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Abstract
In this paper, we present a sharp Shafer-type inequality for the inverse tangent
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1 Introduction
In 1966, Shafer [1] posed, as a problem, the following inequality:

3x
1 + 2

√
1 + x2

< arctan x, x > 0. (1.1)

Three proofs of it were later given in [2]. Shafer’s inequality (1.1) was sharpened and gen-
eralized by Qi et al. in [3]. A survey and expository of some old and new inequalities as-
sociated with trigonometric functions can be found in [4]. Chen et al. [5] presented a new
method to sharpen bounds of both sinc x and arcsin x functions, and the inequalities in
exponential form as well.

For each a > 0, Chen and Cheung [6] determined the largest number b and the smallest
number c such that the inequalities

bx
1 + a

√
1 + x2

≤ arctan x ≤ cx
1 + a

√
1 + x2

(1.2)

are valid for all x ≥ 0. More precisely, these author proved that the largest number b and
the smallest number c required by inequality (1.2) are

when 0 < a ≤ π

2
, b =

π

2
a, c = 1 + a;

when
π

2
< a ≤ 2

π – 2
, b =

4(a2 – 1)
a2 , c = 1 + a;

when
2

π – 2
< a < 2, b =

4(a2 – 1)
a2 , c =

π

2
a;

when 2 ≤ a < ∞, b = 1 + a, c =
π

2
a.
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In 1974, Shafer [7] indicated several elementary quadratic approximations of selected
functions without proof. Subsequently, Shafer [8] established these results as analytic in-
equalities. For example, Shafer [8] proved that, for x > 0,

8x

3 +
√

25 + 80
3 x2

< arctan x. (1.3)

The inequality (1.3) can also be found in [9]. The inequality (1.3) is an improvement of the
inequality (1.1).

Zhu [10] developed (1.3) to produce a symmetric double inequality. More precisely, the
author proved that, for x > 0,

8x

3 +
√

25 + 80
3 x2

< arctan x <
8x

3 +
√

25 + 256
π2 x2

, (1.4)

where the constants 80/3 and 256/π2 are the best possible.

Remark 1.1 For x > 0, the following symmetric double inequality holds:

8x

3 +
√

25 + 80
3 x2

< arctan x <
2
√

15π
3 x

3 +
√

25 + 80
3 x2

, (1.5)

where the constants 8 and 2
√

15π
3 are the best possible. We here point out that, for x > 0,

the upper bound in (1.4) is better than the upper bound in (1.5).

Based on the following power series expansion:

arctan x
(

3 +
√

25 +
80
3

x2
)

= 8x +
32

4725
x7 –

64
4725

x9 +
25,376

1,299,375
x11 – · · · ,

Sun and Chen [11] presented a new upper bound and proved that, for x > 0,

arctan x <
8x + 32

4725 x7

3 +
√

25 + 80
3 x2

. (1.6)

Moreover, these authors pointed out that, for 0 < x < x0 = 1.4243 . . . , the upper bound in
(1.6) is better than the upper bound in (1.4). In fact, we have the following approximation
formulas near the origin:

arctan x –
8x

3 +
√

25 + 256
π2 x2

= O
(
x3),

arctan x –
3x

1 + 2
√

1 + x2
= O

(
x5),

arctan x –
8x

3 +
√

25 + 80
3 x2

= O
(
x7),
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and

arctan x –
8x + 32

4725 x7

3 +
√

25 + 80
3 x2

= O
(
x9).

Nishizawa [12] proved that, for x > 0,

π2x
4 +

√
(π2 – 4)2 + (2πx)2

< arctan x <
π2x

4 +
√

32 + (2πx)2
, (1.7)

where the constants (π2 – 4)2 and 32 are the best possible.
Using the Maple software, we derive the following asymptotic formulas in the Appendix:

arctan x
x

=
π2

4 +
√

32 + (2πx)2
–

12 – π2

3π2x4 + O
(

1
x5

)
, (1.8)

arctan x
x

=
3π2

24 – π2 +
√

432 – 24π2 + π4 – 12π (12 – π2)x + (6πx)2

+
π4 – 72
18π3x5 + O

(
1
x6

)
, (1.9)

and

x
(

π

2
– arctan x

)
=

x2 + 4
15

x2 + 3
5

+ O
(

1
x6

)
(1.10)

as x → ∞.
In this paper, motivated by (1.9), we establish a symmetric double inequality for arctan x.

Based on the Padé approximation method, we develop the approximation formula (1.10) to
produce a general result. More precisely, we determine the coefficients aj and bj (1 ≤ j ≤ k)
such that

x
(

π

2
– arctan x

)
=

x2k + a1x2(k–1) + · · · + ak

x2k + b1x2(k–1) + · · · + bk
+ O

(
1

x4k+2

)
, x → ∞,

where k ≥ 1 is any given integer. Based on the obtained result, we establish new bounds
for arctan x.

Some computations in this paper were performed using Maple software.

2 Lemma
It is well known that

2n+1∑
k=0

(–1)k x2k+1

(2k + 1)!
< sin x <

2n∑
k=0

(–1)k x2k+1

(2k + 1)!
(2.1)

and

2n+1∑
k=0

(–1)k x2k

(2k)!
< cos x <

2n∑
k=0

(–1)k x2k

(2k)!
(2.2)

for x > 0 and n ∈N0 := N∪ {0}, where N denotes the set of positive integers.
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The following lemma will be used in our present investigation.

Lemma 2.1 For 0 < u < π/2,

cos u sin2 u > u2 –
5
6

u4 +
91

360
u6 –

41
1008

u8 (2.3)

and

sin3 u > u3 –
1
2

u5 +
13

120
u7 –

41
3024

u9. (2.4)

Proof We find that

cos u sin2 u =
1
4
(
cos u – cos(3u)

)

= u2 –
5
6

u4 +
91

360
u6 –

41
1008

u8 +
∞∑

n=5

(–1)n–1wn(u) (2.5)

and

sin3 u =
1
4
(
3 sin u – sin(3u)

)

= u3 –
1
2

u5 +
13

120
u7 –

41
3024

u9 +
∞∑

n=5

(–1)n–1Wn(u), (2.6)

where

wn(u) =
9n – 1
(2n)!

u2n and Wn(u) =
3(9n – 1)

4 · (2n + 1)!
u2n+1.

Elementary calculations reveal that, for 0 < u < π/2 and n ≥ 5,

wn+1(u)
wn(u)

=
u2(9n+1 – 1)

2(2n + 1)(n + 1)(9n – 1)
<

(π/2)2(9n+1 – 1)
2(2n + 1)(n + 1)(9n – 1)

<
3 · 9n+1

2(2n + 1)(n + 1)(9n – 1)
=

27
2(2n + 1)(n + 1)

{
1 +

1
9n – 1

}

≤ 27
2(2n + 1)(n + 1)

{
1 +

1
95 – 1

}
=

1,594,323
118,096(2n + 1)(n + 1)

< 1

and

Wn+1(u)
Wn(u)

=
u2(9n+1 – 1)

2(2n + 3)(n + 1)(9n – 1)
<

wn+1(u)
wn(u)

< 1.

Therefore, for fixed u ∈ (0,π/2), the sequences n 	−→ wn(u) and n 	−→ Wn(u) are both
strictly decreasing for n ≥ 5. From (2.5) and (2.6), we obtain the desired results (2.3) and
(2.4). �

The proof of Theorem 3.1 makes use of the inequalities (2.1)–(2.4).
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3 Sharp Shafer-type inequality
Equation (1.9) motivated us to establish a symmetric double inequality for arctan x.

Theorem 3.1 For x > 0, we have

3π2x
24 – π2 +

√
α – 12π (12 – π2)x + 36π2x2

< arctan x

<
3π2x

24 – π2 +
√

β – 12π (12 – π2)x + 36π2x2
, (3.1)

with the best possible constants

α = 432 – 24π2 + π4 = 292.538 . . . and

β = 576 – 192π2 + 16π4 = 239.581 . . . .
(3.2)

Proof The inequality (3.1) can be written for x > 0 as

β <
(

3π2x2

arctan x
–

(
24 – π2)

)2

+ 12π
(
12 – π2)x – 36π2x2 < α. (3.3)

By the elementary change of variable t = arctan x (x > 0), (3.3) becomes

β < ϑ(t) < α, 0 < t <
π

2
, (3.4)

where

ϑ(t) =
(

3π2 tan2 t
t

–
(
24 – π2)

)2

+ 12π
(
12 – π2) tan t – 36π2 tan2 t.

Elementary calculations reveal that

lim
t→0+

ϑ(t) = 576 – 192π2 + 16π4 and

lim
t→π/2–

ϑ(t) = 432 – 24π2 + π4.

In order to prove (3.4), it suffices to show that ϑ(t) is strictly increasing for 0 < t < π/2.
Differentiation yields

t3 cos3 tϑ ′(t) =
(
24π t – π3t

)
sin t cos2 t +

(
3π3t – 12π t3) sin t

–
(
3π3 +

(
24π – π3)t2 –

(
24 – 2π2)t3) cos t + 3π3 cos3 t

=: λ(t).

We now consider two cases to prove λ(t) > 0 for 0 < t < π/2.
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Case 1: 0 < t ≤ 0.6.
Using (2.1) and (2.2), we have, for 0 < t ≤ 0.6,

λ(t) =
(

6π –
1
4
π3

)
t sin(3t) +

3
4
π3 cos(3t) +

{(
6π +

11
4

π3
)

t – 12π t3
}

sin t

–
(

3
4
π3 –

(
π3 – 24π

)
t2 –

(
24 – 2π2)t3

)
cos t

>
(

6π –
1
4
π3

)
t
(

3t –
9
2

t3 +
81
40

t5 –
243
560

t7
)

+
3
4
π3

(
1 –

9
2

t2 +
27
8

t4 –
81
80

t6
)

+
{(

6π +
11
4

π3
)

t – 12π t3
}(

t –
1
6

t3
)

–
(

3
4
π3 –

(
π3 – 24π

)
t2 –

(
24 – 2π2)t3

)(
1 –

1
2

t2 +
1

24
t4

)

= t3
{

24 – 2π2 –
(

28π –
8
3
π3

)
t –

(
12 – π2)t2

}

+ t6
{

263
20

π –
235
192

π3 +
(

1 –
1

12
π2

)
t –

(
729
280

π –
243

2240
π3

)
t2

}
.

Each function in curly braces is positive for t ∈ (0, 0.6]. Thus, λ(t) > 0 for t ∈ (0, 0.6].
Case 2: 0.6 < t < π/2.
We now prove λ(t) > 0 for 0.6 < t < π/2. Replacing t by π

2 – u leads to an equivalent
inequality:

μ(u) > 0, 0 < u <
π

2
– 0.6,

where

μ(u) =
(
24π – π3)

(
π

2
– u

)
cos u sin2 u +

{
3π3

(
π

2
– u

)
– 12π

(
π

2
– u

)3}
cos u

–
{

3π3 +
(
24π – π3)

(
π

2
– u

)2

–
(
24 – 2π2)

(
π

2
– u

)3}
sin u + 3π3 sin3 u.

Using (2.1)–(2.4), we have, for 0 < u < π
2 – 0.6,

μ(u) >
(
24π – π3)

(
π

2
– u

)(
u2 –

5
6

u4 +
91

360
u6 –

41
1008

u8
)

+
{

3π3
(

π

2
– u

)
– 12π

(
π

2
– u

)3}(
1 –

1
2

u2 +
1

24
u4 –

1
720

u6
)

–
{

3π3 +
(
24π – π3)

(
π

2
– u

)2

–
(
24 – 2π2)

(
π

2
– u

)3}(
u –

1
6

u3 +
1

120
u5

)

+ 3π3
(

u3 –
1
2

u5 +
13

120
u7 –

41
3024

u9
)

= u4
{

1
3
π4 – 24 +

(
12π –

9
5
π3

)
u +

(
2π2 –

11
90

π4 + 4
)

u2
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+
(

–
82
15

π +
199
360

π3
)

u3

+
(

–
1
5

–
25
56

π2 +
41

2016
π4

)
u4 +

(
403
420

π –
41

504
π3

)
u5

}
> 0.

We then obtain λ(t) > 0 and ϑ ′(t) > 0 for all 0 < t < π/2. Hence, ϑ(t) is strictly increasing
for 0 < t < π/2. The proof is complete. �

From (1.7) and (3.1), we obtain the following approximation formulas:

arctan n
n

≈ π2

4 +
√

32 + (2πn)2
=: an (3.5)

and

arctan n
n

≈ 3π2

24 – π2 +
√

432 – 24π2 + π4 – 12π (12 – π2)n + (6πn)2
=: bn, (3.6)

as n → ∞.
The following numerical computations (see Table 1) would show that, for n ∈N, Eq. (3.6)

is sharper than Eq. (3.5).
In fact, we have, as n → ∞,

arctan n
n

= an + O
(

1
n4

)
and

arctan n
n

= bn + O
(

1
n5

)
.

4 Approximations to arctan x
For later use, we introduce the Padé approximant (see [13–16]). Let f be a formal power
series,

f (t) = c0 + c1t + c2t2 + · · · . (4.1)

The Padé approximation of order (p, q) of the function f is the rational function, denoted
by

[p/q]f (t) =
∑p

j=0 ajtj

1 +
∑q

j=1 bjtj
, (4.2)

Table 1 Comparison between approximation formulas (3.5) and (3.6).

n an – arctann
n

arctann
n – bn

1 7.055× 10–3 5.259× 10–3

10 5.95× 10–6 3.939× 10–7

100 7.066× 10–10 4.492× 10–12

1000 7.182× 10–14 4.546× 10–17

10,000 7.193× 10–18 4.552× 10–22
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where p ≥ 0 and q ≥ 1 are two given integers, the coefficients aj and bj are given by (see
[13–15])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = c0,

a1 = c0b1 + c1,

a2 = c0b2 + c1b1 + c2,
...

ap = c0bp + · · · + cp–1b1 + cp,

0 = cp+1 + cpb1 + · · · + cp–q+1bq,
...

0 = cp+q + cp+q–1b1 + · · · + cpbq,

(4.3)

and the following holds:

[p/q]f (t) – f (t) = O
(
tp+q+1). (4.4)

Thus, the first p + q + 1 coefficients of the series expansion of [p/q]f are identical to those
of f .

From the expansion (see [17, p. 81])

arctan x =
π

2
+

∞∑
j=1

(–1)j

(2j – 1)x2j–1 , |x| > 1,

we obtain

x
(

π

2
– arctan x

)
=

∞∑
j=0

cj

x2j = 1 –
1

3x2 +
1

5x4 –
1

7x6 + · · · , (4.5)

where

cj =
(–1)j

2j + 1
for j ≥ 0. (4.6)

Let

f (t) =
∞∑
j=0

cj

tj , (4.7)

with the coefficients cj given in (4.6). Then we have

f
(
x2) =

∞∑
j=0

cj

x2j = x
(

π

2
– arctan x

)
. (4.8)

In what follows, the function f is given in (4.7).
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Based on the Padé approximation method, we now give a derivation of Eq. (1.10). To
this end, we consider

[1/1]f (t) =
∑1

j=0 ajt–j

1 +
∑1

j=1 bjt–j
.

Noting that

c0 = 1, c1 = –
1
3

, c2 =
1
5

, (4.9)

holds, we have, by (4.3),

⎧
⎪⎪⎨
⎪⎪⎩

a0 = 1,

a1 = b1 – 1
3 ,

0 = 1
5 – 1

3 b1,

that is,

a0 = 1, a1 =
4

15
, b1 =

3
5

.

We thus obtain

[1/1]f (t) =
1 + 4

15t

1 + 3
5t

=
15t + 4

3(5t + 3)
, (4.10)

and we have, by (4.4),

f (t) =
15t + 4

3(5t + 3)
+ O

(
1
t3

)
, t → ∞. (4.11)

Replacing t by x2 in (4.11) yields (1.10).
From the Padé approximation method and the expansion (4.7), we now present a general

result.

Theorem 4.1 The Padé approximation of order (p, q) of the function f (t) =
∑∞

j=0
cj
tj (at the

point t = ∞) is the following rational function:

[p/q]f (t) =
1 +

∑p
j=1 ajt–j

1 +
∑q

j=1 bjt–j

= tq–p
(

tp + a1tp–1 + · · · + ap

tq + b1tq–1 + · · · + bq

)
, (4.12)
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where p ≥ 1 and q ≥ 1 are any given integers, the coefficients aj and bj are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = b1 + c1,

a2 = b2 + c1b1 + c2,
...

ap = bp + · · · + cp–1b1 + cp,

0 = cp+1 + cpb1 + · · · + cp–q+1bq,
...

0 = cp+q + cp+q–1b1 + · · · + cpbq,

(4.13)

and cj is given in (4.6), and the following holds:

f (t) – [p/q]f (t) = O
(

1
tp+q+1

)
, t → ∞. (4.14)

In particular, replacing t by x2 in (4.14) yields

x
(

π

2
– arctan x

)

= x2(q–p)
(

x2p + a1x2(p–1) + · · · + ap

x2q + b1x2(q–1) + · · · + bq

)
+ O

(
1

x2(p+q+1)

)
, x → ∞, (4.15)

with the coefficients aj and bj given by (4.13).

Setting (p, q) = (k, k) in (4.15), we obtain the following corollary.

Corollary 4.1 As x → ∞,

x
(

π

2
– arctan x

)
=

x2k + a1x2(k–1) + · · · + ak

x2k + b1x2(k–1) + · · · + bk
+ O

(
1

x4k+2

)
, (4.16)

where k ≥ 1 is any given integer, the coefficients aj and bj (1 ≤ j ≤ k) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = b1 + c1,

a2 = b2 + c1b1 + c2,
...

ak = bk + · · · + ck–1b1 + ck ,

0 = ck+1 + ckb1 + · · · + c1bk ,
...

0 = c2k + c2k–1b1 + · · · + ckbk ,

(4.17)

and cj is given in (4.6).



Qiao and Chen Journal of Inequalities and Applications  (2018) 2018:141 Page 11 of 14

Setting k = 2 in (4.16) yields, as x → ∞,

x
(

π

2
– arctan x

)
=

945x4 + 735x2 + 64
15(63x4 + 70x2 + 15)

+ O
(

1
x10

)
, (4.18)

which gives

arctan x =
π

2
–

945x4 + 735x2 + 64
15x(63x4 + 70x2 + 15)

+ O
(

1
x11

)
.

Using the Maple software, we find, as x → ∞,

arctan x =
π

2
–

945x4 + 735x2 + 64
15x(63x4 + 70x2 + 15)

+
64

43,659x11

–
1856

464,373x13 + O
(

1
x15

)
. (4.19)

Equation (4.19) motivated us to establish new bounds for arctan x.

Theorem 4.2 For x > 0, we have

π

2
–

945x4 + 735x2 + 64
15x(63x4 + 70x2 + 15)

+
64

43,659x11 –
1856

464,373x13

< arctan x <
π

2
–

945x4 + 735x2 + 64
15x(63x4 + 70x2 + 15)

+
64

43,659x11 . (4.20)

Proof For x > 0, let

I(x) = arctan x –
(

π

2
–

945x4 + 735x2 + 64
15x(63x4 + 70x2 + 15)

+
64

43,659x11 –
1856

464,373x13

)

and

J(x) = arctan x –
(

π

2
–

945x4 + 735x2 + 64
15x(63x4 + 70x2 + 15)

+
64

43,659x11

)
.

Differentiation yields

I ′(x) = –
64(230,391x8 + 372,680x6 + 236,885x4 + 65,400x2 + 6525)

35,721x14(1 + x2)(63x4 + 70x2 + 15)2 < 0

and

J ′(x) =
64(12,789x8 + 15,610x6 + 8890x4 + 2325x2 + 225)

3969x12(1 + x2)(63x4 + 70x2 + 15)2 > 0.

Hence, I(x) is strictly decreasing and J(x) is strictly increasing for x > 0, and we have

I(x) > lim
t→∞ I(t) = 0 and J(x) < lim

t→∞ J(t) = 0 for x > 0.

The proof is complete. �
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Remark 4.1 We point out that, for x > 1.0213 . . . , the lower bound in (4.20) is better than
the one in (1.7). For x > 0.854439 . . . , the upper bound in (4.20) is better than the one in
(1.7). For x > 0.947273 . . . , the lower bound in (4.20) is better than the one in (3.1). For
x > 0.792793 . . . , the upper bound in (4.20) is better than the one in (3.1).

5 Conclusions
In this paper, we establish a symmetric double inequality for arctan x (Theorem 3.1). We
determine the coefficients aj and bj (1 ≤ j ≤ k) such that

x
(

π

2
– arctan x

)
=

x2k + a1x2(k–1) + · · · + ak

x2k + b1x2(k–1) + · · · + bk
+ O

(
1

x4k+2

)
, x → ∞,

where k ≥ 1 is any given integer (see Corollary 4.1). Based on the obtained result, we
establish new bounds for arctan x (Theorem 4.2).

Appendix: A derivation of (1.8), (1.9), and (1.10)
Define the function F(x) by

F(x) =
arctan x

x
–

1
a +

√
b + cx2

.

We are interested in finding the values of the parameters a, b, and c such that F(x) con-
verges as fast as possible to zero, as x → ∞. This provides the best approximations of the
form

arctan x
x

≈ 1
a +

√
b + cx2

, x → ∞.

Using the Maple software, we find, as x → ∞,

F(x) =
π

√
c – 2

2
√

cx
+

a – c
cx2 +

b – 2a2

2c3/2x3

+
3a3 + c2 – 3ab

3c2x4 + O
(

1
x5

)
.

The three parameters a, b, and c, which produce the fastest convergence of the function
F(x), are given by

⎧
⎪⎪⎨
⎪⎪⎩

π
√

c – 2 = 0,

a – c = 0,

b – 2a2 = 0,

namely, if

a =
4
π2 , b =

32
π4 , c =

4
π2 .
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We then obtain, as x → ∞,

arctan x
x

=
1

4
π2 +

√
32
π4 + 4

π2 x2
–

12 – π2

3π2x4 + O
(

1
x5

)

=
π2

4 +
√

32 + (2πx)2
–

12 – π2

3π2x4 + O
(

1
x5

)
.

Define the function G(x) by

G(x) =
arctan x

x
–

1
p +

√
q + rx + sx2

.

Using the Maple software, we find, as x → ∞,

G(x) =
π

√
s – 2

2
√

sx
+

r – 2s3/2 + 2p
√

s
2s3/2x2 +

4qs – 3r2 – 8sp2 – 8
√

spr
8s5/2x3

+
–48s3/2pq + 48

√
spr2 – 36rqs + 15r3 + 48s3/2p3 + 72sp2r + 16s7/2

48s7/2x4

+
(
120sqr2 – 128

√
spr3 – 128s2p4 – 240sp2r2 + 256rs3/2pq + 192s2p2q

– 256s3/2p3r – 35r4 – 48q2s2)/
(
128s9/2x5)

+ O
(

1
x6

)
.

For

p =
24 – π2

3π2 , q =
432 – 24π2 + π4

9π4 , r = –
4(12 – π2)

3π3 , s =
4
π2 ,

we obtain, as x → ∞,

arctan x
x

=
3π2

24 – π2 +
√

432 – 24π2 + π4 – 12π (12 – π2)x + (6πx)2

+
π4 – 72
18π3x5 + O

(
1
x6

)
.

Define the function H(x) by

H(x) = x
(

π

2
– arctan x

)
–

x2 + a1x + a2

x2 + b1x + b2
.

Using the Maple software, we find, as x → ∞,

H(x) =
b1 – a1

x
–

3a2 – 3b2 – 3a1b1 + 3b2
1 + 1

3x2 +
a1b2 – 2b1b2 + a2b1 – a1b2

1 + b3
1

x3

–
–1 – 5a2b2 + 5b2

2 + 10a1b1b2 – 15b2
1b2 + 5a2b2

1 – 5a1b3
1 + 5b4

1
5x4

+
–a1b2

2 + 3b1b2
2 – 2a2b1b2 + 3a1b2

1b2 – 4b3
1b2 + a2b3

1 – a1b4
1 + b5

1
x5 + O

(
1
x6

)
.
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For

a1 = 0, b1 = 0, a2 =
4

15
, b2 =

3
5

,

we obtain, as x → ∞,

x
(

π

2
– arctan x

)
=

x2 + 4
15

x2 + 3
5

+ O
(

1
x6

)
.
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