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Abstract
In the present paper, firstly we find a number of poles of generating functions of
Bernoulli numbers and associated Euler numbers, denoted by n(a,B) and n(a, E),
respectively. Secondly, we derive the mean value of a positive logarithm of
generating functions of Bernoulli numbers and associated Euler numbers shown as
m(2π ,B) andm(π , E), respectively. From these properties, we find Nevanlinna
characteristic functions which we stated in the paper. Finally, as an application, we
show that the generating function of Bernoulli numbers is a normal function.
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1 Introduction and preliminaries
In the mathematical field of complex analysis, Nevanlinna theory deals with the theory of
meromorphic functions. It was constructed in 1925 by Finnish mathematician Rolf Her-
man Nevanlinna (October 22, 1895–May 28, 1980), who made significant contributions
to complex analysis. Because of devising of R. Nevanlinna, Hermann Weyl has called it
“one of the few great mathematical events of (the twentieth) century” [1]. In fact, Nevan-
linna theory plays an important role in transcendental meromorphic functions, analytic
theory of differential and functional equations, holomorphic dynamics, minimal surfaces,
and complex hyperbolic geometry, which deals with generalizations of Picard’s theorem
to higher dimensions, cf. [1–8] and the references cited therein.

Nevanlinna theory defines the asymptotic distribution of solutions of the equation

f (z) = a.

In this theory, a fundamental tool is the Nevanlinna characteristic given by

T(r, f ) = T
(

r,
1
f

)
+ log

∣∣f (0)
∣∣,

which measures the rate of growth of a meromorphic function, cf. [1–7].
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We now begin with the properties of Nevanlinna theory.

Theorem 1 Let f (z) be a meromorphic function in |z| ≤ R (0 < R < ∞), and let ai (i =
1, 2, . . . , M), bj (j = 1, 2, . . . , N ) be the zeros and poles of f (z) in |z| < R, respectively. If z = reiθ

(0 < r < R) is a point in |z| < R, distinct from ai and bj, then

log
∣∣f (z)

∣∣ =
1

2π

∫ 2π

0
log

∣∣f (Reiφ)∣∣ R2 – r2

R2 – 2Rr cos(θ – φ) + r2 dφ

+
M∑
i=1

log

∣∣∣∣R(z – ai)
R2 – aiz

∣∣∣∣ –
N∑

j=1

log

∣∣∣∣R(z – bj)
R2 – bjz

∣∣∣∣,

which is called Poisson–Jensen formula, see [3].

Definition 1 Let n(R, f ) denote a number of poles in |z| ≤ R so that n(R, 1
f ) denotes a

number of zeros in |z| ≤ R. These values are known as

N(R,∞) := N(R, f ) =
N∑

j=1

log
R

|bj| =
∫ R

0
n(t, f )

dt
t

,

N(R, 0) := N
(

R,
1
f

)
=

M∑
i=1

log
R

|ai| =
∫ R

0
n
(

t,
1
f

)
dt
t

(see [3]).

From Definition 1, one may write

N(R, f ) =
∫ R

0
n(t, f )

dt
t

, (1.1)

which is called Nevanlinna’s counting function.

Proposition 1 If f (0) = ∞,

N(R, f ) =
∫ R

0

(
n(t, f ) – n(0, f )

)dt
t

+ n(0, f ) log R (see [3]).

Proposition 2 If f (0) = 0, under the same conditions of Theorem 1, then

f (z) =
∞∑

k=m

Ckzk (Cm �= 0 with m ∈ Z).

In fact, m > 0 if the origin is a zero of order m, and m < 0 if the origin is a pole of order m.
Then the following holds true:

log |Cm| =
1

2π

∫ 2π

0
log

∣∣f (reiθ )∣∣dθ –
M∑
i=1

log
|ai|
R

+
N∑

j=1

log
|bj|
R

– m log R (see [3]).
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Definition 2 Let x be a positive real number. The positive logarithm log+ is defined by
(see [3])

log+ x = max{log x, 0} =

⎧⎨
⎩

log x, if x > 1,

0, if x ≤ 1.

Notice that the positive logarithm defined above is a continuous function of nonnegative
on (0,∞).

Corollary 1 From Definition 1, one has

log x = log+ x – log+ 1
x

(see [3]).

Then we can easily derive the following integral equation from Corollary 1:

∫ 2π

0
log

∣∣f (Reiθ)∣∣dθ =
∫ 2π

0
log+∣∣f (Reiθ)∣∣dθ –

∫ 2π

0
log+ 1

|f (Reiθ )| dθ . (1.2)

Theorem 2 If f (0) �= 0,∞, one has

log
∣∣f (0)

∣∣ =
1

2π

∫ 2π

0
log+∣∣f (reiθ )∣∣dθ –

1
2π

∫ 2π

0
log+ 1

|f (reiθ )| dθ

+ N(r, f ) – N
(

r,
1
f

)
(see [3]).

Definition 3 The Nevanlinna characteristic function of f (z), denoted by T(r, f ), is given
by

T(r, f ) = N(r, f ) + m(r, f ),

where m(r, f ) is mean value of the function log+ |f (reiθ )| on [0, 2π ] (see [3]).

Theorem 3 Jensen–Nevanlinna formula is known by

T(r, f ) = T
(

r,
1
f

)
+ log

∣∣f (0)
∣∣ (see [3]).

The works on special numbers and polynomials have a very long history. In fact, spe-
cial numbers and polynomials play a significantly important role in the progress of several
fields of mathematics, physics, and engineering. They have many algebraic operations.
That is, because of their finite evaluation schemes and closure under addition, multipli-
cation, differentiation, integration, and composition, they are richly utilized in compu-
tational models of scientific and engineering problems. For more information related to
special numbers and polynomials, see [9–11] and the references cited therein.

By this motivation, we find a number of poles of generating functions of Bernoulli num-
bers and associated Euler numbers, denoted by n(a, B) and n(a, E), respectively. After that,
we derive the mean value of a positive logarithm of generating functions of Bernoulli num-
bers and associated Euler numbers shown as m(2π , B) and m(π , E), respectively. From
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these properties, we find Nevanlinna characteristic functions which we stated in the fol-
lowing parts. In the final part of this paper, as an application, we show that the generating
function of Bernoulli numbers is a normal function.

2 Nevanlinna characteristic function of generating function of Bernoulli
numbers

Let Bn(x) be Bernoulli polynomials defined by means of the following generating function:

B(x, z) =
z

ez – 1
exz =

∞∑
n=0

Bn(x)
zn

n!
(|z| < 2π

)
.

In the case when x = 0, we have Bn(0) := Bn that stands for Bernoulli numbers expressed
by the following generating function (cf. [9–11]):

B(z) =
z

ez – 1
=

∞∑
n=0

Bn
zn

n!
.

Here we first consider the generating function of Bernoulli numbers B(z). One of the
zeros of B(z) is z = 0. From here, we see that

lim
z→0

B(z) = 1.

It means B(z) has a removable singular point at z = 0. Then we have the following corol-
lary.

Corollary 2 The function B(z) is not a meromorphic function over complex plane including
z = 0.

We now modify the generating function of Bernoulli numbers as follows:

B(z) =
1
z

B(z) =
1

ez – 1
=

1
z

+
∞∑

n=0

Bn+1

n + 1
zn

n!
. (2.1)

Corollary 3 The function B(z) is a meromorphic function at everywhere.

Let us now consider B(z) over the following disk:

D =
{

z ∈C | |z| ≤ a
}

.

The function B(z) has no zeros. However, it has poles as follows:

ez – 1 = 0 ⇒ ez = e2kπ i ⇒ z = 2kπ i (k ∈ Z).

A number of poles over disk D are as follows:
• If a = π , the pole is 0: that is, n(a, B) = 1 where B := B(z).
• If a = 2π , the poles are –2π i, 0, 2π i: that is, n(a, B) = 3.
Then we have the following corollary.
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Corollary 4 A number of poles of the function B(z) over disk D = {z ∈C | |z| ≤ a}

n(a, B) = 1 + 2
[

a
2π

]
,

where the notation [x] denotes the largest integer less than or equal to x.

Now we give the following theorem.

Theorem 4 The function B(z) holds for a = 2π over disk D

N(2π , B) = log(2π ).

Proof Since B(0) = ∞, it follows from Proposition 1 that

N(2π , B) =
∫ 2π

0

(
n(t, B) – n(0, B)

)dt
t

+ n(0, B) log(2π ).

When n(0, B) = 1, we write

N(2π , B) = 2
∫ 2π

0

[
t

2π

]
dt
t

+ log(2π ).

When [ t
2π

] = 0 on [0, 2π ), we deduce

N(2π , B) = log(2π ),

which completes the proof. �

Theorem 5 The mean value of the function B(z) on [0, 2π ) is that

m(2π , B) = O(1),

where O(·) means big O notation; for information about this notation, see [3].

Proof Setting a = 2π gives z = 2πeiθ = 2π (cos θ + i sin θ ). By the triangle inequality ||z1| –
|z2|| ≤ |z1 – z2|, we have

∣∣ez – 1
∣∣ =

∣∣e2π (cos θ+i sin θ ) – 1
∣∣

≥ ∣∣∣∣e2π cos θ ei sin θ
∣∣ – |1|∣∣

=
∣∣∣∣e2π cos θ

∣∣∣∣ei sin θ
∣∣ – 1

∣∣
=

∣∣e2π cos θ – 1
∣∣.

From here, we obtain the following useful inequality:

log+ 1
|ez – 1| ≤ log+ 1

|e2π cos θ – 1| .
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Then we derive the mean value of the function B(z) on [0, 2π )

m(2π , B) =
1

2π

∫ 2π

0
log+ 1

|ez – 1| dθ

≤ 1
2π

∫ 2π

0
log+ 1

|e2π cos θ – 1| dθ .

Since

e2π cos θ – 1 = 2π cos θ +
(2π cos θ )2

2!
+ · · ·

with | cos θ | ≥ 0, we find

∣∣e2π cos θ – 1
∣∣ ≥ 2π | cos θ | ≥ | cos θ |.

Then we have

m(2π , B) ≤ 1
2π

∫ 2π

0
log+ 1

| cos θ | dθ

=
1

2π

∫ 2π

0
log

1
| cos θ | dθ .

Here, when the integral 1
2π

∫ 2π

0 log 1
| cos θ | dθ is continuous, we get

m(2π , B) = O(1),

which is the desired result. �

Theorem 6 The Nevanlinna characteristic function of the function B(z) is that

T(2π , B) = log(2π ) + O(1).

Proof Since it follows from Definition 3, Theorem 4, and Theorem 5, we omit the proof.
�

3 Nevanlinna characteristic function of generating function of associated Euler
numbers

The Euler polynomials En(x) are defined by means of the following generating series:

E(x, z) =
2

ez + 1
exz =

∞∑
n=0

En(x)
zn

n!
(|z| < π

)
.

In the case when x = 0, we have En(0) := En that means associated Euler numbers given
by

E(z) =
2

ez + 1
=

∞∑
n=0

En
zn

n!
, cf. [9–11]. (3.1)
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Corollary 5 The function E(z) is a meromorphic function at everywhere.

Let us now consider E(z) over the following disk:

D =
{

z ∈C | |z| ≤ a
}

.

The function E(z) has no zeros. However, it has poles as follows:

ez + 1 = 0 ⇒ ez = e2π i(k– 1
2 ) ⇒ z = 2π i

(
k –

1
2

)
(k ∈ Z).

A number of poles over disk D are as follows:
• If a = π , the poles are –π i, π i: that is, n(a, E) = 2 where E := E(z).
• If a = 3π , the poles are –3π i, –π i, π i, 3π i: that is, n(a, E) = 4.
Then we have the following corollary.

Corollary 6 A number of poles of the function E(z) over disk D = {z ∈C | |z| ≤ a}:

n(a, E) = 2
[

a + π

2π

]
.

Now we give the following theorem.

Theorem 7 The function E(z) holds for a = π over disk D

N(π , E) = 0.

Proof Since E(0) �= 0,∞, it follows from Eq. (1.1) that

N(π , f ) =
∫ π

0
n(t, E)

dt
t

.

From Corollary 6, we have

N(π , E) = 2
∫ π

0

[
t + π

2π

]
dt
t

.

When [ t+π
2π

] = 0 on [0,π ), we deduce

N(π , E) = 0,

which completes the proof. �

Because of Theorem 7 and Definition 3, we have the following corollary.

Corollary 7

T(π , E) = m(π , E).
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Theorem 8 The mean value of the function E(z) on [0,π ) is that

m(π , E) = O(1).

Proof As has been used in Theorem 5, we have

log+ 1
|ez – 1| ≤ log+ 1

|eπ cos θ – 1|
(
z = πeiθ ).

Then we write the mean value of the function E(z) on [0,π )

m(π , E) =
1
π

∫ π

0
log+ 2

|ez + 1| dθ

≤ 1
π

∫ π

0
log+ 1

|eπ cos θ – 1| dθ .

Since

eπ cos θ – 1 = π cos θ +
(π cos θ )2

2!
+ · · ·

with | cos θ | ≥ 0, we find

∣∣eπ cos θ – 1
∣∣ ≥ π | cos θ | ≥ | cos θ |.

Then we have

m(π , E) ≤ 1
π

∫ π

0
log+ 1

| cos θ | dθ

=
1
π

∫ π

0
log

1
| cos θ | dθ .

Here when the integral 1
π

∫ π

0 log 1
| cos θ | dθ is continuous, we get

m(π , E) = O(1),

which is the desired result. �

Theorem 9 The Nevanlinna characteristic function of the function E(z) is that

T(π , E) = O(1).

Proof Since it follows from Definition 3, Theorem 7, and Theorem 8, we omit the proof.
�

4 Application
Let f be a meromorphic function in a domain D ⊂C. A function f is a normal function if
there exists a positive number K such that

f �(ζ ) ≤ K
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for any ζ ∈ D, where

f �(ζ ) =
|f ′(ζ )|

1 + |f (ζ )|2

denotes the spherical derivative of f , cf. [7].
We now find spherical derivative of the function B(z) given by Eq. (2.1). Since

B′(z) = –
ez

(ez – 1)2 ,

we have

B�(z) =
| ez

(ez–1)2 |
1 + | 1

(ez–1)2 | =
|ez|

|ez–1|2
1 + 1

|ez–1|2
=

|ez|
1 + |ez – 1|2 .

Here we consider z = reiθ with – π
2 ≤ θ ≤ π

2 and r > 1. Then it becomes

B�(z) =
|ez|

1 + |ez – 1|2 =
er cos θ

1 + |ereiθ – 1|2 .

By the triangle inequality ||z1| – |z2|| ≤ |z1 – z2|, we have

B�(z) ≤ er cos θ

1 + cos2 θ
.

It is easy to see that

er cos θ – 1 = r cos θ +
(r cos θ )2

2!
+ · · · ≥ r cos θ ≥ cos θ .

We derive

B�(z) ≤ er cos θ (er cos θ + 1)
1 + cos2 θ

.

Because of the inequality 1
2 ≤ 1

1+cos2 θ
≤ 1, we reach the following inequality:

B�(z) ≤ er(er + 1
)
.

Since r is a real number greater than 1, we can write K := er(er + 1) as follows

B�(z) ≤ K .

Thus we get the following theorem.

Theorem 10 The function B(z) = 1
z +

∑∞
n=0

Bn+1
n+1

zn

n! is a normal function.
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5 Conclusion and observation
Although Nevanlinna theory was studied intensively in complex analysis by many math-
ematicians, it was not considered to apply the tools of Nevanlinna theory to generating
functions of special numbers. This work was first done in this issue. We dealt mainly with
the generating functions on Nevanlinna theory. It seemed interesting with the following
properties:

T(2π , B) = log(2π ) + O(1) and T(π , E) = O(1).

In fact, the identities of special numbers have been studied in great detail. From some of
relations, it is possible to obtain further properties on Nevanlinna theory by making use
of some of the identities. For example,

∞∑
n=0

Gn
zn

n!
=

2z
ez + 1

(5.1)

is known as a generating function of Genocchi numbers, denoted by Gn. Comparing
Eq. (3.1) with Eq. (5.1), one can easily derive

En =
Gn+1

n + 1
, cf. [9–11].

By using this relation, one may derive easily the Nevanlinna characteristic function of
the generating function of Genocchi numbers the same as the Nevanlinna characteristic
function of the generating function of associated Euler numbers.
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