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Abstract

This article mainly studies the boundary value problems for hypergenic function
vectors in Clifford analysis. Firstly, some properties of hypergenic quasi-Cauchy type
integrals are discussed. Then, by the Schauder fixed point theorem the existence of
the solution to the nonlinear boundary value problem is proved. Finally, using the
compression mapping principle the existence and unigueness of the solution to the
linear boundary value problem are proved.
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1 Introduction
A Clifford algebra is an associative and noncommutable algebra [1]. In 1982, Brackx, De-
langhe and Sommen [2] established the theoretical basis of Clifford analysis. In recent
years, Clifford analysis has been widely used in physics and in mathematics [3-5]. Eriks-
son [6—8], Huang [9, 10], Qiao [11, 12], Xie [13—17] and Yang [18, 19] have done a lot of
work in Clifford analysis. In 1996, Huang [10] studied the nonlinear boundary value prob-
lem for biregular functions in Clifford analysis. In 2000, Cai, Huang and Qiao [20] studied
the nonlinear boundary value problem for biregular functions vector in Clifford analysis.
In 2003, Xie, Qiao and Jiao [20] studied a nonlinear boundary value problem for a gen-
eralized biregular function vector. In 2005, Qiao [11] discussed a linear boundary value
problem for hypermonogenic functions in Clifford analysis. In 2009-2010, Eriksson and
Orelma [6, 7] studied hypergenic functions in the real Clifford algebra Cl,,10(R) and its
Cauchy integral formula was given. In 2014, Xie [14, 15] studied the Cauchy integral for
dual k-hypergenic functions and the boundary properties of the hypergenic quasi-Cauchy
integral in real Clifford analysis were given. In 2016, Xie, Zhang and Tang [17] discussed
some properties of k-hypergenic functions.

On the basis of the above, the boundary value problems for hypergenic function vectors

are proved.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


https://doi.org/10.1186/s13660-018-1725-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1725-8&domain=pdf
http://orcid.org/0000-0002-2226-6913
mailto:xyh1973@126.com

Zhang et al. Journal of Inequalities and Applications (2018) 2018:132 Page 2 of 16

2 Preliminaries
See [6]; let Cl,,;1,0(R) be a real Clifford algebra and have identity element ez = 1 and basis

elements ey, e1,...,€,5€0€1,...,€,-1€4;...;€0€1 - - - €y, and satisfy

eej=—ee;, i#)i,j=0,1,...,n;

e =+1, j=0,1,...,n

Any element in Cl,,10(R) has the form a = ), ases, eq = eq €4, - - - €4, OF ez = 1, where

A={ay,ap,...,00}, 0 <1 <ap<---<ay <n,ay €R. The norm of a € Cl,,;10(R) is de-
1

fined as |a| = (3_, la4|*)?. In this paper J; (i = 1,2,...,32) is a positive constant. For any

a,b € Cl,110(R), we have

la +b| < la| +1b|, lab| < J1lal|b|. 1

If a = apey + are; + --- + aye,, it may be observed that a? = |a|> and when a # 0 the
inverse of aisa™! = ﬁ See [6]; any element a € Cl,,1(R) can be uniquely decomposed
asa = b +eyc, where b, ¢ € Cl,,o(R). As regards decomposition we can define the mappings
Py : Cly10 — Clyo and Qo : Clyy10 — Clyo by Poa = b, Qoa = ¢, where b, ¢ are called the
Py part and the Qq part of a, respectively.

Let Qo be a nonempty open connected set in R"*!. The function f : Qg — Cl,..10(R) is
denoted by f(x) = >, fa(x)es, where f4 € R. The function f : Qo — Cl,;110(R) is said to be
continuous on € if and only if each component f4 (x) of f(x) is continuous on 2. Sup-
pose C"(Q0, Clyi10(R)) = {f | f : Qo = Clur10(R),f(x) = Y, fa(x)ea, where f4 is r-times
continuously differentiable on €y and r € N*}.

For f € CY(Q0, Cl,410(R)), we introduce Dirac operators as follows [6]:

Df = Z e;%
1=0

3x1 '

Definition 2.1 ([15]) A Lyapunov surface S is a surface satisfying the following three con-
ditions:

(1) Through each point in S, there is a tangent plane.

(2) There is a real constant number d such that, for any Ny € S, E is a ball with radius d,
centered at Ny, and E is divided into two parts by S, the part of S lying in the interior
of E is denoted by §', the other is in the exterior of S: and each straight line parallel
to the normal direction of S at Ny intersects it at one point.

(3) If the angle 6(N7, N;) between outward normal vectors through N, N is an acute
angle and r is the distance between N; and N», then there are two numbers 8, «

(0 <a <1, B8 >0) independent of Ny, N such that 6(Ny, N,) < Sr¢.

Definition 2.2 ([15]) The function f: 3¢ —> Cl,;;1,0(R) is said to be Holder continuous
on Q if there exists a positive constant M, such that |f(x;) — f(x2)] < Molx; —x2|? (0 <
B < 1) holds for any x;,x; € 3.

The set of all Holder continuous functions which are defined on €y and valued in
Cln_,_l,o(R) is denoted by H(,B, BQO, Cl;,H.L()(R)).
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For any f € H(B,9Q0,Cly.1,0(R)), we define the norm of f as |fllzg = C(f,0Q0) +
H(f,9%0, B), where

lf(tl)—f(tz)l.

t1 7t |tl_t2|ﬂ
t1,t2€0Q

C(f,aQO)ztEIn;g;V(t){v H(f’aQOHB)z

It is easy to prove that H (S, 92, Cl,.,1,0(R)) forms a Banach space.
For any f,g € H(B, 9%, Cl,:10(R)), we have

If +gllp < Ifllg + ligllps gl < 21f lgliglls- 2)

In this paper, let 2 be a domain in R™! = {x | (xp,%1,...,%,) € R", x>0}, and its
boundary dQ be a smooth compact oriented Lyapunov surface. For any f € C}(%,
Cl,110(R)), we introduce a modified Dirac operator as follows [6]:

H -0 =",

Definition 2.3 ([6]) f(x) is said to be a hypergenic function on Q if f € C}(, Cl,,10(R))
satisfies Hf = 0 on Q.

In this paper, let E;(x,y) = W, Ex(x,y)

area of the unit hypersphere in R"*!.

- Ry ;
= o TagT and wy,,; is the surface

Definition 2.4 ([15])
n-1,n-1 o
w(y) = 220 [ / Ey(x,y) do (x)f (x) - / Ez(x,wdo(xmx)] 3)
Whil aQ Q2

is called a hypergenic quasi-Cauchy type integral if f € H(B, 92, Cl,;11,0(R)).

Lemma 2.1 ([14]) Ify ¢ 0, f € H(B,09%2, Cl,1;10(R)), the hypergenic quasi-Cauchy type
integral

2n—1y61—1

Wnil

V() = [ / Er(6,) dor () () — / E2<x,y)d/a@@]
o I

is a hypergenic function on R\ 9 Q.
Remark2.1 Ify ¢ 0Q, f € H(B, 0%, Cly.1,0(R)), the hypergenic quasi-Cauchy type integral

2n—1y(n)—1

Whil

() - [ / Ey(3,9) do (x)f () - / Ez(x,y)d/o@ﬁv?)]
I9] Q2

satisfies Wr(c0) = 0.

Lemma 2.2 ([15]) Iff € H(B,9, Cl,11,0(R)), then Vs (y) is Holder continuous on Q* U Q2
and Q- U JQ.
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Let B(y, §) be a ball with radius é > 0, centered at y when y € 9Q. Q2 is divided into two
parts by B(y, §). The part of <2 lying in the interior of B(y, §) is denoted by A;.

Definition 2.5 ([15]) I is called the Cauchy principal of the singular integral value if
lims_,o Wr(y) = I exists, and we write directly I = ®(y).

Lemma 2.3 ([15]) Ify € 02, f € H(B,0%2, Cl,11,0(R)), then the Cauchy principal values of
the singular integral (3) exist, and

2n—1y8—1

Whil

- [ B @G -0) | + 370 @
aQ

/() = [ /d E) o))~/ 0)

when f =1, we have ®4(y) = %

Lemma 2.4 ([15]) Ify € 9, f € H(B,3%, Cl,,10(R)), then

Wi () = B,0) + 1),

(5)
W7 () = By ) - A1 0).

Lemma 2.5 ([5]) If Q is a bounded domain in R™,0 <« < n+ 1, for any y € Q we have

f =y dx < My, ),
Q

where M («, Q) is a positive constant only related to o, Q.

Definition 2.6 F(x) = (fi(x),...,f;(x)) is called a function vector if fi(x) : @ — Cl,;110(R)
(i=1,...,9).

For F(x) = (i(x),....f;(x)), K(x) = (k1(x),...,k4(x)), define the addition operation and
multiplication operation for function vectors as follows:

FOK=(fi+ki,...fa+k);FRK = (fiki,...,[qk,).

Let L(x) be a function valued in Clifford algebra Cl,,,1,0(R) and F(x) be a function vector,
then

LF = (Lfi,...,Lf;),  FL=(fL,...,f,L).
Define the model of a function vector as follows: |F(x)| = (Z?:o [ﬁ(x)|2)%, we have
|F @ K| <|F|+|K], |IF ® K| < J1|F|IK].. (6)

Definition 2.7 F(x) = (fi(x),...,f;(x)) is called a hypergenic function vector when each
component f;(x) (i = 1,...,q) is a hypergenic function on .
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Definition 2.8 A hypergenic function vector F is said to be Holder continuous on 9€2 if

there is a positive constant M, such that

1

a
|F(x1) - F(x2)| = (Zlfi(xl) _fz'(x2)|2> < Ms|xy - x5|P
i=0

holds for any x;,x, € 2, where 0 < 8 < 1 and M, is independent of x; (i = 1,2).

Remark 2.2 The hypergenic function vector F(x) = (f1(x),...,f;(x)) is Holder continuous
on 92 if and only if each component f;(x) (i = 1,...,q) of F(x) is Holder continuous on 9%2.

The set of all Holder continuous function vectors which are defined on 92 and valued in
Clys1,0(R) is denoted by Hy (8,02, Cl,i11,0(R)). For any F € Hy(B, 92, Cl,141,0(R)), the norm
of F is defined as follows: ||F||g = C,(F, dR2) + H,(F, 9%, B), where

If(&) —f ()l

1t |tl_t2|ﬂ
t1,t0€0Q2

C,(F,

H,(F,8%,B) =

It is easy to prove that H (8, 32, Cl,..10(IR)) forms a Banach space.
For any F,K € Hy(8,02, Cl110(R)), we have

IF+Kllg < IFllg + IK]lg, IFQKllp < JlIFllplIK] 5. 7)

3 Some properties of hypergenic quasi-Cauchy type integrals

Theorem 3.1 Ify ¢ 9%, F(x) = (fi(%),...,f3(x)) € Hy(B,0L, Cl,i110(R)),
n-1,n-1 o
We(y) = 220 [ / Ey(x,y) do () F(x) - / Ez(x,ymo(x)F(x)] ®)
Wil Q2 Q2

is a hypergenic function vector on R""1\ S, Wr(00) = 0, and Vr(y) is Holder continuous on
QEUIQ.

Proof

n-1,n-1
\IJp(y):<2 Yo |:

Wil

/ Er(,9) do ()i () — / Ez(x,y)mj@}

aQ Q2

n-1 A
. 2"y |:/ Eq(x,y) do (x)f;(x) —/;QEz(x,y)dG(x)ﬁ;(x)}>

Wiyl Q2

— (V40D 9 0).

It follows from F(x) = (fi(x),...,.f;(x)) € Hy (8,02, Cl,110(R)) that f; € Hy (8,02,
Clui10(R)) (i =1,...,g9). From Lemma 2.1, W;(y) (i = 1,...,9) is a hypergenic function
on R"1\ 9Q. Hence Wr(y) is a hypergenic function vector on R"*! \ 9Q. By Lemma 2.2
and Remark 2.2 Wr(y) is Holder continuous on Q* U 9Q. By Remark 2.1 we conclude
Wr(00)=0(i=1,...,9), thus Wp(c0) = 0. (]
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Theorem 3.2 Ify € 3 F € H, (B, 0K, Cly.10(R)), then

n-1
Or() = Wyj [ /a Eis) do o) (E) - FO)
- / Ey(x, )da(x)(F(x F(y))]+%F(y). 9)
aQ

From Lemma 2.4 we conclude to the following theorem.

Theorem 3.3

Wi(y) = Pr(y) + AFG), (10)
Wi (y) = Gr(y) - LF().

Lemma 3.1 ([15]) Ifx,y € R"™! (n>2), m (> 0) is an integer, then

Pm(x!y)

X J
— |x|m+1|y|m+1 |x_y|’

|x|m+2 - |y|m+2

where

"™yl om0
By — | Sl T
1, m=0.

Theorem 3.4 Ify € 92, F € Hy(B,0%, Cl,.10(R)), Qy) = %F(y) — Or(y), then
Q) ||ﬁ <JallFlp-

Proof Similar to Ref. [15], we have
ldo @) = Msp"™ dp,

where Mj3 is a positive constant.
From Theorem 3.2, Lemma 2.3 and Lemma 2.4, we get

QW)
n-1,n-1 —
|2 [ / Ei(x,y) do (x)F(y) - Ez(x,wda(x)F(y)}
Wil aQ Q2
J [ | BGpdowre - [ Ez(x,y)d/o@%”
Whil aQ Q2
n-1 —_—
2" ye” [/ Ey(x,y)do (x)(F(y) - F(x))| + / Ez(x,y)do(x)(F(x)—F()’))H
Wil a0 %

<JiH,(F,09,8) | |Ei(x9)||do@)|ly - xI? + 2 max|F(x)] |E2<x,y)||d/o®|
0 x€0Q 9

5]5Hq(F,8§2,/3)/ | ||y x|? +2max|F(x |/ |d(r(x)|
3

o lx—y" aq v — yl” !
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= ]qu(F, 082, ﬂ) +]7Cq(Fr aQ)

<JlElg-
So
Cy(Q,02) < JslIF|lp- (11)

Next we consider H,(Q, 3%, B).

There is a ball with radius 38, centered at yl when yl,y2 €9 and 68 <d, § = |y' —»?|.
Remark that 02; is located inside the ball and the rest of 92 is 9$2,.

From equality (9) and (1), we have

[Q0") - Q1)
1 1

- 3E0) - 050 - (3507 - 0:(7))|
_ %[ / Ey(0.9") do 0)(F() - Fx)

Wil Q2

o [ s G )

n-1 n 1
2 (p)
Wil

+f Ex(,y)do () (F) - F(y ))]‘

n-1 n-1
- ’% [/ Ei(x,y") do(x)(F(y'") - F(x))
27

Whil

[ Ey(1,9%) do () (F(y?) - F(x)

+ [ Bl - )|
0921

+ M |:/ E; (x,yl) do(x)(F(yl) - F(x))
19/

Whil
o[ B - £ |
02
~ 2n—1(y%)n—l |:
)

Wil

2
+ /;QlEz(x,y
_2mop [ B doo(F(?) - Fio)
02
)

» Ei(%y?) do (x)(F(y*) - F(x))

B - F(7) |

Wil

[ mriE@E@-re)|
Q2

/asz E; (x,yl) da(x)(F(yl) —F(x))

Wil

o[ e T - 1)
I3t
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n-1¢,2\n-1
Y el [ B doE0?) - Fo)
Whl Q1

o[ B - £0)
02

" m/ El(x,yl)da(x)(F(yl)—F(x))
1933

Wil

/dngz(x, )do(x)(F(x F(y 1))i|

n-1(,2\n-1
2! / Ey(x,9%) do () (F(*) — F(x))
197
)

Wil
[ ey - 10|
1953

:[1 +12 +13;

Page 8 of 16

I < /9[ /3 ) |Ey (x,9") ||do ()] |E () - F@)] + /3 ) |52(x,y1)||d/o®||@—p(yl)q

35
1
5110/ = 1,on_lHq(F,89,/3)|yl—x|ﬁd,0
o lx=yl"lx =yt

38

1

+ 20 / I C,(F,99)dp
o |x=yHa—yt"

<JuH,(F,3, ,3)/ mp" Ydp + 12C,(F, BQ)/

38
§]11Hq(F,3§2,,3)/ P tdp +J12C,4(F,0%2) dp
0 0

< Ji3(H,(F, 392, B) + C,(F,39))[y* - »*|”

that is,
I < F 1_ 2|8
1 =il Fllgly' -y
In a similar way, we have

I, <

I3 =

n—1(,1\yn-1
EOUT [ (B - By do (PO - F0)

Wyl

ROV b ) do o EG) - Fe)
02

Whl

2O [ (o) - Ea( ) Jdo GO FG) - F()
Wiyl 90920

Whil

[ s (T - 1)

1|n 1’0

nld,O

(12)

(13)
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21 ()
U ) o
21 (y2yn-1 do () (F(x
ey

<Jis

| [ - B (55 dr () - Fi)

+is /392[152( 9') - Eof ,y2)]m(f(a7)—F(yl))‘
o[ [ Eier) do (") - Feo)
_ % /d  Eis) do W(F(?) ~ )
. %/Bgza( 9?)do (0)(E() - F(y"))
2RO e )|

=JisUa+1I5) + I + I,
that is,
L <Jis(s+15) +Is + I7. (14)

2 1 .
Because x € 9Q, \ Ass, and ', 9% € 392, |j§_—;’1|’+1 and |%|l‘rl (l=0,1,...,n) are contin-
uous on €2, there is a positive constant /4, such that

2 [1+1 I+1

xX—=Y
x—y!

x -y
_yz

5]16)

5116 (120’1)'“1;/1)' (15)

From inequality (1), the Hile lemma and inequality (15), we get

I=

[ [E655) = Erl?)do @ (FO) - F)

_1 a2
/a Q( ity - =) )do(x)(F(yl)_F(x))

|x_y1|n+1|x_yl|n—1 |x_y2|n+1|x_y2|n—1

< = =

_]17/ _al|n+l 4 _ Al n-1 _a2|n+l 4 _ a2|n-1
0 | |x =y " Hx =yt lx = y2 " e =y

1
5]17/ =
a9 |x _J’1|n_1

x—y x—y?

‘do(x)HF(yl) —F(x)’

x—y! x—y?
|x_y1|n+l - |x_y2|n+l

|do ()] |[F (") - F )]

1 x—y x -y 1
-z - = d F —-F
+]17~/3§22 |x_y2|n+1 |x_y1|n_1 |x_y2|y[—1 | O'(JC)H (y) (x)’
n-1 2 +1 1 2 1 2
x-y ly' =yl ly" = 1
< i E J d F -F
/am(ls lx=yt -yt ’ 19Ix—yzl”)| PWIFL) -Fe
1 1

< JaoH,(F, 9%, B) n ( )!da(x)lly1 —x|’|y' - 5|

+
|x_y2|n+1 |x_y2|n
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L L
<H,(Q, 39,,3)(]21 / p?2dp +]22/ pP! d,o) v -5
3 35

]

< JosH,(F,02, B)|y" - *|

< JullFllslyt -,
that is,
L < Ll Fligly' - 7. (16)
In a similar way, we have
Is < sl Fllgly* - 72, (17)
2;4—1 2\n-1 _ (,1\n-1 _ a2
gy < | 20000 T doWF)
Whal a2y v — 2|l x — y2 |1
gn-1 l)n—l x— 92
| L doWI(EL) - F ()
Whi1 a0y | — y2|MH|x — y2|1
2n—1 1\n-1 _ (,2\n-1 a2
N (7o) )" "] / x—y _ do(x)F(yz) )
Wil 90y | — y2 |+l |x — y2{n-t
Because limg_,q \xy2\+_ly22ITI exists, there is a constant 8, > 0, when 0 < § < §,, such
_ —y
that
x—9%)
/ C) o )| < e
9 |x _y2|n+1|x _y2|n—1
Hence
n-1 n-1
Is < J7[2C,(F,89)| (o)~ (00)" |+ [F(/') = F(»*)]
< Jos[ Cy(F, 89 + Hy(F, 02, B)]|y* —»*|”
= JslFllgly* -2,
that is,
Is < sl Fllgly' - 72", (18)
In a similar way, we have
L <JslFlgh* - 9" (19)
From inequalities (14), (16), (17), (18) and (19), we have
5| < [J15Ua + Jas) + Jas + oo | IEll |3 = 7" (20)

From inequalities (12), (13) and (20), we have

1y _ (2
% < [J13 + J1a + J15Ua + J25) + Jos + Jao | IFll g = J30lIF |l -
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So

Hy(Q(), 32, B) < J0lIF 5. (21)
From inequalities (11) and (21), we have |Q(¥)llg < Us + J30)IFllg = Js1|IF Il - O
Remark 3.1 If y € 0Q, F € Hy(B,0%, Cl,110(R)), then
|®F() ||ﬁ <JnlFlp-

Remark 3.2 If y € 0, F € Hy(B, 0%, Cly410(R)), then

IWEMg <JaslIFllg
1YWl <JsslIFllg-

(22)

4 The existence of the solution to the nonlinear boundary value problem for
the hypergenic function vector

Let A(y), B(y), G(y) € H,(B,0R, Cl,.1,0(R)) be Holder continuous function vectors on 9<2,

we find a function vector W} (y), which is hypergenic on Q* U @7, and continuous on * U

92 and Q™ U 02, satisfying W} (00) = 0, and the nonlinear boundary value condition:

AQ) ® WE' () + B) ® ¥E(9) = GO) @ P(VF (), WE~(9)), (23)

where P(W;* (y), W£ (y)) is a Holder continuous function vector on 02 which is related to
v ), UEO).

The above problem is called the nonlinear boundary value problem SR. If P = 1, then
the above problem is called the linear boundary value problem SR.

By Theorem 3.1, We(y) is hypergenic on Q* U Q7, and Wr(y) is continuous on Q* U
92 and 2~ U 9L, and Wr(c0) = 0. If P(W}(y), V£ ()) satisfies equality (23) under certain
conditions, then Wg(y) is a solution to the nonlinear boundary value problem SR.

Putting (10) into (23), we have

A0)® (0£0)+ 3F0)) + B0) © (050 - 5F0)) = G0) © P(W10), W70). (24
Let
NF(y) = (A®) + B»)) ® (—%F(y) + QI>;(y)) +(1+A®y) ® F(y)
- GO) @ P(YE0), WE (), (25)
and equality (23) is transformed into the following singular integral equation:

NF =F. (26)
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Theorem 4.1 If A(y),B(y),G(y) € Hy(B,9R, Clys10(R)), for any y',y* € 32, P(¥}(y),
Wz (y)) satisfies

P(WE(), ¥r (1) - P(¥E (), W5 (7))

<l U 61) W2 0)] sl ) - %567

, (27)

where J3, and Js5 are positive constants independent of y* (i = 1,2) and F. If P(0,0) =
0<y =l6(lA+Bllg+ 11 +Allg) <1, IGWIpg <8, when 0 < < ”V , Problem SR has at
least one solution and the integral expression of the solution is (8).

Proof Let T = {F | |F|ls < M4 and F is uniformly Holder continuous on 92, that is, to
say, there is a positive constant My, for any x1,x; € 02, F € Hy(B, 3L, Cl,1,10(R)), we have
|F(x1) — F(x,)| < My|x; — x2|#}. Obviously T is a convex subset of the continuous function
vector space C,(32).

(1) We prove that N maps the set T to itself.

From inequality (7), Theorem 3.1 and Remark 3.2, it follows that

INE]|

s/3||A(y>+B(y)H,3H—%F(y>+%(y)' + I3[ 1+ AW L IENg + TGl 611 Pl
B

<J3[AW) + BO)| Js1lIF |5 + 5|1+ AD)| SN + S5 Gl g lIPIl g
<Js6(IlIA +Bllg + 1L+ Allg) IFllg + J31Gll1Pllg

<y IFEllp +J3811Pllp-

By inequality (27) and Remark 3.2, we have

(W (), W5 ()]
= [P(¥: (), ¥z () - P(0,0)]
<Jaa|WEG)] + T35 | WE ()|
<J4J33llFllg + 35033l Flig

=J3711Fllg.
So

Cq(P, 0%, B) = max |Pl <J5711Flg. (28)

By inequality (27) and Remark 3.2, we have
[P(¥£ (). W (7)) - P(¥E (). ¥ (7))
5134|‘1’;(y1) (J’2>| +]35|‘1’E(3’1) _\p;(yz)|

< JaaHy (W} (), 09, B) [y* —y2|ﬂ+]35Hq(‘11;()’)x39;/3)|y1—J’2|ﬁ
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< D W), + 35 Wi, 11" |
< (ssllEllg + JaslIEllg) |3 - 32|

(29)

then

Hy(P,32, B) < JaollFlp-
So

IPllg = Cy(P, 3, B) + Hy(P, 02, B)
<Jx7lIFllg +JaollFllg

<JullFlg. (30)
Asy =Js5(IlA+Bllg+ 1L+ Allg) <1,

INFllg <yIIFlg +]38IIPII¢;

=yM, +]3 —— My = M. (31)
J3Ja

If F is uniformly Holder continuous on 92, then ®r(y), ¥}, ¥z are uniformly Holder

continuous on 92. So NF is uniformly Holder continuous on 9%2.

Hence N maps the set T to itself.

(2) We prove that N is a continuous mapping.

Any F, € T, {F,} uniformly converges to F on 9. As for ¢ > 0, when # is fully large and
|F, — F| is sufficiently small. There is a ball with radius 38, centered at y when 65(d, §)0,
and remark that 0€; is located inside the ball and the rest of 92 is 92,

By inequality (27), Theorem 3.3, we have

P(W;,0), W5, 0)) - P(¥£0), £ ()]
<Jsa|WE () = WEO)| + 5| WE, () — WE ()|
=J3a|Pr,(¥) — Pr(y) + = (F v - F())

+ /35

Pr, () - Pr(y) + 5 (F(V) F(y))‘

< (134 + J35) | @, (9) = Pr ()| + (34 + J35)

1
L Ew —F(y))‘

n-1,n-1
< (34 + J35) _— /aEl(x,y)da(x)[( ) = Fu(y)) + (F(y)—F(x))]'
n-1,n-1 .
1) 22 [ BB O () - F) + (0D - E. )]‘

+ (Jaa + J35) |Fu(y) — F(9)]

< 34 +J35)(Is + 1o + ||F — Fllg),
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that is,

|P(WE, (), Y, ) = P(WED), YE))| < Usa + J35) (Is + Lo + | Fy = Fllg), (32)
i 1,n-1

% /m Ey(x,9) do (®)[(Fa(x) = Fa () + (F() - F(x))]‘

Whil
n-1
2"y

Whil

Iy <

/a B do W] (E0) - F0) + (F0) - F(x))]\

+

n-1
2 / ) E1<x,y>da<x>[<a<x>—my))+(F@)—F(x))]\

Wyt

=lo+1I11;

110<]42/ |E1(x,)||do ()] x — yI”

</ [ -y |dor ()|
oo Ix J’|

35
5144/ pPdp
0

= 1587,
that is,
Lo < Jus8?, (33)
| ) do W) - F0) - (£.0) - FO)]
<Jio /3 Bl do )| [[F.0 - Fea] + [Fs0) - FO]

f]47||Fn_F”ﬁ’/ Ei(x,y)do (x)
3Q)

<JasllF = Fll g

that is,

Iy <JasllFy = Fllg. (34)
From inequality (33) and (34), we have

Is < Jus6” + Jagl|F,s — F . (35)
In a similar way, we get

Iy < J98” + Js0llF = Fll g (36)

From inequality (32), (35) and (36), we get

1P(¥7,0), W5, 0)) = P(YE(9), U7 (9)|
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< (34 +J35)[ Vs +Ja9)8” + (Jas + J50) |1 En — Fll 6]

=J518? + Jsa | Fys — F .

Select a sufficiently small positive number § such that J516° < £; and let # be large

enough such that Js;[|F, — Fllg < 5. So for any y € 32, we have |P(V}, (y), ¥ (¥)) —
P(Wf(y), VE()| < €, thus |NF,(y) — NF(y)| < ¢, then N is a continuous mapping which
maps T to itself.

From the Arzela—Ascoli theorem we conclude that T is a compact set in Cg(3€2).
As the continuous mapping N maps the closed convex set T to itself, N(T) is com-
pact in C4(3€2). From the Schauder fixed point principle it follows that there is at least
F € Hy(B,0%, Cl.10(R)) that satisfies (26). Hence the nonlinear boundary value problem

SR has at least one solution W(y), and the expression of the solution is (8). O

5 The existence and uniqueness of the solution to the linear boundary value
problem for the hypergenic function vector
Theorem 5.1 IfA(y),B(y), G(y) € Hy(B,0L2, Clyi10(R)), when 0 < y = J3(J32 + %)HA +Bllg+

311 + Allg < 1, the linear boundary value problem SR has a unique solution.

Proof Let T be as in Theorem 4.1. N is a continuous mapping which maps 7 to itself from
Theorem 4.1.
From inequalities (7), (25) and Remark 3.1, we get

INFi1 - NF|lg

+BI1+AlgllFL - Fallg

1
<JlA +B||ﬁH §(F2 —F1)+ &, — Op,
B

1
<JsllA +B||ﬁ|:“§(F1 -F)

+[|PF — CDF2||ﬁ:| +/3l1+AllgllF1 - Falig
B

1
<hlA +B||ﬂ<§ +]31)||F1 =Bl +111+AlgllF1 - Fllg

1
< <]3</3z + i)llA +Bllg + 511 +A||,3>||F1 - bllp

=y|F1 - Flg. O

There is only one solution to the equation NF = F by the compression mapping principle.
So there is a unique solution to the linear boundary value problem SR, and the integral

expression of the solution is (8).

6 Conclusions

In this paper, we prove the existence of the solution to the nonlinear boundary value prob-
lem for the hypergenic function vector by virtue of the Arzela—Ascoli theorem and prove
the existence and uniqueness of the solution to the linear boundary value problem for the

hypergenic function vector by the compression mapping principle.
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