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1 Preliminaries
Let a, b > 0 with a �= b. Then the arithmetic mean A(a, b) [1–4], the quadratic mean Q(a, b)
[5], the contra-harmonic mean C(a, b) [6–9], the Neuman–Sándor mean NS(a, b) [10–12],
the second Seiffert mean T(a, b) [13, 14], and the Schwab–Borchardt mean SB(a, b) [15,
16] of a and b are defined by

A(a, b) =
a + b

2
, Q(a, b) =

√
a2 + b2

2
, C(a, b) =

a2 + b2

a + b
, (1.1)

NS(a, b) =
a – b

2 sinh–1( a–b
a+b )

, (1.2)

T(a, b) =
a – b

2 arctan( a–b
a+b )

, (1.3)

SB(a, b) =

⎧⎨
⎩

√
b2–a2

arccos(a/b) , a < b,
√

a2–b2

cosh–1(a/b) , a > b,

respectively, where sinh–1(x) = log(x +
√

x2 + 1) and cosh–1(x) = log(x +
√

x2 – 1) are re-
spectively the inverse hyperbolic sine and cosine functions. The Schwab–Borchardt mean
SB(a, b) is strictly increasing, non-symmetric and homogeneous of degree one with re-
spect to its variables. It can be expressed by the degenerated completely symmetric elliptic
integral of the first kind [17]. Recently, the Schwab–Borchardt mean has attracted the at-
tention of many researchers. In particular, many remarkable inequalities for the Schwab–
Borchardt mean and its generated means can be found in the literature [18–38].
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Let X(a, b) and Y (a, b) denote symmetric bivariate means of a and b. Then Yang [39]
introduced the Sándor–Yang mean

RXY (a, b) = Y (a, b)e
X(a,b)

SB[X(a,b),Y (a,b)] –1

and presented the explicit formulas for RQA(a, b) and RAQ(a, b) as follows:

RQA(a, b) = A(a, b)e
Q(a,b)

NS(a,b) –1, (1.4)

RAQ(a, b) = Q(a, b)e
A(a,b)
T(a,b) –1. (1.5)

Very recently, the bounds involving the Sándor–Yang means have been the subject of in-
tensive research. Numerous interesting results and inequalities for RQA(a, b) and RAQ(a, b)
can be found in the literature [40–42].

Neuman [43] established the inequality

RAQ(a, b) < RQA(a, b) (1.6)

for a, b > 0 with a �= b.
In [44], Xu proved that the double inequalities

α1C(a, b) + (1 – α1)A(a, b) < RQA(a, b) < β1C(a, b) + (1 – β1)A(a, b),

α2C(a, b) + (1 – α2)A(a, b) < RAQ(a, b) < β2C(a, b) + (1 – β2)A(a, b)
(1.7)

hold for all a, b > 0 with a �= b if and only if α1 ≤ (1 +
√

2)
√

2/e – 1 = 0.2794 . . . , β1 ≥ 1/3,
α2 ≤ √

2eπ/4–1 – 1 = 0.1410 . . . and β2 ≥ 1/6.
From (1.6) and (1.7), together the well-known inequalities

C(a, b) > Q(a, b) > A(a, b), Q(a, b) >
1
3

C(a, b) +
2
3

A(a, b),

we clearly see that

A(a, b) < RAQ(a, b) < RQA(a, b) < Q(a, b) < C(a, b) (1.8)

for all a, b > 0 with a �= b.
The main purpose of this paper is to find the best possible parameters αi,βi ∈ (0, 1)

(i = 1, 2, 3, 4) such that the double inequalities

Cα1 (a, b)A1–α1 (a, b) < RQA(a, b) < Cβ1 (a, b)A1–β1 (a, b),

Cα2 (a, b)A1–α2 (a, b) < RAQ(a, b) < Cβ2 (a, b)A1–β2 (a, b),

α3

[
1
3

C(a, b) +
2
3

A(a, b)
]

+ (1 – α3)C1/3(a, b)A2/3(a, b)

< RQA(a, b) < β3

[
1
3

C(a, b) +
2
3

A(a, b)
]

+ (1 – β3)C1/3(a, b)A2/3(a, b),
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α4

[
1
6

C(a, b) +
5
6

A(a, b)
]

+ (1 – α4)C1/6(a, b)A5/6(a, b)

< RAQ(a, b) < β4

[
1
6

C(a, b) +
5
6

A(a, b)
]

+ (1 – β4)C1/6(a, b)A5/6(a, b)

hold for all a, b > 0 with a �= b.

2 Lemmas
In order to prove our main results, we need several lemmas, which we present in this
section.

Lemma 2.1 (see [45]) Let a, b ∈ R with a < b, f , g : [a, b] �→ R be continuous on [a, b] and
differentiable on (a, b), and g ′(x) �= 0 on (a, b). If f ′(x)/g ′(x) is increasing (decreasing) on
(a, b), then so are the functions

f (x) – f (a)
g(x) – g(a)

,
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2 (see [46]) Let A(t) =
∑∞

k=0 aktk and B(t) =
∑∞

k=0 bktk be two real power series
converging on (–r, r) (r > 0) with bk > 0 for all k. If the non-constant sequence {ak/bk}∞k=0
is increasing (decreasing) for all k, then the function t �→ A(t)/B(t) is strictly increasing
(decreasing) on (0, r).

Lemma 2.3 The function

φ(x) =
x coth(x) – 1

2 log[cosh(x)]

is strictly increasing from (0, log(1 +
√

2) onto (1/3, [
√

2 log(1 +
√

2) – 1]/ log 2).

Proof Let φ1(x) = x coth(x) – 1, φ2(x) = 2 log[cosh(x)]. Then elaborate computations lead
to

φ(x) =
φ1(x)
φ2(x)

=
φ1(x) – φ1(0+)
φ2(x) – φ2(0)

, (2.1)

φ′
1(x)

φ′
2(x)

=
sinh(x)cosh2(x) – x cosh(x)

2sinh3(x)

=
sinh(3x) + sinh(x) – 4x cosh(x)

2 sinh(3x) – 6 sinh(x)
=

∑∞
n=0

32n+1–8n–3
(2n+1)! x2n+1

∑∞
n=0

6(32n–1)
(2n+1)! x2n+1

=
∑∞

n=1
32n+1–8n–3

(2n+1)! x2n+1

∑∞
n=1

6(32n–1)
(2n+1)! x2n+1

=
∑∞

n=0
32n+3–8n–11

(2n+3)! x2n+3

∑∞
n=0

6(32n+2–1)
(2n+3)! x2n+3

. (2.2)

Let

an =
32n+3 – 8n – 11

(2n + 3)!
, bn =

6(32n+2 – 1)
(2n + 3)!

. (2.3)
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Then

bn > 0 (2.4)

and

an+1

bn+1
–

an

bn
=

4[(72n + 63)32n + 1]
3(32n+4 – 1)(32n+2 – 1)

> 0 (2.5)

for all n ≥ 0.
It follows from Lemma 2.2 and (2.2)–(2.5) that φ′

1(x)/φ′
2(x) is strictly increasing on

(0, log(1 +
√

2)).
Note that

φ
(
0+)

=
a0

b0
=

1
3

, φ
(
log(1 +

√
2)

)
=

√
2 log(1 +

√
2) – 1

log 2
= 0.3555 . . . . (2.6)

Therefore, Lemma 2.3 follows from Lemma 2.1, (2.1), and (2.6) together with the mono-
tonicity of φ′

1(x)/φ′
2(x). �

Lemma 2.4 The function

ϕ(x) =
log sec(x) + x cot(x) – 1

2 log sec(x)

is strictly increasing from (0,π/4) onto (1/6, 1/2 – (4 – π )(4 log 2)).

Proof Let ϕ1(x) = log sec(x) + x cot(x) – 1, ϕ2(x) = 2 log[sec(x)], ϕ3(x) = sin(x) – x cos(x), and
ϕ4(x) = 2sin3(x). Then elaborate computations lead to

ϕ(x) =
ϕ1(x)
ϕ2(x)

=
ϕ1(x) – ϕ1(0+)
ϕ2(x) – ϕ2(0)

, (2.7)

ϕ′
1(x)

ϕ′
2(x)

=
ϕ3(x)
ϕ4(x)

=
ϕ3(x) – ϕ3(0)
ϕ4(x) – ϕ4(0)

(2.8)

and

ϕ′
3(x)

ϕ′
4(x)

=
x

3 sin(2x)
=

1
6

× 1
sin(2x)/(2x)

. (2.9)

It is well known that the function x → sin(x)/x is strictly decreasing on (0,π/2), hence
equation (2.9) leads to the conclusion that the function ϕ′

3(x)/ϕ′
4(x) is strictly increasing

on (0,π/4).
Note that

ϕ
(
0+)

= lim
x→0+

ϕ′
3(x)

ϕ′
4(x)

=
1
6

,

ϕ

(
π

4

)
=

1
2

–
4 – π

4 log 2
= 0.1903 . . . .

(2.10)
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Therefore, Lemma 2.4 follows from Lemma 2.1 and (2.7)–(2.9) together with the mono-
tonicity of ϕ′

3(x)/ϕ′
4(x). �

Lemma 2.5 Let p ∈ (0, 1) and

f (x) = 3p2x10 + 14p(1 – p)x6 + 18p2x4 – 9(1 – p)2x2 – 2p(1 – p).

Then the following statements are true:
(1) If p = 3/10, then f (x) > 0 for all x ∈ (1, 6√2);
(2) If p = 3[(1 +

√
2)

√
2/e – 3√2]/(4 – 3 3√2) = 0.2663 . . . , then there exists

λ0(= 1.0808 . . . ) ∈ (1, 6√2) such that f (x) < 0 for x ∈ (1,λ0) and f (x) > 0 for
x ∈ (λ0, 6√2).

Proof Part (1) follows easily from

f (x) =
3

100
(
x2 – 1

)(
9x8 + 9x6 + 107x4 + 161x2 + 14

)
> 0

for all x ∈ (1, 6√2) if p = 3/10.
For part (2), if p = 3[(1 +

√
2)

√
2/e – 3√2]/(4 – 3 3√2), then numerical computations lead

to

20p – 3 = 2.3273 · · · > 0, (2.11)

f (1) = 3(10p – 3) = –1.008 · · · < 0, (2.12)

f
( 6√2

)
= 1.6809 · · · > 0, (2.13)

f ′(x) = 30p2x9 + 84p(1 – p)x5 + 72p2x3 – 18(1 – p)2x. (2.14)

It follows from (2.11) and (2.14) that

f ′(x) >
[
30p2 + 84p(1 – p) + 72p2 – 18(1 – p)2]x = 6(20p – 3)x > 0 (2.15)

for all x ∈ (1, 6√2).
Therefore, part (2) follows easily from (2.12), (2.13), (2.15), and the numerical results

f (1.0808) < 0 and f (1.0809) > 0. �

Lemma 2.6 Let p ∈ (0, 1) and

g(x) = 3p2x11 + 56p(1 – p)x6 + 75p2x5 – 72(1 – p)2x – 50p(1 – p).

Then the following statements are true:
(1) If p = 12/25, then g(x) > 0 for all x ∈ (1, 6√2);
(2) If p = 6[

√
2eπ/4–1 – 6√2]/(7 – 6 6√2) = 0.4210 . . . , then there exists

μ0(= 1.0577 . . . ) ∈ (1, 6√2) such that g(x) < 0 for x ∈ (1,μ0) and g(x) > 0 for
x ∈ (μ0, 6√2).



Xu et al. Journal of Inequalities and Applications  (2018) 2018:127 Page 6 of 13

Proof Part (1) follows easily from

g(x) =
24

625
(x – 1)

(
18x10 + 18x9 + 18x8 + 18x7 + 18x6 + 382x5 + 832x4

+ 832x3 + 832x2 + 832x + 325
)

> 0

for all x ∈ (1, 6√2) if p = 12/25.
For part (2), if p = 6[

√
2eπ/4–1 – 6√2]/(7–6 6√2) = 0.4210 . . . , then numerical computations

lead to

20p – 3 = 5.4217 · · · > 0, (2.16)

g(1) = 6(25p – 12) = –8.8367 · · · < 0, (2.17)

g
( 6√2

)
= 13.6200 · · · > 0, (2.18)

g ′(x) = 3
[
11p2x10 + 112p(1 – p)x5 + 125p2x4 – 24(1 – p)2]. (2.19)

It follows from (2.16) and (2.19) that

g ′(x) > 11p2 + 112p(1 – p) + 125p2 – 24(1 – p)2

= 24(20p – 3) > 0 (2.20)

for x ∈ (1, 6√2).
Therefore, part (2) follows easily from (2.17), (2.18), and (2.20) together with the numer-

ical results g(1.0577) < 0 and g(1.0578) > 0. �

3 Main results
We are now in a position to state and prove our main results.

Theorem 3.1 The double inequality

Cα1 (a, b)A1–α1 (a, b) < RQA(a, b) < Cβ1 (a, b)A1–β1 (a, b) (3.1)

holds for all a, b > 0 with a �= b if and only if α1 ≤ 1/3 and β1 ≥ [
√

2 log(1 +
√

2) – 1]/ log 2.

Proof Clearly, inequality (3.1) can be rewritten as

[
C(a, b)
A(a, b)

]α1

<
RQA(a, b)

A(a, b)
<

[
C(a, b)
A(a, b)

]β1

. (3.2)

Since A(a, b), RQA(a, b), and C(a, b) are symmetric and homogenous of degree one, we
assume that a > b > 0. Let v = (a – b)/(a + b) ∈ (0, 1). Then from (1.1), (1.2), and (1.4) we
know that inequality (3.2) is equivalent to

α1 <
[
√

1 + v2 sinh–1(v)]/v – 1
log(1 + v2)

< β1. (3.3)
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Let x = sinh–1(v). Then x ∈ (0, log(1 +
√

2)) and

[
√

1 + v2 sinh–1(v)]/v – 1
log(1 + v2)

=
x coth(x) – 1

2 log[cosh(x)]
:= φ(x). (3.4)

Therefore, inequality (3.1) holds for all a, b > 0 with a �= b if and only if α1 ≤ 1/3 and
β1 ≥ [

√
2 log(1 +

√
2) – 1]/ log 2 follows from (3.2)–(3.4) and Lemma 2.3. �

Theorem 3.2 The double inequality

Cα2 (a, b)A1–α2 (a, b) < RAQ(a, b) < Cβ2 (a, b)A1–β2 (a, b) (3.5)

holds for all a, b > 0 with a �= b if and only if α2 ≤ 1/6 and β2 ≥ 1/2 – (4 – π )/(4 log 2) =
0.1903 . . . .

Proof Clearly, inequality (3.5) can be rewritten as

[
C(a, b)
A(a, b)

]α2

<
RAQ(a, b)

A(a, b)
<

[
C(a, b)
A(a, b)

]β2

. (3.6)

Since A(a, b), RAQ(a, b), and C(a, b) are symmetric and homogenous of degree one, we
assume that a > b > 0. Let v = (a – b)/(a + b) ∈ (0, 1). Then from (1.1), (1.3), and (1.5) we
see that inequality (3.6) is equivalent to

α2 <
log

√
1 + v2 + [arctan(v)]/v – 1

log(1 + v2)
< β2. (3.7)

Let x = arctan(v). Then x ∈ (0,π/4) and

log
√

1 + v2 + [arctan(v)]/v – 1
log(1 + v2)

=
log sec(x) + x cot(x) – 1

2 log sec(x)
:= ϕ(x). (3.8)

Therefore, inequality (3.5) holds for all a, b > 0 with a �= b if and only if α2 ≤ 1/6 and
β2 ≥ 1/2 – (4 – π )/(4 log 2) = 0.1903 . . . follows from (3.6)–(3.8) and Lemma 2.4. �

Theorem 3.3 The double inequality

α3

[
1
3

C(a, b) +
2
3

A(a, b)
]

+ (1 – α3)C1/3(a, b)A2/3(a, b)

< RQA(a, b) < β3

[
1
3

C(a, b) +
2
3

A(a, b)
]

+ (1 – β3)C1/3(a, b)A2/3(a, b)

holds for all a, b > 0 with a �= b if and only if α3 ≤ 3[(1 +
√

2)
√

2/e – 3√2]/(4 – 3 3√2) =
0.2663 . . . and β3 ≥ 3/10.
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Proof Since RQA(a, b), A(a, b), and C(a, b) are symmetric and homogenous of degree one,
without loss generality, we assume that a > b > 0. Let v = (a – b)/(a + b), x = 6√1 + v2, and
p ∈ (0, 1). Then v ∈ (0, 1), x ∈ (1, 6√2), and (1.1), (1.2), and (1.4) lead to

log
RQA(a, b)

p[ 1
3 C(a, b) + 2

3 A(a, b)] + (1 – p)C1/3(a, b)A2/3(a, b)

=
√

1 + v2 sinh–1(v)
v

– log

[
p
(

1
3

v2 + 1
)

+ (1 – p) 3√1 + v2
]

– 1

=
x3 sinh–1(

√
x6 – 1)√

x6 – 1
– log

[
p
(

1
3

x6 +
2
3

)
+ (1 – p)x2

]
– 1. (3.9)

Let

F(x) =
x3 sinh–1(

√
x6 – 1)√

x6 – 1
– log

[
p
(

1
3

x6 +
2
3

)
+ (1 – p)x2

]
– 1. (3.10)

Then simple computations lead to

F
(
1+)

= 0, F
( 6√2

)
=

√
2 log(1 +

√
2) – log

[
4
3

p + 3√2(1 – p)
]

– 1, (3.11)

F ′(x) =
3x2

(x6 – 1)3/2 F1(x), (3.12)

where

F1(x) =
√

x6 – 1[–px10 + (1 – p)x6 + 4px4 + 2(1 – p)]
x[p(x6 + 2) + 3(1 – p)x2]

– sinh–1(√x6 – 1
)
,

F1(1) = 0, F1
( 6√2

)
=

( 6√2048 – 2
√

2)p – 6√2048
3 3√2p – 3 3√2 – 4p

– log(1 +
√

2), (3.13)

F ′
1(x) = –

2(x6 – 1)3/2

x2[p(x6 + 2) + 3(1 – p)x2]2 f (x), (3.14)

where f (x) is defined as in Lemma 2.5.
We divide the proof into four cases.
Case 1 p = 3/10. Then it follows from (3.9)–(3.14) and Lemma 2.5(1) that

RQA(a, b) <
3

10

[
1
3

C(a, b) +
2
3

A(a, b)
]

+
7

10
C1/3(a, b)A2/3(a, b).

Case 2 0 < p < 3/10. Let v > 0 and v → 0+. Then power series expansion leads to

√
1 + v2 sinh–1(v)

v
– log

[
p
(

1
3

v2 + 1
)

+ (1 – p) 3√1 + v2
]

– 1

=
(

1
30

–
1
9

p
)

v4 + O
(
v6). (3.15)
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Equations (3.9), (3.10), and (3.15) lead to the conclusion that there exists 0 < δ1 < 1 such
that

RQA(a, b) > p
[

1
3

C(a, b) +
2
3

A(a, b)
]

+ (1 – p)C1/3(a, b)A2/3(a, b)

for all a > b > 0 with (a – b)/(a + b) ∈ (0, δ1).
Case 3 p = 3[(1 +

√
2)

√
2/e – 3√2]/(4 – 3 3√2). Then (3.13) leads to

F1
( 6√2

)
= –0.0039 · · · < 0. (3.16)

Let λ0 = 1.0808 . . . be the number given in Lemma 2.5(2). Then we divide the discussion
into two subcases.

Subcase 1 x ∈ (1,λ0]. Then F1(x) > 0 for x ∈ (1,λ0] follows easily from (3.13) and (3.14)
together with Lemma 2.5(2).

Subcase 2 x ∈ (λ0, 6√2). Then Lemma 2.5(2) and (3.14) lead to the conclusion that F1(x) is
strictly decreasing on the interval [λ0, 6√2). Then, from (3.16) and Subcase 1, we know that
there exists λ1 ∈ (λ0, 6√2) such that F1(x) > 0 for x ∈ [λ0,λ1) and F1(x) < 0 for x ∈ (λ1, 6√2).

It follows from Subcases 1 and 2 together with (3.12) that F(x) is strictly increasing on
(1,λ1] and strictly decreasing on [λ1, 6√2). Therefore,

RQA(a, b) > p
[

1
3

C(a, b) +
2
3

A(a, b)
]

+ (1 – p)C1/3(a, b)A2/3(a, b)

follows from (3.9)–(3.11) and (3.16) together with the piecewise monotonicity of F(x).
Case 4 3[(1 +

√
2)

√
2/e – 3√2]/(4 – 3 3√2) < p < 1. Then (3.11) leads to

F
( 6√2

)
=

√
2 log(1 +

√
2) – log

[
4
3

p + 3√2(1 – p)
]

– 1 < 0. (3.17)

Equations (3.9) and (3.10) together with inequality (3.17) imply that there exists 0 < δ∗
1 <

1 such that

RQA(a, b) < p
[

1
3

C(a, b) +
2
3

A(a, b)
]

+ (1 – p)C1/3(a, b)A2/3(a, b)

for all a > b > 0 with (a – b)/(a + b) ∈ (1 – δ∗
1 , 1). �

Theorem 3.4 The double inequality

α4

[
1
6

C(a, b) +
5
6

A(a, b)
]

+ (1 – α4)C1/6(a, b)A5/6(a, b)

< RAQ(a, b) < β4

[
1
6

C(a, b) +
5
6

A(a, b)
]

+ (1 – β4)C1/6(a, b)A5/6(a, b)

holds for all a, b > 0 with a �= b if and only if α4 ≤ 6[
√

2e(π/4–1) – 6√2]/(7 – 6 6√2) = 0.4210 . . .
and β4 ≥ 12/25.
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Proof Since RAQ(a, b), A(a, b), and C(a, b) are symmetric and homogenous of degree one,
without loss generality, we assume that a > b > 0. Let v = (a – b)/(a + b), x = 6√1 + v2, and
p ∈ (0, 1). Then v ∈ (0, 1), x ∈ (1, 6√2) and (1.1), (1.3), and (1.5) lead to

log
RAQ(a, b)

p[ 1
6 C(a, b) + 5

6 A(a, b)] + (1 – p)C1/6(a, b)A5/6(a, b)

= log
√

1 + v2 +
arctan(v)

v
– log

[
p
(

1
6

v2 + 1
)

+ (1 – p) 6√1 + v2
]

– 1

= 3 log(x) +
arctan(

√
x6 – 1)√

x6 – 1
– log

[
p
(

1
6

x6 +
5
6

)
+ (1 – p)x

]
– 1. (3.18)

Let

G(x) = 3 log(x) +
arctan(

√
x6 – 1)√

x6 – 1
– log

[
p
(

1
6

x6 +
5
6

)
+ (1 – p)x

]
– 1. (3.19)

Then simple computations lead to

G
(
1+)

= 0, G
( 6√2

)
= log(

√
2) +

π

4
– log

[
7
6

p + 6√2(1 – p)
]

– 1, (3.20)

G′(x) =
3x5

(x6 – 1)3/2 G1(x), (3.21)

where

G1(x) =
√

x6 – 1[–px11 + 4(1 – p)x6 + 7px5 + 2(1 – p)]
x5[p(x6 + 5) + 6(1 – p)x]

– arctan
(√

x6 – 1
)
,

G1(1) = 0, G1
( 6√2

)
=

5[ 6√2(1 – p) + p]
6 6√2(1 – p) + 7p

–
π

4
, (3.22)

G′
1(x) = –

(x6 – 1)3/2

x6[p(x6 + 5) + 6(1 – p)x]2 g(x), (3.23)

where g(x) is defined as in Lemma 2.6.
We divide the proof into four cases.
Case 1 p = 12/25. Then it follows from (3.18)–(3.23) and Lemma 2.6(1) that

RAQ(a, b) <
12
25

[
1
3

C(a, b) +
2
3

A(a, b)
]

+
13
25

C1/3(a, b)A2/3(a, b).

Case 2 0 < p < 12/25. Let v > 0 and v → 0+, then power series expansion leads to

log
√

1 + v2 +
arctan(v)

v
– log

[
p
(

1
6

v2 + 1
)

+ (1 – p) 6√1 + v2
]

– 1

=
(

1
30

–
5

72
p
)

v4 + O
(
v6). (3.24)
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Equations (3.18), (3.19), and (3.24) lead to the conclusion that there exists 0 < δ2 < 1 such
that

RAQ(a, b) > p
[

1
3

C(a, b) +
2
3

A(a, b)
]

+ (1 – p)C1/3(a, b)A2/3(a, b)

for all a > b > 0 with (a – b)/(a + b) ∈ (0, δ2).
Case 3 p = 6[

√
2e(π/4–1) – 6√2]/(7 – 6 6√2). Then, from (3.20) and (3.22) together with nu-

merical computations, we get

G
( 6√2

)
= 0, G1

( 6√2
)

= –0.0033 · · · < 0. (3.25)

Let μ0 = 1.0577 . . . be the number given in Lemma 2.6(2). Then we divide the discussion
into two subcases.

Subcase 1 x ∈ (1,μ0]. Then G1(x) > 0 for x ∈ (1,μ0] follows easily from (3.22) and (3.23)
together with Lemma 2.6(2).

Subcase 2 x ∈ (μ0, 6√2). Then Lemma 2.6(2) and (3.23) lead to the conclusion that G1(x)
is strictly decreasing on the interval [μ0, 6√2). Then, from (3.25) and Subcase 1, we know
that there exists μ1 ∈ (μ0, 6√2) such that G1(x) > 0 for x ∈ [μ0,μ1) and G1(x) < 0 for x ∈
(μ1, 6√2).

It follows from Subcases 1 and 2 together with (3.21) that G(x) is strictly increasing on
(1,μ1] and strictly decreasing on [μ1, 6√2). Therefore,

RAQ(a, b) > p
[

1
3

C(a, b) +
2
3

A(a, b)
]

+ (1 – p)C1/3(a, b)A2/3(a, b)

follows from (3.18)–(3.20) and (3.25) together with the piecewise monotonicity of G(x).
Case 4 6[

√
2e(π/4–1) – 6√2]/(7 – 6 6√2) < p < 1. Then (3.21) leads to

G
( 6√2

)
= log(

√
2) +

π

4
– log

[
7
6

p + 6√2(1 – p)
]

– 1 < 0. (3.26)

Equations (3.18) and (3.19) together with inequality (3.26) imply that there exists 0 <
δ∗

2 < 1 such that

RAQ(a, b) < p
[

1
3

C(a, b) +
2
3

A(a, b)
]

+ (1 – p)C1/3(a, b)A2/3(a, b)

for all a > b > 0 with (a – b)/(a + b) ∈ (1 – δ∗
2 , 1). �

4 Results and discussion
In this paper, we provide the optimal upper and lower bounds for the Sándor–Yang means
RQA(a, b) and RAQ(a, b) in terms of combinations of the arithmetic mean A(a, b) and the
contra-harmonic mean C(a, b). Our approach may have further applications in the theory
of bivariate means.

5 Conclusion
In the article, we find several best possible bounds for the Sándor–Yang means RQA(a, b)
and RAQ(a, b). These results are improvements and refinements of the previous results.
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