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Abstract
The sequence space l(p) having an important role in summability theory was defined
and studied by Maddox (Q. J. Math. 18:345–355, 1967). In the present paper, we
generalize the space l(p) to the space |Erφ |(p) derived by the absolute summability of
Euler mean. Also, we show that it is a paranormed space and linearly isomorphic to
l(p). Further, we determine α-, β-, and γ -duals of this space and construct its
Schauder basis. Also, we characterize certain matrix operators on the space.
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1 Introduction
Let X, Y be any subsets of ω, the set of all sequences of complex numbers, and A = (anv)
be an infinite matrix of complex numbers. By A(x) = (An(x)), we indicate the A-transform
of a sequence x = (xv) if the series

An(x) =
∞∑

v=0

anvxv

are convergent for n ≥ 0. If Ax ∈ Y , whenever x ∈ X, then A, denoted by A : X → Y , is
called a matrix transformation from X into Y , and we mean the class of all infinite ma-
trices A such that A : X → Y by (X, Y ). For cs, bs, and lp (p ≥ 1), we write the space of
all convergent, bounded, p-absolutely convergent series, respectively. Further, the matrix
domain of an infinite matrix A in a sequence space X is defined by

XA =
{

x = (xn) ∈ ω : A(x) ∈ X
}

. (1)

The α-, β-, and γ -duals of the space X are defined as follows:

Xα =
{
ε ∈ ω : (εnxn) ∈ l1 for all x ∈ X

}
,

Xβ =
{
ε ∈ ω : (εnxn) ∈ cs for all x ∈ X

}
,

Xγ =
{
ε ∈ ω : (εnxn) ∈ bs for all x ∈ X

}
.
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A subspace X is called an FK space if it is a Frechet space, that is, a complete locally convex
linear metric space, with continuous coordinates Pn : X → C (n = 1, 2, . . .), where Pn(x) = xn

for all x ∈ X; an FK space whose metric is given by a norm is said to be a BK space. An FK
space X including the set of all finite sequences is said to have AK if

lim
m→∞ x[m] = lim

m→∞

m∑

v=0

xve(v) = x

for every sequence x ∈ X, where e(v) is a sequence whose only non-zero term is one in vth
place for v ≥ 0. For example, it is well known that the Maddox space

l(p) =

{
x = (xn) :

∞∑

n=1

|xn|pn < ∞
}

is an FK space with AK with respect to its natural paranorm

g(x) =

( ∞∑

n=0

|xn|pn

)1/M

,

where M = max{1, supn pn}; also it is even a BK space if pn ≥ 1 for all n with respect to the
norm

‖x‖ = inf

{
δ > 0 :

∞∑

n=0

|xn/δ|pn ≤ 1

}

([19–21, 29]).
Throughout this paper, we assume that 0 < inf pn ≤ H < ∞ and p∗

n is a conjugate of pn,
i.e., 1/pn + 1/p∗

n = 1, pn > 1, and 1/p∗
n = 0 for pn = 1.

Let
∑

av be a given infinite series with sn as its nth partial sum, φ = (φn) be a sequence of
positive real numbers and p = (pn) be a bounded sequence of positive real numbers. The
series

∑
av is said to be summable |A,φn|(p) if (see [10])

∞∑

n=1

(φn)pn–1∣∣An(s) – An–1(s)
∣∣pn < ∞.

It should be noted that the summability |A,φn|(p) includes some well-known summa-
bility methods for special cases of A, φ and p = (pn). For example, if we take A = Er and
pn = k for all n, then it is reduced to the summability method |E, r|k (see [12]) where Euler
matrix Er is defined by

er
nk =

⎧
⎨

⎩

(n
k
)
(1 – r)n–krk , 0 ≤ k ≤ n,

0, k > n,

for 0 < r < 1 and

e1
nk =

⎧
⎨

⎩
0, 0 ≤ k < n,

1, k = n.
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Also we refer the readers to the papers [7, 9, 30, 31, 35] for detailed terminology.
A large literature body, concerned with producing sequence spaces by means of matrix

domain of a special limitation method and studying their algebraic, topological structure
and matrix transformations, has recently grown. In this context, the sequence spaces l(p),
rt

p, l(u, v, p), and l(Nt , p) were studied by Choudhary and Mishra [8], Altay and Başar [2, 3],
Yeşilkayagil and Başar [37] by defining as the domains of the band, Riesz, the factorable,
and Nörlund matrices in the l(p) (see also [1, 4–6, 16–18, 23–28]).

Also, some series spaces have been derived and examined by various absolute summabil-
ity methods from a different point of view (see [13, 14, 32, 34]). In this paper, we generalize
the space l(p) to the space |Er

φ |(p) derived by the absolute summability of Euler means and
show that it is a paranormed space linearly isomorphic to l(p). Further, we determine α-,
β-, and γ -duals of this space and construct its Schauder basis. Finally, we characterize
certain matrix transformations on the space.

First, we remind some well-known lemmas which play important roles in our research.

2 Needed lemmas
Lemma 2.1 ([11]) Let p = (pv) and q = (qv) be any two bounded sequences of strictly positive
numbers.

(i) If pv > 1 for all v, then A ∈ (l(p), l1) if and only if there exists an integer M > 1 such
that

sup

{ ∞∑

v=0

∣∣∣∣
∑

n∈K

anvM–1
∣∣∣∣
p∗

v
: K ⊂ N finite

}
< ∞. (2)

(ii) If pv ≤ 1 and qv ≥ 1 for all v ∈ N , then A ∈ (l(p), l(q)) if and only if there exists some
M such that

sup
v

∞∑

n=0

∣∣anvM–1/pv
∣∣qn < ∞.

(iii) If pv ≤ 1, then A ∈ (l(p), c) if and only if

(a) lim
n

anv exists for each v, (b) sup
n,v

|anv|pv < ∞,

and A ∈ (l(p), l∞) iff (b) holds.
(iv) If pv > 1 for all v, then A ∈ (l(p), c) if and only if (a) (a) holds, and (b) there is a

number M > 1 such that

sup
n

∞∑

v=0

∣∣anvM–1∣∣p∗
v < ∞,

and A ∈ (l(p), l∞) iff (b) holds.

It may be noticed that condition (2) exposes a rather difficult condition in applications.
The following lemma produces a condition to be equivalent to (2) and so the following
lemma, which is more practical in many cases, will be used in the proofs of theorems.
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Lemma 2.2 ([33]) Let A = (anv) be an infinite matrix with complex numbers and (pv) be a
bounded sequence of positive numbers. If Up[A] < ∞ or Lp[A] < ∞, then

(2C)–2Up[A] ≤ Lp[A] ≤ Up[A],

where C = max{1, 2H–1}, H = supv pv,

Up[A] =
∞∑

v=0

( ∞∑

n=0

|anv|
)pv

and

Lp[A] = sup

{ ∞∑

v=0

∣∣∣∣
∑

n∈K

anv

∣∣∣∣
pv

: K ⊂ N finite

}
.

Lemma 2.3 ([22]) Let X be an FK space with AK , T be a triangle, S be its inverse, and Y be
an arbitrary subset of ω. Then we have A ∈ (XT , Y ) if and only if Â ∈ (X, Y ) and V (n) ∈ (X, c)
for all n, where

ânv =
∞∑

j=v

anjsjv; n, v = 0, 1, . . . ,

and

v(n)
mv =

⎧
⎨

⎩

∑m
j=v anjsjv, 0 ≤ v ≤ m,

0, v > m.

3 Main theorems
In this section, we introduce the paranormed series space |Er

φ |(p) as the set of all series
summable by the absolute summability method of Euler matrix and show that this space
is linearly isomorphic to the space l(p). Also, we compute the Schauder base, α-, β-, and γ -
duals of the space and characterize certain matrix transformations defined on that space.

First of all, we note that, by the definition of the summability |A,φn|(p), we can write the
space |Er

φ |(p) as

∣∣Er
φ

∣∣(p) =

{
a ∈ ω :

∞∑

n=0

φpn–1
n

∣∣
Ar
n(s)

∣∣pn < ∞
}

,

where


Ar
n(s) = Ar

n(s) – Ar
n–1(s)

and

Ar
n(s) =

n∑

k=0

(
n
k

)
(1 – r)n–krksk , n ≥ 0, Ar

–1(s) = 0.
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Also, a few calculations give


Ar
n(s) =

n∑

m=0

n∑

k=m

(
n
k

)
(1 – r)n–krkam –

n–1∑

m=0

n–1∑

k=m

(
n – 1

k

)
(1 – r)n–1–krkam

=
n∑

m=1

n∑

k=m

(1 – r)n–1–k
[(

n – 1
k – 1

)
– r

(
n
k

)]
rkam

=
n∑

m=1

σnmam,

where

σnm =

⎧
⎨

⎩

∑n
k=m(1 – r)n–1–krk[

(n–1
k–1

)
– r

(n
k
)
], 1 ≤ m ≤ n,

0, m > n.

Further, it follows by putting r = q(1 + q)–1

σnm = (1 + q)1–n
n∑

k=m

qk
[(

n – 1
k – 1

)
– q(1 + q)–1

(
n
k

)]

= (1 + q)–n
n∑

k=m

[
qk

(
n – 1
k – 1

)
– qk+1

(
n – 1

k

)]

= qm(1 + q)–n
(

n – 1
m – 1

)
=

(
n – 1
m – 1

)
(1 – r)n–mrm.

Now, by considering Tr
n(φ, p)(a) = φ

1/p∗
n

n 
 Ar
n(s), we immediately get that Tr

0(φ, p)(a) =
a0φ

1/p∗
0

0 and

Tr
n(φ, p)(a) = φ

1/p∗
n

n

n∑

k=1

(
n – 1
k – 1

)
(1 – r)n–krkak

=
n∑

k=1

tr
nk(φ, p)ak , (3)

where

tr
nk(φ, p) =

⎧
⎪⎪⎨

⎪⎪⎩

φ
1/p∗

0
0 , k = n = 0,

φ
1/p∗

n
n

(n–1
k–1

)
(1 – r)n–krk , 1 ≤ k ≤ n,

0, k > n.

(4)

Therefore, we can state the space |Er
φ|(p) as follows:

∣∣Er
φ

∣∣(p) =

{
a = (ak) :

∞∑

n=1

∣∣∣∣∣φ
1/p∗

n
n

n∑

k=1

(
n – 1
k – 1

)
(1 – r)n–krkak

∣∣∣∣∣

pn

< ∞
}

,
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or

∣∣Er
φ

∣∣(p) =
[
l(p)

]
Tr(φ,p)

according to notation (1).
Further, since every triangle matrix has a unique inverse which is a triangle (see [36]),

the matrix Tr(φ, p) has a unique inverse Sr(φ, p) = (sr
nk(φ, p)) given by

sr
nk(φ, p) =

⎧
⎪⎪⎨

⎪⎪⎩

φ
–1/p∗

0
0 , k = n = 0,

φ
–1/p∗

k
k

(n–1
k–1

)
(r – 1)n–kr–n, 1 ≤ k ≤ n,

0, k > n.

(5)

Before main theorems, note that if r = 1 and φn = 1 for all n ≥ 0, the space |Er
φ |(p) is

reduced to the space l(p).

Theorem 3.1 Let 0 < r < 1 and p = (pn) be a bounded sequence of non-negative numbers.
Then:

(a) The set |Er
φ |(p) becomes a linear space with the coordinate-wise addition and scalar

multiplication, and also it is an FK -space with respect to the paranorm

‖x‖|Er
φ |(p) =

( ∞∑

n=0

∣∣Tr
n(φ, p)(x)

∣∣pn

)1/M

,

where M = max{1, sup pn}.
(b) The space |Er

φ |(p) is linearly isomorphic to the space l(p), i.e., |Er
φ |(p) ∼= l(p).

(c) Define a sequence (b(v)
n ) by Sr((e(v))) = (

∑n
v=0 sr

nv(φ, p)e(v)). Then the sequence (b(v)
n ) is

the Schauder base of the space |Er
φ |(p).

(d) The space |Er
φ |(p) is separable.

Proof (a) The first part is a routine verification, so it is omitted. Since Tr(φ, p) is a trian-
gle matrix and l(p) is an FK-space, it follows from Theorem 4.3.2 in [36] that |Er

φ |(p) =
[l(p)]Tr(φ,p) is an FK-space.

(b) We should show that there exists a linear bijection between the spaces |Er
φ |(p) and

l(p). Now, consider Tr(φ, p) : |Er
φ|(p) → l(p) given by (3). Since the matrix corresponding

this transformation is a triangle, it is obvious that Tr(φ, p) is a linear bijection. Further-
more, since Tr(φ, p)(x) ∈ l(p) for x ∈ |Er

φ |(p), we get

‖x‖|Er
φ |(p) =

( ∞∑

n=0

∣∣Tr
n(φ, p)(x)

∣∣pn

)1/M

=
∥∥Tr(φ, p)(x)

∥∥
l(p).

So, Tr(φ, p) preserves the paranorm, which completes this part of the proof.
(c) Since the sequence (e(v)) is the Schauder base of the space l(p) and |Er

φ|(p) =
[l(p)]Tr(φ,p), it can be written from Theorem 2.3 in [15] that b(v) = (Sr(φ, p)(e(v))) is a
Schauder base of the space |Er

φ|(p).
(d) Since the space |Er

φ |(p) is a linear metric space with a Schauder base, it is separable. �
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Theorem 3.2 Let 0 < r < 1. Define

Dr
1 =

{
a ∈ ω : ∃M > 1,

∞∑

v=0

( ∞∑

n=v

∣∣M–1b(v)
n an

∣∣
)p∗

v

< ∞
}

,

Dr
2 =

{
a ∈ ω : ∃M > 1, sup

v
M1/pv

∞∑

n=v

∣∣b(v)
n an

∣∣ < ∞
}

,

Dr
3 =

{
a ∈ ω :

∞∑

n=v
b(v)

n an converges for each v

}
,

Dr
4 =

{
a ∈ ω : ∃M > 1, sup

n

n∑

v=1

∣∣∣∣∣

n∑

k=v

b(v)
k akM–1

∣∣∣∣∣

p∗
v

< ∞
}

,

Dr
5 =

{
a ∈ ω : sup

n,v

∣∣∣∣∣

n∑

k=v

b(v)
k ak

∣∣∣∣∣

pv

< ∞
}

.

(i) If pv > 1 for all v, then

{∣∣Er
φ

∣∣(p)
}α = Dr

1,
{∣∣Er

φ

∣∣(p)
}β = Dr

4 ∩ Dr
3,

{∣∣Er
φ

∣∣(p)
}γ = Dr

4.

(ii) If pv ≤ 1 for all v, then

{∣∣Er
φ

∣∣(p)
}α = Dr

2,
{∣∣Er

φ

∣∣(p)
}β = Dr

5 ∩ Dr
3,

{∣∣Er
φ

∣∣(p)
}γ = Dr

5.

Proof To avoid the repetition of a similar statement, we only calculate β-duals of |Er
φ|(p).

(i) Let us recall that a ∈ {|Er
φ |(p)}β if and only if ax ∈ cs whenever x ∈ |Er

φ|(p). Now, by
using (5), it can be obtained that

n∑

k=0

akxk = Tr
0(φ, p)(x)φ–1/p∗

0
0 a0 +

n∑

k=1

ak

k∑

v=1

φ
–1/p∗

v
v

(
k – 1
v – 1

)
(r – 1)k–vr–kTr

v (φ, p)(x)

= Tr
0(φ, p)(x)φ–1/p∗

0
0 a0 +

n∑

v=1

φ
–1/p∗

v
v Tr

v (φ, p)(x)
n∑

k=v

ak

(
k – 1
v – 1

)
(r – 1)k–vr–k

=
n∑

v=0

dnvTr
v (φ, p)(x),

where D = (dnv) is defined by

dnv =

⎧
⎪⎪⎨

⎪⎪⎩

φ
–1/p∗

0
0 a0, n = v = 0,

∑n
k=v b(v)

k ak , 1 ≤ v ≤ n,

0, v > n.

Since Tr(φ, p)(x) ∈ l(p) whenever x ∈ |Er
φ |(p), a ∈ {|Er

φ|(p)}β if and only if D ∈ (l(p), c). So,
it follows from Lemma 2.1 that a ∈ Dr

4 ∩ Dr
3 if pv > 1 for all v, and also a ∈ Dr

5 ∩ Dr
3 if pv ≤ 1

for all v.
The remaining part of the theorem can be similarly proved by Lemma 2.1. �
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Theorem 3.3 Let A = (anv) be an infinite matrix of complex numbers, (φn) and (ψn) be
sequences of positive numbers, p = (pn) and q = (qn) be arbitrary bounded sequences of
positive numbers with pn ≤ 1 and qn ≥ 1 for all n. Further, let the matrix Â be defined by

ânv =
∞∑

j=v

anjb(v)
j

and F = Tr(ψ , q)Â. Then A ∈ (|Er
φ|(p), |Er

ψ |(q)) if and only if there exists an integer M > 1
such that, for n = 0, 1, . . . ,

∞∑

k=v

b(v)
k ank converges for each v, (6)

sup
m,v

∣∣∣∣∣

m∑

k=v

b(v)
k ank

∣∣∣∣∣

pv

< ∞, (7)

and

sup
v

∞∑

n=0

∣∣M–1/pv fnv
∣∣qn < ∞. (8)

Proof Suppose that pv ≤ 1, qv ≥ 1 for all v. Note that |Er
φ |(p) = [l(p)]Tr(φ,p) and |Er

ψ |(q) =
[l(q)]Tr(ψ ,q). By Lemma 2.3, A ∈ (|Er

φ|(p), |Er
ψ |(q)) if and only if Â ∈ (l(p), |Er

ψ |(q)) and V (n) ∈
(l(p), c), where the matrix V (n) is defined by

v(n)
mv =

⎧
⎨

⎩

∑m
j=v b(v)

j anj, 0 ≤ v ≤ m,

0, v > m.

One can see that since Â(x) ∈ |Er
ψ |(q) = [l(q)]Tr(ψ ,q) whenever x ∈ l(p), Â ∈ (l(p), |Er

ψ |(q))
iff F = Tr(ψ , q)Â ∈ (l(p), l(q)). Now, applying Lemma 2.1(ii) and (iii) to the matrices F and
V (n), it follows that V (n) ∈ (l(p), c) iff, for n = 0, 1, . . . , conditions (6) and (7) hold, and F ∈
(l(p), l(q)) iff there exists an integer M such that

sup
v

∞∑

n=0

∣∣M–1/pv fnv
∣∣qn < ∞,

which completes the proof. �

Theorem 3.4 Assume that A = (anv) is an infinite matrix of complex numbers and (φn),
(ψn) are sequences of positive numbers. If p = (pn) is an arbitrary bounded sequence of
positive numbers such that pn > 1 for all n, and H = Tr(ψ , 1)Â, then A ∈ (|Er

φ |(p), |Er
ψ |(1))

if and only if there exists an integer M > 1 such that, for n = 0, 1, . . . ,

∞∑

k=v

b(v)
k ank converges for each v (9)

sup
n

∞∑

v=0

∣∣∣∣∣

n∑

k=v

b(v)
k ankM–1

∣∣∣∣∣

p∗
v

< ∞ (10)
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and

∞∑

v=0

( ∞∑

n=0

∣∣M–1hnv
∣∣
)p∗

v

< ∞. (11)

Proof Let pn > 1 for all n. It is clear that |Er
φ|(p) = [l(p)]Tr(φ,p) and |Er

ψ |(1) = lTr(ψ ,1). So,
by Lemma 2.3, we have A ∈ (|Er

φ |(p), |Er
ψ |(1)) if and only if Â ∈ (l(p), |Er

ψ |(1)) and V (n) ∈
(l(p), c), where Â and V (n) are given in Theorem 3.3. If we take H = Tr(ψ , 1)Â, then it is
easily seen that Â ∈ (l(p), |Er

ψ |(1)) iff H ∈ (l(p), l1) because, if Â(x) ∈ |Er
ψ |(1) for all x ∈ l1(p),

H(x) = Tr(ψ , 1)(Â(x)) ∈ l1. So, applying Lemma 2.1(iv) to the matrix V (n), it is obtained
that V (n) ∈ (l(p), c) iff conditions (9) and (10) are satisfied. Again, if we apply Lemma 2.1(i)
and Lemma 2.2 to the matrix H , then we have H ∈ (l(p), l1) iff the last condition holds. �

4 Conclusion
The sequence spaces defined as domains of Riesz, factorable, Nörlund and S-matrices in
the spaces l(p) and the space of series summable by the absolute Euler have been recently
studied by several authors. In this paper, we have defined the new absolute Euler space
|Er

φ |(p) and investigated some topological and algebraic properties such as isomorphism,
duals, base, and also characterized certain matrix transformations on that space. So, we
have extended some well-known results.
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