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Abstract
In this paper, our aim is to ascertain the distance between two sets iteratively in two
simultaneous ways with the help of a multivalued coupling define for this purpose.
We define the best proximity points of such couplings that realize the distance
between two sets. Our main theorem is deduced in metric spaces. As an application,
we obtain the corresponding results in uniformly convex Banach spaces using the
geometry of the space. We discuss two examples.
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1 Introduction
In this paper, our intention is to discuss a procedure for finding the distance between
two given subsets of a metric space by using a multivalued coupling between two sets.
The aforesaid coupling is a multivalued coupled cyclic type mapping between two sets
we define. There are several works for determining the minimum distance mentioned,
where nonselfmappings, both cyclic and noncyclic, have been utilized. Such problems are
known as best proximity point problems for the concern mappings and were introduced
by Eldered et al. [16] in 2006. This line of research developed through works like [1, 6, 7,
9, 12–14, 23, 24, 27, 30, 31] in subsequent times. Multivalued mappings have been con-
sidered in fixed and proximity point problems in works like [2, 8, 18, 20, 26]. Essentially,
this is a kind of global optimization problem, which, in the approach mentioned, is treated
as the problem of finding an optimal approximate solution of a fixed point equation (or a
fixed point inclusion in the case of a multivalued mappings) although the exact solution
may not exist, which is actually the case where the two sets are disjoint. This situation is of
interest for the present problem. Within the above framework, we take a new approach to
this problem by defining a multivalued coupling between two sets. We define a multival-
ued coupled proximity point for these couplings, which simultaneously realize two best
proximity pairs between two sets. We discuss the existence of such points under a con-
tractive condition. We apply our theorem to obtain the corresponding result in uniformly
convex Banach spaces. Uniformly convex Banach spaces constitute a category of Banach

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1720-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1720-0&domain=pdf
mailto:mihai@mathem.pub.ro


Choudhury et al. Journal of Inequalities and Applications  (2018) 2018:130 Page 2 of 15

spaces including Hilbert spaces and in which interest has been widespread. We use some
bit of Banach space geometry to obtain our result. Further, we illustrate our results with
examples. Open problems are discussed at the end of the paper.

2 Mathematical preliminaries
Throughout this paper, (X, d) stands for a general metric space. Let A and B be two subsets
of X. A pair of points (a, b) with a ∈ A and b ∈ B is said to be a best proximity pair if d(a, b) =
d(A, B) where d(A, B) = inf{d(x, y) : x ∈ A and y ∈ B}. If T : A −→ B is a nonselfmapping for
which there exists z ∈ A such that d(z, Tz) = d(A, B), that is, where (z, Tz) is a best proximity
pair, we say that z is a best proximity point of T , and the problem of finding such a point
is known as the best proximity point problem. It is a global optimization problem in that
it seeks to find a point z ∈ A that minimizes the value of d(z, Tz) over z ∈ A subject to
the condition that the minimum is d(A, B). On the other hand, it is an extension of the
fixed point problem and reduces to that problem in the special case where A ∩ B �= ∅.
The following are the concepts from set-valued analysis which we use in this paper. We
consider the following classes of subsets of the metric space X:

N(X) = {A : A is a nonempty subset of X},
B(X) = {A : A is a nonempty bounded subset of X},

and

CB(X) = {A : A is a nonempty closed and bounded subset of X}.

For A, B ∈ B(X), the functions D and δ are defined as follows:

d(A, B) = D(A, B) = inf
{

d(a, b) : a ∈ A, b ∈ B
}

,

δ(A, B) = sup
{

d(a, b) : a ∈ A, b ∈ B
}

.

If A = {a}, then we write D(A, B) = D(a, B) and δ(A, B) = δ(a, B). In addition, if B = {b}, then
D(A, B) = d(a, b) and δ(A, B) = d(a, b). Obviously, D(A, B) ≤ δ(A, B). For all A, B, C ∈ B(X),
the definition of δ(A, B) yields the following:

δ(A, B) = δ(B, A), δ(A, B) ≤ δ(A, C) + δ(C, B), δ(A, B) = 0 iff A = B = {a}, δ(A, A) = diam A
[17].

The δ-distance has all the properties of a metric except one. It has been used in works
like [4, 5, 10]. We use this concept in our theorem.

Let A and B be two nonempty subsets of a metric space (X, d), and let T : A −→ CB(B) be
a multivalued mapping. A point x∗ ∈ A is called a best proximity point of T if D(x∗, Tx∗) =
inf{d(x∗, y) : y ∈ Tx∗} = dist(A, B) [2]. This is a natural generalization of its single-valued
counterpart described above. A fixed point x of a multivalued mapping T is given by the
inclusion relation x ∈ Tx. Now there need not be a fixed point of the multivalued mapping
in general. Here the task in the best proximity point problem is to find a global minimum
of the function x 	→ D(x, Tx) by constraining an approximate solution of the inclusion
relation x ∈ Tx to satisfy D(x, Tx) = dist(A, B).

Next, we give the following:
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Definition 2.1 Let (X, d) be a metric space, and let A, B be two nonempty subsets of X.
A mapping F : X × X −→ X is said to be a coupling with respect to A and B if F(x, y) ∈ B
for (x, y) ∈ A × B and F(x, y) ∈ A for (x, y) ∈ B × A.

The following definition is a multivalued generalization of Definition 2.1.

Definition 2.2 Let (X, d) be a metric space, and let A, B be two nonempty subsets of X.
A multivalued mapping F : X × X −→ N(X) is said to be a multivalued coupling with re-
spect to A and B if F(x, y) ⊆ B for (x, y) ∈ A × B and F(x, y) ⊆ A for (x, y) ∈ B × A.

Our purpose here is to realize the minimum distance between two sets A and B through
a coupled best proximity point for coupling, which we define further.

Definition 2.3 Let (X, d) be a metric space, and let A, B be two nonempty subsets of X.
Let F : X × X −→ X be a coupling with respect to A and B. An element (x, y) ∈ A × B is
called a coupled best proximity point if d(x, F(x, y)) = d(A, B) and d(y, F(y, x)) = d(A, B),
where d(A, B) = inf{d(x, y) : x ∈ A and y ∈ B}.

Definition 2.4 Let (X, d) be a metric space, and let A, B be two nonempty subsets of X. Let
F : X × X −→ N(X) be a multivalued coupling with respect to A and B. An element (x, y) ∈
A × B is called a coupled best proximity point if D(x, F(x, y)) = d(A, B) and D(y, F(y, x)) =
d(A, B), where d(A, B) = inf{d(x, y) : x ∈ A and y ∈ B}.

Note that proximity points for coupled mapping have been defined in [21]. Our def-
inition is for both single-valued and multivalued couplings, which is different from the
above-mentioned concept. Also, the present work is in a different course from that of [21].

Here the problem of finding coupled best proximity points for multivalued couplings is
viewed as that of finding simultaneous optimal approximate solutions of the coupled fixed
point inclusions x ∈ F(x, y) and y ∈ F(y, x) for a multivalued coupling F in the set A × B
such that the solution satisfies D(x, F(x, y)) = D(y, F(y, x)) = d(A, B). In general, the exact
solutions may not exist. This is surely the case where d(A, B) �= 0, which is of interest here.
From another viewpoint, it is the problem of simultaneous minimization of D(x, F(x, y))
and D(y, F(y, x)) for x ∈ A, y ∈ B such that the minimum values at the point of optimality
are the global minimum d(A, B). It is to be noted that the pairs (x, F(x, y)) and (y, F(y, x)) are
in general different. Thus the distance between two sets is obtained through two different
pairs of points, that is, in the process, we obtain two best proximity pairs. Also, the coupled
best proximity point may be not unique. The following illustration elucidates these points.

Example 2.1 Let X = R
2 with the metric d defined as d((x1, y1), (x2, y2)) = |x1 –x2|+ |y1 –y2|.

Let A = {0}×R and B = {1}×R. Then A and B are nonempty subsets of X, and d(A, B) = 1.
Consider F : X × X −→ N(X) defined as

F(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

{1} × [1, p] if x = (0, p) ∈ A and y = (1, q) ∈ B,

{0} × [0, q
2 ] if x = (1, q) ∈ B and y = (0, p) ∈ A,

{2, 3} otherwise.

Here F is a coupling with respect to A and B. For any c �= 0, the pair ((0, c), (1, 0)) ∈ A × B
is a coupled best proximity point of F .



Choudhury et al. Journal of Inequalities and Applications  (2018) 2018:130 Page 4 of 15

We discuss an application of our main result in uniformly convex Banach spaces.

Definition 2.5 ([3]) A Banach space X is said to be uniformly convex if for every ε satis-
fying 0 < ε ≤ 2, there is δ(ε) > 0 such that, for all x, y ∈ X,

‖x‖ = ‖y‖ = 1 and ‖x – y‖ ≥ ε ⇒
∥∥∥∥

x + y
2

∥∥∥∥ ≤ 1 – δ(ε).

We use the following results in our application.

Lemma 2.1 ([16]) Let A be a nonempty closed and convex subset, and let B be a nonempty
closed subset of a uniformly convex Banach space. Let {xn} and {zn} be sequences in A, and
let {yn} be a sequence in B satisfying:

(i) ‖zn – yn‖ −→ d(A, B) as n −→ ∞,
(ii) for every ε > 0, there exists N0 such that ‖xm – yn‖ ≤ d(A, B) + ε for all m > n ≥ N0.

Then, for every ε > 0, there exists N1 such that ‖xm – zn‖ ≤ ε for all m > n ≥ N1.

Lemma 2.2 ([16]) Let A be a nonempty closed and convex subset, and let B be a nonempty
closed subset of a uniformly convex Banach space. Let {xn} and {zn} be sequences in A, and
let {yn} be a sequence in B satisfying:

(i) ‖xn – yn‖ −→ d(A, B) as n −→ ∞,
(ii) ‖zn – yn‖ −→ d(A, B) as n −→ ∞.

Then ‖xn – zn‖ −→ 0 as n −→ ∞.

Lemma 2.1 and Lemma 2.2 from [16] are generalized in the general case of a function
modular space [25] as far as any uniformly convex Banach space is a function modular
space generated by a function modular ρ that satisfies (UC1) and has �2-property. There-
fore, Lemma 2.1 and Lemma 2.2 from [16] are particular cases of the results from [22] and
[32] enriching the knowledge on the geometry of function modular spaces.

3 Main results
Theorem 3.1 Let A and B be two nonempty closed subsets of a complete metric space
(X, d). Let F : X × X −→ B(X) be a coupling with respect to A and B satisfying the following
inequality:

δ
(
F(x, y), F(u, v)

) ≤ k
2
[
d(x, u) + d(y, v)

]
+ (1 – k)d(A, B), (3.1)

where x, v ∈ A, y, u ∈ B, and k ∈ (0, 1).
(1) Then there exist two sequences {xn} and {yn} in A and B, respectively, such that

lim
n−→∞d(xn, yn+1) = d(A, B) and lim

n−→∞d(yn, xn+1) = d(A, B).

(2) Further, if {xn} and {yn} are Cauchy sequences, then F has a coupled best proximity
point.

Proof Starting with arbitrary x0 ∈ A and y0 ∈ B, we construct two sequences {xn} and {yn}
in X such that

xn+1 ∈ F(yn, xn) and yn+1 ∈ F(xn, yn) for all n ≥ 0. (3.2)
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Then {xn} is a sequence in A, and {yn} is a sequence in B. By (3.1) and (3.2) we have

d(x1, y2) ≤ δ
(
x1, F(x1, y1)

) ≤ δ
(
F(y0, x0), F(x1, y1)

)

= δ
(
F(x1, y1), F(y0, x0)

)

≤ k
2
[
d(y0, x1) + d(x0, y1)

]
+ (1 – k)d(A, B). (3.3)

By (3.1) and (3.2) we have

d(y1, x2) ≤ δ
(
y1, F(y1, x1)

)

≤ δ
(
F(x0, y0), F(y1, x1)

)

≤ k
2
[
d(x0, y1) + d(y0, x1)

]
+ (1 – k)d(A, B). (3.4)

From (3.3) and (3.4) we have

d(x1, y2) + d(y1, x2)
2

≤ k
2
[
d(x0, y1) + d(y0, x1)

]
+ (1 – k)d(A, B). (3.5)

By (3.1), (3.2), and (3.5) we have

d(x2, y3) ≤ δ
(
x2, F(x2, y2)

) ≤ δ
(
F(y1, x1), F(x2, y2)

)

= δ
(
F(x2, y2), F(y1, x1)

)

≤ k
2
[
d(y1, x2) + d(x1, y2)

]
+ (1 – k)d(A, B)

= k
[

d(y1, x2) + d(x1, y2)
2

]
+ (1 – k)d(A, B)

≤ k
[

k
2
[
d(x0, y1) + d(y0, x1)

]
+ (1 – k)d(A, B)

]
+ (1 – k)d(A, B)

=
k2

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – k2)d(A, B). (3.6)

Similarly,

d(y2, x3) ≤ δ
(
y2, F(y2, x2)

) ≤ k2

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – k2)d(A, B). (3.7)

Let us suppose that, for some integer n = p,

d(xp, yp+1) ≤ kp

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – kp)d(A, B) (3.8)

and

d(yp, xp+1) ≤ kp

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – kp)d(A, B). (3.9)

From (3.8) and (3.9) we have

d(xp, yp+1) + d(yp, xp+1)
2

≤ kp

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – kp)d(A, B). (3.10)
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By (3.1), (3.2), and (3.10) we obtain

d(xp+1, yp+2) ≤ δ
(
xp+1, F(xp+1, yp+1)

) ≤ δ
(
F(yp, xp), F(xp+1, yp+1)

)

= δ
(
F(xp+1, yp+1), F(yp, xp)

)

≤ k
2
[
d(yp, xp+1) + d(xp, yp+1)

]
+ (1 – k)d(A, B)

= k
[

d(yp, xp+1) + d(xp, yp+1)
2

]
+ (1 – k)d(A, B)

≤ k
[

kp

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – kp)d(A, B)

]
+ (1 – k)d(A, B)

≤ kp+1

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – kp+1)d(A, B).

Similarly, by (3.1), (3.2), and (3.10) we obtain

d(yp+1, xp+2) ≤ δ
(
yp+1, F(yp+1, xp+1)

)

≤ δ
(
F(xp, yp), F(yp+1, xp+1)

)

≤ k
2
[
d(xp, yp+1) + d(yp, xp+1)

]
+ (1 – k)d(A, B)

= k
[

d(xp, yp+1) + d(yp, xp+1)
2

]
+ (1 – k)d(A, B)

≤ k
[

kp

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – kp)d(A, B)

]
+ (1 – k)d(A, B)

≤ kp+1

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – kp+1)d(A, B).

Therefore, by induction theorem we can write that, for all n ≥ 1,

d(xn, yn+1) ≤ kn

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – kn)d(A, B) (3.11)

and

d(yn, xn+1) ≤ kn

2
[
d(x0, y1) + d(y0, x1)

]
+

(
1 – kn)d(A, B). (3.12)

Since k ∈ (0, 1), taking the limits as n −→ ∞ in these two inequalities, we have

lim
n−→∞d(xn, yn+1) = d(A, B) (3.13)

and

lim
n−→∞d(yn, xn+1) = d(A, B). (3.14)

Further, suppose that {xn} and {yn} are Cauchy sequences. Here X is complete, and A
and B are closed subsets of X. Since {xn} and {yn} are sequences respectively in A and B,
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there exist x ∈ A and y ∈ B such that

xn −→ x and yn −→ y as n −→ ∞. (3.15)

By (3.13), (3.14), and (3.15) we have

lim
n−→∞d(xn, yn+1) = d(x, y) = d(A, B) (3.16)

and

lim
n−→∞d(yn, xn+1) = d(y, x) = d(x, y) = d(A, B). (3.17)

Using (3.1), (3.2), and (3.16) we obtain

d(A, B) ≤ D
(
x, F(x, y)

) ≤ δ
(
x, F(x, y)

) ≤ d(x, xn+1) + δ
(
xn+1, F(x, y)

)

≤ d(x, xn+1) + δ
(
F(yn, xn), F(x, y)

)

= d(x, xn+1) + δ
(
F(x, y), F(yn, xn)

)

≤ d(x, xn+1) +
k
2
[
d(yn, x) + d(xn, y)

]
+ (1 – k)d(A, B)

≤ d(x, xn+1) +
k
2
[
d(yn, y) + d(y, x) + d(xn, x) + d(x, y)

]
+ (1 – k)d(A, B)

= d(x, xn+1) +
k
2
[
d(yn, y) + d(A, B) + d(xn, x) + d(A, B)

]
+ (1 – k)d(A, B).

Taking the limit as n −→ ∞ in this inequality and using (3.15), we have

d(A, B) ≤ D
(
x, F(x, y)

) ≤ kd(A, B) + (1 – k)d(A, B) = d(A, B),

which implies that D(x, F(x, y)) = d(A, B). Similarly, we can prove that D(y, F(y, x)) =
d(A, B). Hence D(x, F(x, y)) = d(A, B) and D(y, F(y, x)) = d(A, B), that is, (x, y) is a coupled
best proximity point of F . �

Remark 3.1 It is a natural question to ask under what conditions the two sequences {xn}
and {yn} in X should converge. We give an answer to this question in the context of uni-
formly convex Banach spaces for the single-valued case. It is also possible to deduce a
similar result by using UC property [31] in a metric space. We prefer to obtain it in uni-
formly convex Banach spaces since UC property is a consequence of the structure of the
space for certain pairs of subsets.

Remark 3.2 If A ∩ B �= ∅, then we obtain a multivalued coupled fixed point result for cou-
plings. There are several recent works in which some coupled fixed point results are ob-
tained [11, 15, 28, 29]. Further, it has been pointed out in [19] that several generalizations
of existing results in fixed point theory are not actual generalizations. The fixed point re-
sult obtained under the conditions mentioned above is not a direct generalization of any
existing result. Since multivalued couplings of the above type have not appeared earlier in
the literature and therefore is not relevant to the discussion presented in [19].
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Example 3.1 Let X = R2 with the metric d defined as d((x1, y1), (x2, y2)) = |x1 –x2|+ |y1 –y2|.
Let A = {0} × [0,∞) and B = {1} × (–∞, 0]. Then A and B are nonempty closed subsets of
X, and d(A, B) = 1. Let F : X × X −→ B(X) be defined as

F(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

{1} × [– a–b
4 , 0] if x = (0, a) ∈ A and y = (1, b) ∈ B,

{0} × [0, – b–a
4 ] if x = (1, b) ∈ B and y = (0, a) ∈ A,

{2, 2} otherwise.

Let x, v ∈ A and y, u ∈ B. Then x = (0, a1), v = (0, a2), y = (1, b1), and u = (1, b2) for some
a1, a2 ≥ 0 and b1, b2 ≤ 0. Then

δ
(
F(x, y), F(u, v)

)

= 1 +
∣∣∣∣–

b2 – a2

4
+

a1 – b1

4

∣∣∣∣ = 1 +
(a1 + a2) – (b1 + b2)

4
,

k
2
[
d(x, u) + d(y, v)

]
+ (1 – k)d(A, B)

=
k
2
[
1 + (a1 – b2) + 1 + (a2 – b1)

]
+ (1 – k)

= 1 + k
(a1 + a2) – (b1 + b2)

2
.

Since (a1 + a2) ≥ 0, (b1 + b2) ≤ 0, it follows that inequality (3.1) holds for all 1
2 ≤ k < 1.

For any x0 = (0, a) ∈ A and y0 = (1, b) ∈ B, consider xn = (0, a–b
4n ) and yn = (1, – a–b

4n ). Then
the sequences {xn} and {yn} satisfy (1) and (2) of Theorem 3.1. Then, applying Theorem 3.1,
we conclude that ((0, 0), (1, 0)) is a coupled best proximity point of F .

4 Application to uniformly convex Banach spaces
In this section, we discuss the implications of our result in the previous section in uni-
formly convex Banach spaces for the case of single-valued couplings.

Theorem 4.1 Let A and B be two nonempty closed subsets of a Banach space X. Let F : X ×
X −→ X be a coupling with respect to A and B satisfying the following inequality:

∥∥F(x, y) – F(u, v)
∥∥ ≤ k

2
[‖x – u‖ + ‖y – v‖] + (1 – k)d(A, B), (4.1)

where x, v ∈ A, y, u ∈ B, and k ∈ (0, 1).
(1) Then, for arbitrary (x0, y0) ∈ A × B, the sequences {xn} and {yn} respectively in A and

B constructed as

xn+1 = F(yn, xn) and yn+1 = F(xn, yn) for all n ≥ 0 (4.2)

satisfy

lim
n−→∞‖xn – yn+1‖ = d(A, B) and lim

n−→∞‖yn – xn+1‖ = d(A, B).
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(2) Further, if {xn} and {yn} are Cauchy sequences, then F has a coupled best proximity
point.

Proof We know that, for every x ∈ X, {x} ∈ B(X). We define the mapping T : X × X −→
B(X) as T(x, y) = {F(x, y)} for x, y ∈ X. Then all the conditions of the theorem reduce to the
conditions of Theorem 3.1, and hence by Theorem 3.1, we have the results in (1) and (2)
of the theorem. �

Remark 4.1 It is a natural question to ask for circumstances under which both the se-
quences {xn} and {yn} converge so that Theorem 4.1 is applicable. An answer is given fur-
ther by showing, by an application of Lemma 2.2, that this is the case if the coupling is
between two closed and convex subsets of a uniformly convex Banach space. In general,
Lemma 2.2 is not satisfied in a metric space. If the result of the lemma is valid with re-
spect to subsets A and B in a metric space, then (A, B) is said to satisfy the UC-property
with respect to the pair (A, B). The UC-property was introduce by Suzuki et al. [31]. We
do not use this property in metric spaces; the lemma is rather used for an application in
uniformly convex Banach spaces. So we omit any further reference of the UC-property.

Lemma 4.1 Let F : X × X −→ X, where X is a normed linear space, be a coupling with re-
spect to two subsets A and B of X. Suppose that F satisfies (4.1). Then, for arbitrary (x0, y0) ∈
A×B, the sequences {xn} and {yn} constructed as in (4.2) satisfy lim

n−→∞‖xn – yn‖ −→ d(A, B).

Proof It is clear from (4.2) that {xn} and {yn} are sequences in A and B, respectively. Using
(4.1) and (4.2), for n ≥ 1, we have

‖xn – yn‖ =
∥∥F(yn–1, xn–1) – F(xn–1, yn–1)

∥∥

=
∥∥F(xn–1, yn–1)) – F(yn–1, xn–1)

∥∥

≤ k
2
[‖yn–1 – xn–1‖ + ‖xn–1 – yn–1‖

]
+ (1 – k)d(A, B)

= k‖xn–1 – yn–1‖ + (1 – k)d(A, B). (4.3)

By repeated application of (4.3) we get

‖xn – yn‖ ≤ k‖xn–1 – yn–1‖ + (1 – k)d(A, B)

≤ k
[
k‖xn–2 – yn–2‖ + (1 – k)d(A, B)

]
+ (1 – k)d(A, B)

= k2‖xn–2 – yn–2‖ +
(
1 – k2)d(A, B)

≤ k2[k‖xn–3 – yn–3‖ + (1 – k)d(A, B)
]

+
(
1 – k2)d(A, B)

= k3‖xn–3 – yn–3‖ +
(
1 – k3)d(A, B)

· · ·
= kn‖x0 – y0‖ +

(
1 – kn)d(A, B). (4.4)

Since {xn} and {yn} are sequences in A and B, respectively, we have

d(A, B) ≤ ‖xn – yn‖ for all n ≥ 1. (4.5)
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It follows from (4.4) and (4.5) that

d(A, B) ≤ ‖xn – yn‖ ≤ kn‖x0 – y0‖ +
(
1 – kn)d(A, B).

Since k ∈ (0, 1), taking the limit as n −→ ∞ in this inequality, we obtain lim
n−→∞‖xn – yn‖ =

d(A, B). �

Remark 4.2 Lemma 4.1 is also generally valid in metric spaces. It is not necessary to as-
sume X to be a normed linear space. We use this result only in the theorem for uniformly
convex Banach spaces. For this reason, in particular, we assume that X is a normed linear
space.

Theorem 4.2 Let A and B be two nonempty closed and convex subsets of a uniformly con-
vex Banach space, and let F : X × X −→ X be a coupling with respect to A and B. Suppose
that F satisfies (4.1). Then F has a coupled best proximity point.

Proof Let x0 ∈ A and y0 ∈ B. We construct two sequences {xn} and {yn} respectively in A
and B that satisfy (4.2), that is,

xn+1 = F(yn, xn) and yn+1 = F(xn, yn) for all n ≥ 0.

By Theorem 4.1 we have

lim
n−→∞‖xn – yn+1‖ = d(A, B) and lim

n−→∞‖yn+1 – xn+2‖ = ‖xn+2 – yn+1‖ = d(A, B).

By Lemma 2.2 we have

lim
n−→∞‖xn – xn+2‖ = 0. (4.6)

Again, by Theorem 4.1 we have

lim
n−→∞‖yn – xn+1‖ = d(A, B) and lim

n−→∞‖xn+1 – yn+2‖ = ‖yn+2 – xn+1‖ = d(A, B).

By Lemma 2.2 we have

lim
n−→∞‖yn – yn+2‖ = 0. (4.7)

Next, we prove that {x2n}, {y2n}, {x2n+1}, and {y2n+1} are Cauchy sequences. We further
consider the case of the sequences {x2n} and {y2n}. From (4.6) and (4.7) we have that

lim
n−→∞‖x2n – x2n+2‖ = lim

n−→∞‖y2n – y2n+2‖ = 0. (4.8)

We first establish that, given ε > 0, we can find a positive integer N such that, for all
m, n > N ,

max
{‖x2m – y2n‖,‖y2m – x2n‖

} ≤ d(A, B) + ε. (4.9)
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In view of Lemma 4.1, we can find a positive integer p0 such that, for all n ≥ p0,

‖x2n – y2n‖ < d(A, B) + ε.

If (4.9) is not valid, then for some ε > 0, in view of this inequality, for all p ≥ p0, there exist
n(p) > m(p) > p for which

max
{‖x2m(p) – y2n(p)‖,‖y2m(p) – x2n(p)‖

} ≥ d(A, B) + ε

and

max
{‖x2m(p) – y2n(p)–2‖,‖y2m(p) – x2n(p)–2‖

}
< d(A, B) + ε.

Then

d(A, B) + ε ≤ max
{‖x2m(p) – y2n(p)‖,‖y2m(p) – x2n(p)‖

}

≤ max
{‖x2m(p) – y2n(p)–2‖ + ‖y2n(p)–2 – y2n(p)‖,

‖y2m(p) – x2n(p)–2‖ + ‖x2n(p)–2 – x2n(p)‖
}

< d(A, B) + ε + max
{‖y2n(p)–2 – y2n(p)‖,‖x2n(p)–2 – x2n(p)‖

}
.

Taking the limit as p −→ ∞ and using (4.8), we obtain

lim
p−→∞ max

{‖x2m(p) – y2n(p)‖,‖y2m(p) – x2n(p)‖
}

= d(A, B) + ε. (4.10)

Again, for all p ≥ p0,

max
{‖x2m(p)+2 – y2n(p)+2‖,‖y2m(p)+2 – x2n(p)+2‖

}

≤ max
{‖x2m(p)+2 – x2m(p)‖ + ‖x2m(p) – y2n(p)‖ + ‖y2n(p) – y2n(p)+2‖,

‖y2m(p)+2 – y2m(p)‖ + ‖y2m(p) – x2n(p)‖ + ‖x2n(p) – x2n(p)+2‖
}

≤ max
{‖x2m(p) – y2n(p)‖,‖x2n(p) – y2m(p)‖

}

+ max
{‖x2m(p)+2 – x2m(p)‖ + ‖y2n(p) – y2n(p)+2‖,

‖y2m(p)+2 – y2m(p)‖ + ‖x2n(p) – x2n(p)+2‖
}

and

max
{‖x2m(p) – y2n(p)‖,‖x2n(p) – y2m(p)‖

}

≤ max
{‖x2m(p) – x2m(p)+2‖ + ‖x2m(p)+2 – y2n(p)+2‖ + ‖y2n(p)+2 – y2n(p)‖,

‖x2n(p) – x2n(p)+2‖ + ‖x2n(p)+2 – y2m(p)+2‖ + ‖y2m(p)+2 – y2m(p)‖
}

≤ max
{‖x2m(p)+2 – y2n(p)+2‖,‖x2n(p)+2 – y2m(p)+2‖

}

+ max
{‖x2m(p) – x2m(p)+2‖ + ‖y2n(p)+2 – y2n(p)‖,

‖x2n(p) – x2n(p)+2‖ + ‖y2m(p)+2 – y2m(p)‖
}

.
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Taking the limit as p −→ ∞ in the last two inequalities and using (4.8) and (4.10), we
conclude that

lim
p−→∞ max

{‖x2m(p)+2 – y2n(p)+2‖,‖y2m(p)+2 – x2n(p)+2‖
}

= d(A, B) + ε. (4.11)

Again,

max
{‖x2m(p)+2 – y2n(p)+2‖,‖y2m(p)+2 – x2n(p)+2‖

}

= max
{∥∥F(y2m(p)+1, x2m(p)+1) – F(x2n(p)+1, y2n(p)+1)

∥∥,
∥∥F(x2m(p)+1, y2m(p)+1) – F(y2n(p)+1, x2n(p)+1)

∥∥}

≤ max

{
k
2
(‖y2m(p)+1 – x2n(p)+1‖ + ‖x2m(p)+1 – y2n(p)+1‖

)
+ (1 – k)d(A, B),

k
2
(‖x2m(p)+1 – y2n(p)+1‖ + ‖y2m(p)+1 – x2n(p)+1‖

)
+ (1 – k)d(A, B)

}

=
k
2
(‖y2m(p)+1 – x2n(p)+1‖ + ‖x2m(p)+1 – y2n(p)+1‖

)
+ (1 – k)d(A, B)

=
k
2
(∥∥F(x2m(p), y2m(p)) – F(y2n(p), x2n(p))

∥∥

+
∥∥F(y2m(p), x2m(p)) – F(x2n(p), y2n(p))

∥∥)
+ (1 – k)d(A, B)

=
k
2

[
k
2
(‖x2m(p) – y2n(p)‖ + ‖y2m(p) – x2n(p)‖

)
+ (1 – k)d(A, B)

+
k
2
(‖y2m(p) – x2n(p)‖ + ‖x2m(p) – y2n(p)‖

)
+ (1 – k)d(A, B)

]
+ (1 – k)d(A, B)

=
k
2
[
k
(‖x2m(p) – y2n(p)‖ + ‖y2m(p) – x2n(p)‖

)
+ 2(1 – k)d(A, B)

]
+ (1 – k)d(A, B)

=
k2

2
(‖x2m(p) – y2n(p)‖ + ‖y2m(p) – x2n(p)‖

)
+ (1 – k)kd(A, B) + (1 – k)d(A, B)

=
k2

2
max

{‖x2m(p) – y2n(p)‖,‖y2m(p) – x2n(p)‖
}

+
(
1 – k2)d(A, B).

Taking the limit as p −→ ∞ in this inequality, we have

d(A, B) + ε ≤ k2

2
[
d(A, B) + ε

]
+

(
1 – k2)d(A, B)

≤
(

1 –
k2

2

)
d(A, B) +

εk2

2

≤ d(A, B) + εk2.

Since 0 < k < 1, it is a contradiction. Therefore, (4.9) holds. Combining this fact with
Lemma 4.1, by Lemma 2.1 we conclude that {x2n} and {y2n} are a Cauchy sequences in
A and B, respectively. The sets A and B being closed, there exist x ∈ A and y ∈ B such that

x2n −→ x and y2n −→ y as n −→ ∞. (4.12)
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Proceeding exactly as in the previous case, we have that there exist x ∈ A and y ∈ B for
which

x2n+1 −→ x and y2n+1 −→ y as n −→ ∞. (4.13)

Then using Lemma 4.1, (4.12), and (4.13), we conclude that

‖x – y‖ = ‖x – y‖ = d(A, B). (4.14)

Again, using Theorem 4.1(1) with (4.12) and (4.13), we conclude that

‖x – y‖ = ‖y – x‖ = d(A, B). (4.15)

Using Lemma 2.2 with (4.14) and (4.15), we conclude that

x = x and y = y.

From (4.12) and (4.13) it follows that

xn −→ x ∈ A and yn −→ y ∈ B as n −→ ∞.

Applying Theorem 4.1, we can prove that d(A, B) = ‖x – F(x, y)‖ = ‖y – F(y, x)‖, that is,
(x, y) is a coupled best proximity of F . �

Example 4.1 Let us consider X = R and ‖x‖ = |x| for x ∈ R. If A = (–∞, –1] and B =
[1, –∞), then A and B are closed convex subsets of X. Let F : X × X → X be defined as

F(x, y) =

⎧
⎨

⎩
– x–y

2 if x ∈ A and y ∈ B,
y–x

2 if x ∈ B and y ∈ A.

Then inequality (4.1) is satisfied. Here, X being a uniformly convex Banach space, we can
apply Theorem 4.2 to conclude that there is a coupled proximity point of F .

5 Conclusion
In Sect. 4, we have shown that the coupling has a coupled best proximity point in uniformly
convex Banach spaces automatically by the properties of the space. Particularly, the result
is valid in Hilbert spaces. It remains to be investigated under what other conditions the
coupled best proximity points exist for such couplings. Also, a feature of the present work
is that the results are obtained without any continuity assumption on the coupling.

Regarding error estimates, the first such results were obtained for cyclic contraction
map in [33] and for coupled best proximity points for cyclic contractive mappings in [21].
It may also be possible to obtain error estimates for coupled best proximity points of cou-
pling through the iterated sequence (4.2) in Theorem 4.1 by following the ideas of [21, 33].
Such problems of error estimation arising out of the considerations of couplings as in the
present case can be taken up in future works as open problems.
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