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1 Introduction
As it is known, defining some new approximations toward fundamental constants plays an
important role in the field of mathematical constants. One of the most famous constants
is Euler’s constant γ = 0.577215 . . . , which is defined as the limit of the sequence

γn =
n∑

k=1

1
k

– ln n (1.1)

and has numerous applications in many areas of pure and applied mathematics, such as
analysis, number theory, theory of probability, applied statistics, and special functions.

Up until now, many authors have devoted great efforts and achieved much in the area
of improving the convergence rate of the sequence (γn)n≥1. Among them, there are many
inspiring achievements. For example, the estimate

1
2(n + 1)

< γn – γ <
1

2n
(Young) (1.2)

was given in [1–4].
In [5, 6], a new sequence (Dn)n≥1 converging faster to γ was introduced, which is defined

as

Dn = 1 +
1
2

+
1
3

+ · · · +
1
n

– ln

(
n +

1
2

)
. (1.3)

DeTemple also concluded that the speed of the new sequence to γ is of order n–2 since

1
24(n + 1)2 < Dn – γ <

1
24n2 (DeTemple). (1.4)
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Another modification was provided by Vernescu [7] as

Vn = 1 +
1
2

+
1
3

+ · · · +
1

n – 1
+

1
2n

– ln n, (1.5)

who proved that

1
12(n + 1)2 < γ – Vn <

1
12n2 . (1.6)

It is easy to conclude that though (1.3) and (1.5) only make slight modifications on the
Euler’s sequence (1.1), but the convergent rates are significantly improved from n–1 to
n–2.

Moreover, Mortici obtained some sequences converging even faster than (1.1), (1.3), and
(1.5). More specifically, Mortici [8] constructed the following two sequences:

un = 1 +
1
2

+
1
3

+ · · · +
1

n – 1
+

1
(6 – 2

√
6)n

– ln

(
n +

1√
6

)
, (1.7)

vn = 1 +
1
2

+
1
3

+ · · · +
1

n – 1
+

1
(6 + 2

√
6)n

– ln

(
n –

1√
6

)
. (1.8)

Both (1.7) and (1.8) had been proved to converge to γ as n–3.
Moreover, Mortici [9] introduced the following class of sequences:

μn(a, b) =
n∑

k=1

1
k

+ ln
(
ea/(n+b) – 1

)
– ln a, (1.9)

where a, b ∈ R, a > 0. They proved that, among the sequences (μn(a, b))n≥1, in the case of
a =

√
2/2 and b = (2 +

√
2)/4 the privileged sequence offers the best approximations of γ

since

lim
n→∞ n3

(
μn

(√
2

2
,

2 +
√

2
4

)
– γ

)
=

√
2

96
. (1.10)

Recently, Lu, Song, and Yu [10] provided some approximations of Euler’s constant. A new
important sequence was defined as follows:

γ
(s)
n,k = 1 +

1
2

+
1
3

+ · · · +
1
n

– ln n –
1
k

ln

(
1 +

a1

n + a2n
n+ a3n

n+ a4n

n+
...+as

)
, (1.11)

where

a1 =
k
2

, a2 =
2 – 3k

12
, a3 =

3k2 + 4
12(3k – 2)

,

a4 = –
15k4 – 30k3 + 60k2 – 104k + 96

20(3k – 2)(3k2 + 4)
, . . . .



Jia et al. Journal of Inequalities and Applications  (2018) 2018:136 Page 3 of 10

Two particular sequences were provided as

γ
(2)
n,1 = 1 +

1
2

+
1
3

+ · · · +
1
n

– ln n – ln

(
1 +

a1

n + a2

)
, (1.12)

γ
(3)
n,2 = 1 +

1
2

+
1
3

+ · · · +
1
n

– ln n –
1
2

ln

(
1 +

a1

n + a2n
n+a3

)
. (1.13)

These two sequences converge faster than all other sequences mentioned since for all
n ∈N,

7
288(n + 1)3 < γ – γ

(2)
n,1 <

7
288n3 and

1
180(n + 1)4 < γ – γ

(3)
n,2 <

1
180(n – 1)4 .

On the other hand, Lu [11] introduced the following class of sequences:

K (s)
n,k = 1 +

1
2

+
1
3

+ · · · +
1
n

– ln n

–
1
k

ln

(
1 +

a1

n
+

a2

n2 +
a3

n3 + · · · +
as

ns

)
, (1.14)

where k, s ∈N. They also proved that, among the sequences (K (s)
n,k)n≥1, in the case of

a1 =
k
2

, a2 =
k(3k – 2)

24
, a3 =

k2(k – 2)
48

,

a4 =
k(15k3 – 60k2 + 20k + 48)

5760
, . . . ,

the privileged sequence offers the best approximations of γ since when s = 1,

lim
n→∞ n2(K (1)

n,k – γ
)

=
3k – 2

24
; (1.15)

when s = 2,

lim
n→∞ n3(K (2)

n,k – γ
)

=
k2 – 2k

48
; (1.16)

when s = 3,

lim
n→∞ n4(K (3)

n,k – γ
)

=
15k3 – 60k2 + 20k + 48

5760
. (1.17)

These works motivated our study. In this paper, our main goal is to modify the sequence
based on the early works of DeTemple, Moritici, and Lu and provide a new convergent
sequence of relatively simple form with higher speed.

The rest of this paper is arranged as follows. In Sect. 2, we provide the main results and,
in Sect. 3, we prove them.

2 The main results
Lemma 2.1 For any fixed a, b ∈ R, we have the following convergent sequence for Euler’s
constant:

Nn,a,b = 1 +
1
2

+
1
3

+ · · · +
1

n – 1
+

1
an

– ln(n + b). (2.1)
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Moreover, for a = 1 and b = 0, we have

lim
n→∞ n(N(n,1,0) – γ ) =

1
2

; (2.2)

for a = 1 and b = 1/2, we have

lim
n→∞ n2(N(n,1, 1

2 ) – γ ) =
1

24
; (2.3)

for a = 2 and b = 0, we have

lim
n→∞ n2(N(n,2,0) – γ ) =

1
24

; (2.4)

for a = 6 – 2
√

6 and b = 1/
√

6, we have

lim
n→∞ n3(N(n,6–2

√
6, 1√

6
) – γ ) = –

1
18

√
6

; (2.5)

and for a = 6 + 2
√

6 and b = –1/
√

6, we have

lim
n→∞ n3(N(n,6+2

√
6,– 1√

6
) – γ ) =

1
18

√
6

. (2.6)

Using Lemma 2.1, we have the following conclusion.

Corollary 2.2 The fastest possible sequence (Nn,a,b)n≥1 is obtained only for
⎧
⎨

⎩

1
a – b – 1

2 = 0,

– 1
a + b2 + b + 1

3 = 0,

and

lim
n→∞ n3(Nn,a,b – γ ) =

1
3

(
1
a

– b3 –
3b3

2
– b –

1
4

)
. (2.7)

Theorem 2.3 For any fixed s ∈ N, there exist k ∈ N and a, b ∈ R such that the following
sequence converges to Euler’s constant:

γ ≈ γ
(s)
n,k,a,b = 1 +

1
2

+
1
3

+ · · · +
1

n – 1
+

1
an

– ln(n + b)

–
1
k

ln

(
1 +

a1

n
+

a2

n2 +
a3

n3 + · · · +
as

ns

)
, (2.8)

where

a1 = k
(

1
a

– b –
1
2

)
,

a2 = –
1

2a
+

b2

2
+

b
2

+
1
6

+
(2k – 2abk – ak)2

8a2k
+

2k – 2abk – ak
4ak

,

a3 =
k

3a
–

b3k
3

–
b2k
2

–
bk
3

–
k

12
–

a1

3
–

a2
1

2
+ a2 + a1a2 –

a3
1

3
, . . . .
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Furthermore, let

γ
(1)
n,k,a,b = 1 +

1
2

+
1
3

+ · · · +
1

n – 1
+

1
an

– ln(n + b) –
1
k

ln

(
1 +

a1

n

)
, (2.9)

γ
(2)
n,k,a,b = 1 +

1
2

+
1
3

+ · · · +
1

n – 1
+

1
an

– ln(n + b) –
1
k

ln

(
1 +

a1

n
+

a2

n2

)
, (2.10)

γ
(3)
n,k,a,b = 1 +

1
2

+
1
3

+ · · · +
1

n – 1
+

1
an

– ln(n + b) –
1
k

ln

(
1 +

a1

n
+

a2

n2 +
a3

n3

)
. (2.11)

Then we also have, for s = 1,

lim
n→∞ n3(γ (1)

n,k,a,b – γ
)

=
4k – 4ab3k – 6ab2k – 4abk – ak – 4aa1 – 6aa2

1 – 4aa3
1

12ak
; (2.12)

for s = 2,

lim
n→∞ n4(γ (2)

n,k,a,b – γ
)

= –
1

4a
+

b4

4
+

b2

2
+

b
4

+
1

20
; (2.13)

and for s = 3,

lim
n→∞ n5(γ (3)

n,a,b,k – γ
)

=
1

5a
–

b5

5
–

b4

2
–

2b3

3
–

b2

2
–

b
5

–
1

30
–

a1

5k

+
a2

k
–

3a3

5k
+

2a1a2

k
+

a2a3

k
–

2a1a3

k

–
a2

1a3

k
–

a1a2
2

k
+

2a2
1a2

k
+

a3
1a2

k
–

a4
1

2k

–
2a3

1
3k

–
4a5

1
25

. (2.14)

Lemma 2.4 If (xn)n≥1 converges to zero and there exists the limit

lim
n→∞ ns(xn – xn+1) = l ∈ [–∞, +∞] (2.15)

with s > 1, then

lim
n→∞ ns–1xn =

l
s – 1

. (2.16)

Lemma 2.4 was first proved by Moritici [12]. From Lemma 2.4 we can see that the speed
of convergence of the sequence (xn)n≥1 increases together with the value s satisfying (2.15).

3 The proof of Theorem 2.3
Based on the argument of Theorem 2.1 in [13] or Theorem 5 in [14], we need to find the
value of a1 ∈R that produces the most accurate approximation of the form

Nn,a,b = 1 +
1
2

+
1
3

+ · · · +
1

n – 1
+

1
an

– ln(n + b). (3.1)
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To measure the accuracy of this approximation, a method is to say that an approximation
(3.1) is better as Nn,a,b – γ faster converges to zero. Using (3.1), we have

Nn,a,b – Nn+1,a,b = –
1
n

+
1

an
–

1
a(n + 1)

– ln(n + b) + ln(n + 1 + b). (3.2)

Developing in power series in 1/n, we have

Nn,a,b – Nn+1,a,b =
(

1
a

– b –
1
2

)
1
n2 +

(
–

1
a

+ b2 + b +
1
3

)
1
n3

+
(

1
a

– b3 –
3b2

2
– b –

1
4

)
1
n4

+
(

–
1
a

+ b4 + 2b3 + 2b2 + b + 1
)

1
n5 + O

(
1
n6

)
. (3.3)

From Lemma 2.4 we know that the speed of convergence of the sequence (Nn,a,b)n≥1 is
even higher than the value s satisfying (2.15). Thus, using Lemma 2.4, we have:

(i) If 1
a – b – 1

2 �= 0, then the convergence rate of the sequence (Nn,a,b – γ )n≥1 is 1/n since

lim
n→∞ n(Nn,a,b – γ ) =

1
a

– b –
1
2

�= 0.

(ii) If 1
a – b – 1

2 = 0, then from (3.3) we have

Nn,a,b – Nn+1,a,b =
(

–
1
a

+ b2 + b +
1
3

)
1
n3 +

(
1
a

– b3 –
3b2

2
– b –

1
4

)
1
n4

+
(

–
1
a

+ b4 + 2b3 + 2b2 + b + 1
)

1
n5 + O

(
1
n6

)
.

If – 1
a + b2 + b + 1

3 �= 0, then the rate of convergence of the sequence (Nn,a,b – γ )n≥1 is n–2

since

lim
n→∞ n2(Nn,a,b – γ ) = –

1
2a

+
b2

2
+

b
2

+
1
6

.

If – 1
a + b2 + b + 1

3 = 0, then from (3.3) we have

Nn,a,b – Nn+1,a,b =
(

1
a

– b3 –
3b2

2
– b –

1
4

)
1
n4

+
(

–
1
a

+ b4 + 2b3 + 2b2 + b + 1
)

1
n5 + O

(
1
n6

)
,

and the rate of convergence of the sequence (Nn,a,b – γ )n≥1 is n–3 since

lim
n→∞ n3(Nn,a,b – γ ) =

1
3a

–
b3

3
–

b2

2
–

b
3

–
1

12
.

Moreover, for a = 1 and b = 0, we have

lim
n→∞ n(N(n,1,0) – γ ) =

1
2

; (3.4)



Jia et al. Journal of Inequalities and Applications  (2018) 2018:136 Page 7 of 10

for a = 1 and b = 1/2, we have

lim
n→∞ n2(N(n,1, 1

2 ) – γ ) =
1

24
; (3.5)

for a = 2 and b = 0, we have

lim
n→∞ n2(N(n,2,0) – γ ) =

1
24

; (3.6)

for a = 6 – 2
√

6 and b = 1/
√

6, we have

lim
n→∞ n3(N(n,6–2

√
6, 1√

6
) – γ ) = –

1
18

√
6

; (3.7)

and for a = 6 + 2
√

6 and b = –1/
√

6, we have

lim
n→∞ n3(N(n,6+2

√
6,– 1√

6
) – γ ) =

1
18

√
6

. (3.8)

Proof of Theorem 2.3 We define the sequence (γ (s)
n,a,b,k)n≥1 by the relations

γ ≈ γ
(s)
n,k,a,b = 1 +

1
2

+
1
3

+ · · · +
1

n – 1
+

1
an

– ln(n + b)

–
1
k

ln

(
1 +

a1

n
+

a2

n2 +
a3

n3 + · · · +
as

ns

)
(3.9)

and

γ ≈ γ
(1)
n,k,a,b = 1 +

1
2

+
1
3

+ · · · +
1

n – 1
+

1
an

– ln(n + b)

–
1
k

ln

(
1 +

a1

n

)
. (3.10)

Using a similar method as in (3.1)–(3.3), we have

γ
(1)
n,k,a,b – γ

(1)
n+1,k,a,b

=
–3k + 3ab2k + 3abk + ak + 3aa1 + 3aa2

1
3akn3

+
2k – 2abk – ak – 2aa1

2akn2

+
4k – 4ab3k – 6ab2k – 4abk – ak – 4aa1 – 6aa2

1 – 4aa3
1

4akn4

+
–5k + 5ab4k + 10ab3k + 10ab2k + 5abk + ak – 5aa1 + 10aa2

1
5akn5

+
10aa2

1 + 10aa3
1 + 5aa4

1
5akn5 + O

(
1
n6

)
. (3.11)
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The fastest possible sequence (γ (1)
n,a,b,k)n≥1 is obtained when

⎧
⎨

⎩

2k–2abk–ak–2aa1
2ak = 0,

–3k+3ab2k+3abk+ak+3aa1+3aa2
1

3ak = 0.

Then we have

lim
n→∞ n3(γ (1)

n,a,b,k – γ
)

=
4k – 4ab3k – 6ab2k – 4abk – ak – 4aa1 – 6aa2

1 – 4aa3
1

12ak
,

and the rate of convergence is n–3.
For example, for a = 2 and b = 1/(2

√
3),

lim
n→∞ n3(γ (1)

n,2, 1
2
√

3
,k

– γ
)

=
–k + 3

√
3k + 3

√
3k2 – k3

72
√

3k
,

and the rate of convergence is n–3.
Next, we define the second sequence with the previous conclusions:

γ
(2)
n,k,a,b = 1 +

1
2

+
1
3

+ · · · +
1

n – 1
+

1
an

– ln(n + b)

–
1
k

ln

(
1 +

a1

n
+

a2

n2

)
, (3.12)

where a1 = 2k–2abk–ak
2a .

Then we get the equation

γ
(2)
n,k,a,b – γ

(2)
n+1,k,a,b

=
(

–
1
a

+ b2 + b +
1
3

+
a2

1
k

+
a1

k
–

2a2

k

)
1
n3

+
(

1
a

– b3 –
3b2

2
– b –

1
4

–
3a2

1
2k

+
3a1a2

k

)
1
n4

+
(

–
a3

1
k

–
a1

k
+

3a2

k

)
1
n4 +

(
–

1
a

+ b4 + 2b3

+ 2b2 + b +
1
5

+
a1

k
–

4a2

k
+

2a2
1

k
+

2a2
2

k

–
6a1a2

k
+

2a3
1

k
–

4a2
1a2

k
+

a4
1

k

)
1
n5 + O

(
1
n6

)
. (3.13)

Taking

⎧
⎪⎪⎨

⎪⎪⎩

a1 = k
a – bk – k

2 ,

a2 = – k
2a + b2k

2 + bk
2 + k

6 + a2
1

2 + a1
2 ,

1
a – b3 – 3b2

2 – b – 1
4 – 3a2

1
2k + 3a1a2

k – a3
1

k – a1
k + 3a2

k = 0,
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we obtain the fastest sequence (γ (2)
n,a,b,k)n≥1 with convergent rate n–4 since

lim
n→∞ n4(γ (2)

n,a,b,k – γ
)

= –
1

4a
+

b4

4
+

b3

2
+

2b2

4
+

b
4

+
1

20
+

a1

4k
–

a2

k
+

a2
1

2k

+
a2

2
2k

–
3a1a2

2k
+

a3
1

2k
–

a2
1a2

k
+

a4
1

4k
.

Moreover, for
⎧
⎨

⎩
a1 = k

a – bk – k
2 ,

a2 = – k
2a + b2k

2 + bk
2 + k

6 + a2
1

2 + a1
2 ,

we define the third sequence with the previous conclusions:

γ
(3)
n,k,a,b = 1 +

1
2

+
1
3

+ · · · +
1

n – 1
+

1
an

– ln(n + b) –
1
k

ln

(
1 +

a1

n
+

a2

n2 +
a3

n3

)
. (3.14)

Then we have the equality

γ
(3)
n,k,a,b – γ

(3)
n+1,k,a,b

=
(

1
a

– b3 –
3b2

2
– b –

1
4

–
a1

k
–

3a2
1

2k
+

3a2

k
–

3a3

k
+

3a1a2

k
–

a3
1

k

)

1
n4 +

(
–

1
a

+ b4 + 2b3 + 2b2 + b +
1
5

+
a1

k
–

4a2

k

+
2a2

2
k

+
6a3

k
+

2a2
1

k
+

2a3
1

k
–

6a1a2

k
+

4a1a3

k
–

4a2
1a2

k
+

a4
1

k

)
1
n5

+
(

1
a

– b5 –
5b4

2
–

10b3

3
–

5b2

2
– b –

1
6

–
a1

k
+

5a2

k
–

3a3

k

+
10a1a2

k
+

5a2a3

k
–

10a1a3

k
–

5a2
1a3

k
–

5a1a2
2

k
+

10a2
1a2

k

+
5a3

1a2

k
–

5a4
1

2k
–

10a3
1

3k
–

4a5
1

5

)
1
n6 + O

(
1
n7

)
. (3.15)

Taking

⎧
⎪⎪⎨

⎪⎪⎩

a3 = k
3a – b3k

3 – b2k
2 – bk

3 – k
12 – a1

3 – a2
1

2 + a2 + a1a2 – a3
1

3 ,

– 1
a + b4 + 2b3 + 2b2 + b + 1

5 + a1
k – 4a2

k + 2a2
2

k + 6a3
k + 2a2

1
k + 2a3

1
k ,

– 6a1a2
k + 4a1a3

k – 4a2
1a2
k + a4

1
k = 0,

we obtain the fastest sequence (γ (3)
n,a,b,k)n≥1 with convergent rate n–5 since

lim
n→∞ n5(γ (3)

n,a,b,k – γ
)

=
1

5a
–

b5

5
–

b4

2
–

2b3

3
–

b2

2
–

b
5

–
1

30
–

a1

5k
+

a2

k
–

3a3

5k
+

2a1a2

k
+

a2a3

k

–
2a1a3

k
–

a2
1a3

k
–

a1a2
2

k
+

2a2
1a2

k
+

a3
1a2

k
–

a4
1

2k
–

2a3
1

3k
–

4a5
1

25
. �
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