.4(i) we can induce that (16) holds.
(iii) By Corollary 2.2 we let

S(k+1)
m+r+1 =

p∑

i=1

a(k+1)
i +

q∑

i=0

a(k+1)
n–i , (17)

where 1 ≤ p ≤ n – k, –1 ≤ q ≤ k – 2, and
∑–1

i=0 a(k)
n–i = 0. Then we have

p + q + 1 = m + r + 1. (18)

Next, we prove that p = m or p = m – 1.
(1) If p ≥ m + 1, then by Lemma (2.3)(iii) we have a(k+1)

m+1 ≤ a(k+1)
n–r . So we get

a(k+1)
p ≤ a(k+1)

m+1 ≤ a(k+1)
n–r .

Thus the right-hand side of (17) includes a(k+1)
n–r , which means that q ≥ r. Therefore

p + q + 1 ≥ m + r + 2 > m + r + 1.

This is a contradiction with (18).
(2) If 1 ≤ p ≤ m – 2, then by (18) we have n – q ≤ n – r – 2. By Lemma 2.3(iii) we get

a(k+1)
n–r–1 ≤ a(k+1)

m–1 . It follows that

a(k+1)
n–q ≤ a(k+1)

n–r–2 ≤ a(k+1)
n–r–1 ≤ a(k+1)

m–1 .

So the right-hand side of (17) must include a(k+1)
m–1 . Therefore

p ≥ m – 1.

This is a contradiction with 1 ≤ p ≤ m – 2.
Thus p = m or p = m – 1. �

In a similar way as in Corollary 2.5, we can prove the following corollaries.
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Corollary 2.6 Let n ≥ 4, 2 ≤ k ≤ n – 2, 2 ≤ m ≤ n – k, and 0 ≤ r ≤ k – 2.
(i) If a(k)

n ≤ a(k)
m , then S(k+1)

m must be one of the following two cases:

S(k+1)
m =

m∑

i=1

a(k+1)
i

or

S(k+1)
m =

m–1∑

i=1

a(k+1)
i + a(k+1)

n .

(ii) If a(k)
n–r–1 ≤ a(k)

m ≤ a(k)
n–r , then S(k+1)

m+r+1 must be one of the following two cases:

S(k+1)
m+r+1 =

m∑

i=1

a(k+1)
i +

r∑

i=0

a(k+1)
n–i

or

S(k+1)
m+r+1 =

m–1∑

i=1

a(k+1)
i +

r+1∑

i=0

a(k+1)
n–i .

Corollary 2.7 Let n ≥ 4, 2 ≤ k ≤ n – 2, 1 ≤ m ≤ n – k, and –1 ≤ r ≤ k – 2, and let∑–1
i=0 a(k)

n–i = 0. If

S(k)
m+r+1 =

m∑

i=1

a(k)
i +

r∑

i=0

a(k)
n–i,

then we have:
(i) if m = 1, then

S(k+1)
r+2 = a(k+1)

1 +
r∑

i=0

a(k+1)
n–i ;

(ii) if 2 ≤ m ≤ n – k, then S(k+1)
m+r+1 must be one of the following two cases:

S(k+1)
m+r+1 =

m∑

i=1

a(k+1)
i +

r∑

i=0

a(k+1)
n–i

or

S(k+1)
m+r+1 =

m–1∑

i=1

a(k+1)
i +

r+1∑

i=0

a(k+1)
n–i .

Lemma 2.8 Let n ≥ 4, 2 ≤ k ≤ n – 2, 1 ≤ m ≤ n – k, and –1 ≤ r ≤ k – 2, and let∑–1
i=0 a(k)

n–i = 0. If

⎧
⎨

⎩
S(k)

m+r+1 =
∑m

i=1 a(k)
i +

∑r
i=0 a(k)

n–i,

S(k+1)
m+r+1 =

∑m
i=1 a(k+1)

i +
∑r

i=0 a(k+1)
n–i ,

(19)
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then

S(k)
m+r+1 ≥ S(k+1)

m+r+1. (20)

Proof By a simple calculation we obtain

S(k)
m+r+1 – S(k+1)

m+r+1 =
1

k + 1

(
S(k)

m+r+1 –
k+m∑

i=k–r

ai

)
.

By (19) we have

a(k)
m+1 ≤ a(k)

n–r .

It follows that

am+1 + am+2 + · · · + ak+m ≤ an–r + an–r+1 + · · · + an–r+k–1.

So we have

ak–r + ak–r+1 + · · · + ak+m ≤ an–r + an–r+1 + · · · + an+m.

Note that
⎧
⎨

⎩
an–r + an–r+1 + · · · + an+m ≤ an–r+j + an–r+1+j + · · · + an+m+j, 0 ≤ j ≤ r,

ak–r + ak–r+1 + · · · + ak+m ≤ an–r+j + an–r+1+j + · · · + an+m+j, r + 1 ≤ j ≤ k – 1.

Thus we can induce that

S(k)
m+r+1 =

m∑

i=1

a(k)
i +

r∑

i=0

a(k)
n–i =

1
k

n+m∑

i=n–r

k–1∑

j=0

aj+i =
1
k

k–1∑

j=0

n+m∑

i=n–r

aj+i ≥
k+m∑

i=k–r

ai.

This means that (20) holds. �

Lemma 2.9 Let n ≥ 4, 2 ≤ k ≤ n – 2, 2 ≤ m ≤ n – k, and –1 ≤ r ≤ k – 2, and let∑–1
i=0 a(k)

n–i = 0. If

⎧
⎨

⎩
S(k)

m+r+1 =
∑m

i=1 a(k)
i +

∑r
i=0 a(k)

n–i,

S(k+1)
m+r+1 =

∑m–1
i=1 a(k+1)

i +
∑r+1

i=0 a(k+1)
n–i ,

(21)

then

S(k)
m+r+1 ≥ S(k+1)

m+r+1. (22)

Proof Note that

S(k)
m+r+1 – S(k+1)

m+r+1
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=
1

k + 1

(m–1∑

i=1

a(k)
i +

r∑

i=0

a(k)
n–i

)
+ a(k)

m – a(k+1)
n–r–1 –

1
k + 1

k+m–1∑

i=k–r

ai

=
1

k + 1

( m∑

i=1

a(k)
i +

r∑

i=0

a(k)
n–i –

n+m–1∑

i=n–r–1

ai

)

=
1

k + 1

(
S(k)

m+r+1 –
n+m–1∑

i=n–r–1

ai

)
.

By (21) we have

a(k)
n–r–1 ≤ a(k)

m .

It follows that

an–r–1 + an–r + · · · + an–r+k–2 ≤ am + am+1 + · · · + am+k–1.

So we can induce that

an–r–1 + an–r + · · · + an+m–1 ≤ ak–r–1 + ak–r + · · · + ak+m–1.

Since
⎧
⎨

⎩
an–r–1 + an–r + · · · + an+m–1 ≤ an–r+j + an–r+1+j + · · · + an+m+j, 0 ≤ j ≤ r,

ak–r–1 + ak–r + · · · + ak+m–1 ≤ an–r+j + an–r+1+j + · · · + an+m+j, r + 1 ≤ j ≤ k – 1,

we have

S(k)
m+r+1 =

1
k

k–1∑

j=0

n+m∑

i=n–r

aj+i ≥
n+m–1∑

i=n–r–1

ai.

This means that (22) holds. �

3 Main results
We are now in a position to prove our main results (1) in two cases: k = 1 and 2 ≤ k ≤ n – 1.

Theorem 3.1 For any n ≥ 2, we have

a(2) ≺ a(1) = a. (23)

Proof It is clear that (23) holds if n = 2. Next, let n ≥ 3. Then we have

a1 + a2

2
= S(2)

1 ≤ S(1)
1 = a1, S(2)

n = S(1)
n .

For 2 ≤ m ≤ n – 1, we prove that S(2)
m ≤ S(1)

m in the following two cases:
(i) If S(2)

m =
∑m

i=1 a(2)
i , then

S(2)
m – S(1)

m =
am+1 – a1

2
≤ 0.
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(ii) If S(2)
m = a(2)

n +
∑m–1

i=1 a(2)
i , then

S(2)
m – S(1)

m =
an – am

2
≤ 0.

So (23) holds.
�

Theorem 3.2 For any n ≥ 3 and 2 ≤ k ≤ n – 1, we have

a(k+1) ≺ a(k). (24)

Proof It is clear that (24) holds for any n ≥ 3, k = n – 1 and for n = 3, k = 1.
Next, let n ≥ 4 and 2 ≤ k ≤ n – 2.
For any 1 ≤ m ≤ n – k and –1 ≤ r ≤ k – 2, let

∑–1
i=0 a(k)

n–i = 0, and let

S(k)
m+r+1 =

m∑

i=1

a(k)
i +

r∑

i=0

a(k)
n–i.

Next, we prove that

S(k)
m+r+1 ≥ S(k+1)

m+r+1

in the following two cases:
(i) If m = 1 and –1 ≤ r ≤ k – 2, then by Corollary 2.7(i) and Lemma 2.8 we get

S(k)
r+2 ≥ S(k+1)

r+2 .

(ii) If 2 ≤ m ≤ n – k and –1 ≤ r ≤ k – 2, then by Corollary 2.7(ii), Lemma 2.8, and
Lemma 2.9 we get

S(k)
m+r+1 ≥ S(k+1)

m+r+1.

Note that

S(k)
n = S(k+1)

n ,

so (24) holds. �

4 Discussion
In the theory of majorizations, there are two key concepts, majorizing relations and Schur-
convex functions. Majorizing relations are weaker ordered relations among vectors, and
Shur-convex functions are an extension of classical convex functions. Combining these
two objects is an effective method of constructing inequalities.

In the theory of majorization, there are two important and fundamental objects, estab-
lishing majorizing relations among vectors and finding various Schur-convex functions.
Majorizing relations deeply characterize intrinsic connections among vectors, and com-
bining a new majorizing relation with suitable Schur-convex functions can lead to various
interesting inequalities; see [3–13].
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