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1 Introduction
We first recall two definitions.

Definition 1.1 ([1]) For fixed n > 2, let x = (x1,%3,...,%,) and y = (y1,¥2,...,¥,) be two
n-tuples of real numbers.
(i) «is said to be majorized by y (in symbols, x < y) if

k k n n
Zx[i152y[i] fork=1,2,...,n—1, and in:Zyi,
i=1 i=1 i=1 i=1

where x[1; > - > %[, and yj1; = - - - > ¥ are rearrangements of x and y in
descending order.

(i) Let CR™ Afunction : — Rissaid to bea Schur-convex function (shortly, an
S-convex function) if

x<y=> @)= ).

For example:

L0 _ <a1 tdy a+as ay +ay
- 2 ) 2 reree 2 )

3) ay +dy+az dy+as+ay a, +a; +dy
= 3 F) 3 yeeey 3

In 2006, L. Olkin, one of the authors of the book [1], wrote a letter to K. Z. Guan, referring
to the following interesting question: is it true that

ak <g®  1<k<n-1? (1)
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However, a proof for a**) < 4% remains elusive (see [1], p. 63).

In 2010, Shi [2] proved that (1) holds when n = 4, k = 2 and # = 5, k = 3. In this paper, we
prove that (1) holds foranyn >2and 1 <k <n-1.
Forany 1 <k <mn,let

(k) (k) (k)
apy Zap = Zap
be the ordered component of the sequence a(lk), a(zk), e a(,,k). We denote

2 Lemmas and corollaries
For proving our main results, we need the following lemmas.

Lemma2.1 Letn>2and1<k<n-1.Then

Do sg® )

Proof Forany 1<k <mn-1and1<i<n,wehave

k k
k(aE = a§+)1) =(ai+ a1+ + aiger) = (@1 + Qi + -+ Aigk) = Ai — ik

Note that a; > ay > - -+ > a,, so we can induce that
(1) ifi+k <m, thatis, 1 <i<n-k,then a; > a;.. It follows that agk) >
(2) ifi+k>mn, thatis, n—k <i <wn,then g x = Aps(isk-n) = Birk—n. Since 1 <k <m-1,
) (k)

z ('li+1'

(k)
ﬂi+1'

wehave n >i>i+k—n.Soa; > a; i, = ai.x. It follows that agk
(3) k(a(lk) - aﬁ,k)) =(a1+ay+---+ar)—(a,+ay +---+ax_1) = ax — a, > 0. Therefore (2)
holds. O

From the proof of Lemma 2.1 it is easy to deduce the following:

Corollary 2.2 Letn>2,1<k<n-1,and let Z;:lo aik_)i =0.Forany 1 <h<n-1, there
existl<hi<n-kand-1<hy <k-2suchthath=h +hy+1 and

a1 hy
(k) (k) (k)
S, = E a; + E a, ;.
i=1 i=0

Lemma2.3 Letn>4,2<k<n-2,and0<r<k-2.

M) If
af) <a®, <a, ®3)
then

(k+1) (k+1) (k+1)
ay, ' Za,) <a; .
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(ii) If

(k)
k

(k)
A1 SOy Sy o

(k+1) (k+1)
Ay =4y = Ay k-1

A

(ili) For2<m<n-k-1,if

mil = Gy_p = Ay
then
gy <ayl,  all <a,
(iv) If
then
ol <al.

(v) For2<m<n-k-1,if

a® < g

n m?’

k) k k
Ay r-1 = aﬁn) = ﬂil—)r’
then
afak—+rl—)2 = afii%)’ a£5+1) = af’l](—+7'1)'

Proof
(i) By Lemma 2.1 we have

k+1 k+1 k+l
al'V > af > = %D,
dEIk+l) > ai{k_ql) >... > ﬂqujkl),
1 1
d(1k+ ) > a;h )'
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(4)

(5)

8)

)
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It follows that
(k+1) (k+1) _(k+1) (k+l)}

ay V) =max{ay ,ay ..., a)

Thus we have

k+1 (k+1)
(n—+r) =a; .

a
By the left inequality of (3) we have
ay+ -+ Akl S Ayt F Ayyik-1.

Note that ax,2 < dx_r = dp+k_r, SO We have

ay + -+ agel + k2 X Apy + -+ Ayrik-1 T Apik—r-

Therefore
A <alh

(ii) By Lemma 2.1 we have
a5 <@l
By the right inequality of (4) we get
Apoy o+ Qyprkem1 < Apofe + o+ + 1.
Note that a,,_,_1 < d,_k_1, S0 we have

Apy+ -+ Apyik-1+tApy-1 ZApf+ - +Ay1+aAy_f-1.

This means that

(iii) By (5) we get
a1+ + Ak < Ay + 00+ Aokl < G+ + A1
Notethatn >m+k+1>k—-r>1landn>n-r—-1>m—-1> 1, sowe have
Amrk+l = Ap—rik = Ak—rs Ap-r-1 = Am-1-
It follows that

Al + o+ Ak + Amaksl = Apyr + -+ + Aprik-1 + Ap—rik
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(iv)

(v)

and

Apr-1+Anr+ -+ Apnyrk-1 = A1+ A + - + Aprk-1-

Therefore (6) holds.
By (7) we get

Ap+ -+ Anik-1 = Apk + -+ dp-1.

Since a,,_1 < a,_x_1, We have

Ap+ - +apik-1+ay-1 XAy + - +ay-1 +Apk-1.

It follows that

(k+1)
a1

(k+1)
= Ay k-1

By (8) we have
Ap+ -+ Anik-1 Ay + -+ + Apk-1-

Note that # — 1> m + k and a,,_1 < d,.k, SO we have

Ap+ -+ nik-11+0p-1 XA + - + Apik-1 + Ak

This means that

‘l(nk:rll) = “ZIM)-
By (9) we get

Apr-1+ -+ Aprik—2 = Ay + -+ + k-1 = Ap—r +

Note that 0 <r <k —-2and 2 <m < n -k, so we have

n>n-r-2>n-k>m>m-1>1.

It follows that

ap-r2 = Ap-1.

So we get

ot Aprik-1-

Apr2+Apnyr1t - +Auyrk2=Am-1+Au + -+ Apyrk-1-

Therefore

(k+1) < a(k+1)
m-1*

Ay 2=

Page 5 of 13



Zhang et al. Journal of Inequalities and Applications (2018) 2018:152 Page 6 of 13

Note that m < n — k, so we have
k—-r<m+k<n, Amik = Gk—r = Apik-r-
It follows that
Am + -+ Aprk-1 + Amik = Apy +* + Ayyik-1 + Apsk—r-

Therefore

o <al 5

Lemma24 Letn>4,2<k<n-1,1<m<n-k,and0<r<k-2.

(i) Ifa <a,,),§am,then

m+r+1 Zd +Za (10)

(i) 1f aﬁ,k) <a® then

k (k)
Sﬁn) = Zai .

i=1

(k)

(iii) For2<m<n-k, lfa <ay, <a,, Zry then

n-r—1

m r
(k) (k) (k)
Sm+r+1 = Zai + Zan—i'
i=1 i=0

Proof We only prove (i). Using a similar method, we can obtain (ii) and (iii).
By Lemma 2.1 we have

®s B o B B o K

a,’ =a, = = am’ Z An-r = Ay 1s (11)
k k k k k
af >al > =dl > al > al,
By Corollary 2.2 we let
h hy
(k) (k) (k)
Sm+r+1 = Zai + Zan—i’ (12)
i=1 i=0
wherel <k <n-k+1,-1<hy <k-2,and Z, 0 n ;= 0. It is clear that
m+r+1l=h +hy+1. (13)

Next, we prove that #; =m and hy =r.
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(1) If iy = m + 1, which means that the right-hand 51de of (12) includes am+1, then by
(11) the right-hand side of (12) should include al ,a(zk), oo ag,(ﬂ and
al,,a® a¥, so we have
n=-r»Ay_pi1r++1%n

h+hy+1>m+r+2>m+r+1.

This is a contradiction with (13).
(2) If iy <m -1, then by (13) we have k — 2 > /iy > r + 1. Together with (11), we get

So the right-hand side of (12) must include agﬁ), which means that /; > m. This is a
contradiction with 4y <m — 1.
Therefore 41 = m and /5 = r. So (10) holds. O

Corollary 2.5 Letn>4,2<k<n-2,1<m<n-k,and0<r <k-2,and let

<a®. (14)

(i) Form=1, we have

S(k+l) _ a(k+1) n a(k+l) (15)

r+2 1 n-i

(it) For m =n -k, we have

n—k-1 r+l
n/ﬂ}(lJrHl ﬂ(k+1) ¥ Zﬂ(k+l)~ (16)
i=1 i=0
(iii) For2<k<mn-3and2<m<n-k-1, Sﬁﬁirlﬂ must be one of the following two
cases:
k+1 k+1) k+1)
m+r+1 - Zﬂ n—i ?
i=0
or

r+l

(k+1) (k+1) k+1)
m+r+1_2ﬂ +Zﬂnz .

Proof
(i) Ifm =1, by (14) we have
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By Lemma 2.3(i) we have

d(2k+l)

(k+1)

<a® ) < g,

n-r

and then by Lemma 2.4(i) we can induce that (15) holds.
(i) If m =n -k, then by (14) we have

k) (k)

aY <a® <

Ay k1 = Ayy

By Lemma 2.3(ii) we have

dfz’k_+kl) < a(k+1)

n-r-1 —

(k+1)
n-k-1’

<a
and then by Lemma 2.4(i) we can induce that (16) holds.
(iii) By Corollary 2.2 we let

q
k+1 (k+1) k+1)
m+r+1 - Z“ n-i (17)

wherel <p<mn-k,-1<g<k- ZandZ ) =0. Then we have

i=0 nz
prg+l=m+r+1. (18)

Next, we prove thatp=morp=m - 1.

(k+1) (k+1)

(1) If p>m + 1, then by Lemma (2.3)(iii) we have a,,;" < a;_,". So we get

(k+1)

(k+1)
m+1 =a

(k+1)
a,"’ <a Pl

Thus the right-hand side of (17) includes aﬁ,]f',l), which means that g > r. Therefore
prq+l>m+r+2>m+r+1.

This is a contradiction with (18).
(2) If1 <p <m -2, then by (18) we have n — g < n —r — 2. By Lemma 2.3(iii) we get
(k+D) (k“ . 1t follows that

nr1<a

a

(k+1)

k) < glket) () plke)

n-q — Ay r2 =y 1=
So the right-hand side of (17) must include aiﬁj). Therefore
p>m-—1.

This is a contradiction with 1 <p <m - 2.
Thusp=morp=m-1. d

In a similar way as in Corollary 2.5, we can prove the following corollaries.
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Corollary 2.6 Letn>4,2<k<n-2,2<m<n-k,and0<r<k-2.

(i If a® < a® | then S& must be one of the following two cases:

m

(k+1) (k+1)
Sul =2 a

i=1

or

m-1
(k+1) (k+1
S(k+1 Za
m
i=1

(ii) Ifan 1 < a¥ < a®,, then S,f:,lﬂ must be one of the following two cases:

(k+1 (k+1) (k+1)
m+r+1 z : a; + z : Ay
or

r+l

(k+1) (k+1) k+1
Smire1 = Za + Za .

Corollary27 Letn>4,2<k<n-2,1<m<n-k,and -1 <r <k -2, and let

ZzO nl Olf

m r
(k) (k) (k)
Sm+r+1 = Zai + Zan—i’
i=1 i=0

then we have:

) ifm=1, then
r
(k+1) (k+1) (k+1)
Sr+; =al+ + an—Jri ;
i=0

(il) if2<m<n-k,then S,:,(I,Ill must be one of the following two cases:

k+1 (k+1) k+1)
m+r+1 - a; +

or

r+l

(k+1) (k+1) k+1)
m+r+1_2ﬂ +Zant *

Lemma28Letn24,2§k§n—2,1Smfn—k,and—lfrfk—Z,andlet

ZZO n—i O[f

(k) _ k)
Sm+r+1 - Zz 14 + Zz Oan i’

(k)
13
(19)
(k+1) (k+1 (k+1)
Siri1 = i 4 "+ >i O“n: ’
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then

sW =8k (20)

m+r+l = “m+r+1
Proof By a simple calculation we obtain

1 k+m

(k) (k+1)

Sarel = Smarsl = k+1 ( marel Z a,).
i=k—r

By (19) we have

(k)

m+l —

a < d(k)
It follows that
Amil + Gm2 + -+ Com = Ap—r + Ap—r+1 +*** + Aprik-1-
So we have
Ak—r + Ak—rs1 +*** + Qhrm = Apy + Aprs1 + - + Apim.

Note that

Apr + Aprs1l + + Qpom = Aprij + Aprilej + 0 + Apamyjp 0<j=<r,

Ak—r + Af—rs1 + * + Ay = Ap—r+j + An—r+1+j tet Apsmsj, T +1 f] =< k-1.

Thus we can induce that
n+m k-1

m+r+1 Zﬂ +Zan L_IEZZ

3
bl
T
N

n+

\‘|’—‘

"M

220200

1
T
0

This means that (20) holds. g

Lemma29Leth4,2§k§n—2,2§m§n—k,and—15r§k—2,¢mdlet

Zl 0“ =0.If
Sg't(lwl > 1“ +Zz =0 n u 1)
Sy = i ap D+ ik a5,
then
Sprers1 Z Sy (22)

Proof Note that

s glk+1)

m+r+l — Omr+l
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i=1 i=0 i=k-r
1 m r n+m-1
(k) (k)
(T - 3 )
i=1 i=0 i=n-r-1
1 n+m-1
(k)
k+1 (Sm+r+l - Z al)
i=n-r-1
By (21) we have

(k) (k
an—r—l E am .

It follows that

Ap-r-1+anr+ -+ Apysk—2 = Am + Aps1 + -+ + Apsk-1-
So we can induce that

Anr-1+anr+ -+ Auym-1 = Ak—y-1 + Gf—r + = + Akrm-1.
Since

Apr-1+Anr + -+ Apim-1 = Aprsj + Ap—rs14j + *° + Apimsjp 0<j=<r,

Ak—r-1+ Cf—r + *** + Cfym-1 = Ap—r+j + An—r+1+j teet Apymsj, T +1 S] =< k- 1,

we have
1 k=1 n+m n+m-1
(k)
SN 3 SLAE 3
j=0 i=n-r i=n-r-1
This means that (22) holds. O

3 Main results

We are now in a position to prove our main results (1) in two cases: k = land 2 <k <n-1.

Theorem 3.1 For any n > 2, we have

a? <4V = 4. (23)

Proof It is clear that (23) holds if # = 2. Next, let n > 3. Then we have

a) +ap
2

ng) < 5(11) -a, SLZ) _ Sﬁ;l)~

For 2 <m <n -1, we prove that Sﬁﬁ) < Sﬁi) in the following two cases:
() 1tS% =3" a®?, then

S(z) _ 8(1) _ Am+1 — 41 <o0.

m m 2
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(i) ISP =a? + St aEZ), then

2 1) _ %n—A4m
2 sl = >

<o0.

So (23) holds.

Theorem 3.2 Foranyn>3and2 <k <n-1, we have
2D gl (24)

Proof It is clear that (24) holds foranyn >3, k=n-1andforn=3, k= 1.
Next,letn>4and2 <k <n-2.
Foranyl<m<n-kand-1<r<k-2,let Z;:loﬂg?i =0, and let

m r
(k) (k) (k)
Sm+r+1 = Zai + Zan—i'
i=1 i=0
Next, we prove that

(k) (k+1)
Sm+r+1 = Sm:rﬂ
in the following two cases:
(i) f m=1and -1 <r < k-2, then by Corollary 2.7(i) and Lemma 2.8 we get
k k+1
S£+)2 = S£+; )'

(i) f2<m<mn-kand -1 <r < k-2, then by Corollary 2.7(ii), Lemma 2.8, and

Lemma 2.9 we get

s o gD

m+r+l = “m+r+1*
Note that

S _ glk+1)

n n 4

so (24) holds. O

4 Discussion

In the theory of majorizations, there are two key concepts, majorizing relations and Schur-
convex functions. Majorizing relations are weaker ordered relations among vectors, and
Shur-convex functions are an extension of classical convex functions. Combining these
two objects is an effective method of constructing inequalities.

In the theory of majorization, there are two important and fundamental objects, estab-
lishing majorizing relations among vectors and finding various Schur-convex functions.
Majorizing relations deeply characterize intrinsic connections among vectors, and com-
bining a new majorizing relation with suitable Schur-convex functions can lead to various
interesting inequalities; see [3—13].
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