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Abstract
Consider the linear regression model

vi=x/B+e, i=12...n,

where e;=gl..., &1, ;) are general dependence errors. The Bahadur representations
of M-estimators of the parameter f are given, by which asymptotically the theory of
M-estimation in linear regression models is unified. As applications, the normal
distributions and the rates of strong convergence are investigated, while {g;,i € Z} are
m-dependent, and the martingale difference and (g, ¥)-weakly dependent.
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1 Introduction
Consider the following linear regression model:

yi:xiT,B+e,-, i=12,...,n (1.1)

where B = (B1,...,B,)" € R? is an unknown parametric vector, x!" denotes the ith row
of an n X p design matrix X, and {e;} are stationary dependence errors with a common
distribution.

An M-estimate of § is defined as any value of 8 minimizing

Y plyi-x/B) (1.2)
i=1

for a suitable choice of the function p, or any solution for § of the estimating equation
n
D v (i—«lB)xi=0 (1.3)
i=1

for a suitable choice of .
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There is a body of statistical literature dealing with linear regression models with in-
dependent and identically distributed (i.i.d.) random errors, see e.g. Babu [1], Bai et al.
[2], Chen [7], Chen and Zhao [8], He and Shao [24], Gervini and Yohai [23], Huber and
Ronchetti [28], Xiong and Joseph [50], Salibian-Barrera et al. [44]. Recently, linear regres-
sion models with serially correlated errors have attracted increasing attention from statis-
ticians; see, for example, Li [33], Wu [49], Maller [38], Pere [41], Hu [25, 26]. Over the last
40 years, M-estimators in linear regression models have been investigated by many au-
thors. Let {n;} be i.i.d. random variables. Koul [30] discussed the asymptotic behavior of a
class of M-estimators in the model (1.1) with long range dependence errors e; = G(1;). Wu
[49] and Zhou and Shao [52] discussed the model (1.1) with e; = G(..., n;_1, ;) and derived
strong Bahadur representations of M-estimators and a central limit theorem. Zhou and
Wu [53] considered the model (1.1) with e; = Z;fo a;n;—j, and obtained some asymptotic
results including consistency of robust estimates. Fan et al. [20] investigated the model
(1.1) with the errors e; = f(e;_1) + n; and established the moderate deviations and strong
Bahadur representations for M-estimators. Wu [47] discussed strong consistency of an
M-estimator in the model (1.1) for negatively associated samples. Fan [19] considered the
model (1.1) with ¢-mixing errors, and the moderate deviations for the M-estimators. In
addition, Berlinet et al. [4], Boente and Fraiman [5], Chen et al. [6], Cheng et al. [9], Gan-
naz [22], L6 and Ronchetti [37], Valdora and Yohai [45] and Yang [51] have also studied
some asymptotic properties of M-estimators in nonlinear models. However, no people
have investigated a unified the theory of M-estimation in linear regression models with
more general errors.

In this paper, we assume that

ei=g(...,8i1,8), (1.4)

where g(-) is a measurable function such that e; is a proper random variable, and {¢;,i € Z}
(where Z is the set of integers) are very general random variables, including m-dependent,
martingale difference, (¢, y)-weakly dependent, and so on.

We try to investigate the unified the theory of M-estimation in the linear regression
model. In the article, we use the idea of Wu [49] to study the Bahadur representative of
M-estimator, and we extend some results to general errors. The paper is organized as fol-
lows. In Sect. 2, the weak and strong linear representation of an M-estimate of the vector
regression parameter § in the model (1.1) are presented. Section 3 contains some appli-
cations of our results, including the m-dependent, (¢, ¥)-weakly dependent, martingale
difference. In Sect. 4, proofs of the main results are given.

2 Main results
In the section, we investigate the weak and strong linear representation of an M-estimate
of the vector regression parameter 8 in the model (1.1). Without loss of generality, we
assume that the true parameter g = 0. We start with some notation and assumptions.
Foravectorv = (vy,...,v,),let |v] = (Zle viz)% . A random vector V is said tobe in L%, g >
0,if E(|V|9) < oo. Let | V]l4 = E(Iqu)%, VI =Vl 2 = Zf’zlxix? = XTX and assume
that ¥, is positive definite for large enough 7. Let x;, = ¥, %xi, Bu=2, : B. Then the model
(1.1) can be written as

y,»:x;ﬂ,ﬁei, i=12,...,n, (2.1)
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with Y% | %%} = I,, where I, is an identity matrix of order p. Assume that p has deriva-
tive y. For [ > 0 and a function f, write f € C' if f has derivatives up to /th order and f*
is continuous. Define the function

Yi(t; Fi) = E(W (ex + O1F), Y (6 F) = E(¥ (e + £)1F), k=0, (2.2)

where F/ =(...,6_1,€0,€1,-..,€i-1,&), Fi = (..., €_1,80,61,..., €i_1,€;), let €} be an i.i.d. copy
of &;, and e} = g(F}).

Throughout the paper, we use the following assumptions.

(A1) p(-)is a convex function, E¥r(e;) = 0,0 < Eyr%(e;).

(A2) @(£) = Eyr(e; + t) has a strictly positive derivative at ¢ = 0.

(A3) m(t) =E|y(e; +t) — ¥(e)|? is continuous at £ = 0.

(Ad) 1, =maxi<i<y %] = maxlsign(xiTzn_lxi)% =o(1).

(A5) There exists a g > 0 such that

[Viv1(s; Fi) = Vi (& F7)

Li = SUP c Ll. (23)
[s],[£] <8057t |s —£]

(A6) Let ¥;(; Fi_1) € C',1> 0. For some 8o > 0, Max;<i<, SUP,5 <5, 192(8; Fia)l < 00
and

oo

> sup |E(w (6 Fi0)lFo) —E(w” (8: F11)175) | < oo. (24)

i=0 [8]<do

(A7)

oo

> sup |E(wi” (8 Fy) 1 Fo) - E(w (8 Fy )| Faa) | < o0, (2.5)

i=0 |81<d0

o]

> " sup [EyO(e; + 8) - Ey (e} +8)| < o0 (2.6)
i=0 |8]<d0

Remark 1 Conditions (A1)—(A5) and (A6) are imposed in the M-estimation considering
the theory of linear regression models with dependent errors (Wu [49]; Zhou and Shao
(52]). Condition (2.6) is similar to (7) of Wu [49]. [ E(¥"(8; Fi_1)|Fo) - EW (8 Fr I Fo)
measures the difference of the contribution of ¢y and its copy ¢ in predicting v (e; + §).
However, ||E(1//l-(l)(5;]:,-*_1)|]:0) - E(l//l.(l)(cs;]:,-*_l)lf_l)ll measures the contribution of gy in
predicting v (e; + §) under the given copy of &: €.

If {¢;} are i.i.d., then (A6) and (A7) hold. For the other settings, (A6) and (A7) are very
easily satisfied. The following proposition provides some sufficient conditions for (A6)
and (A7).

Proposition 2.1 Let Fi(u|Fo) = P(e; < u|Fo) and f;(u|Fo) be the conditional distribution
and density function of e; at u given F, respectively. Let fi(u) and f(u) be the density
function of e; and €, respectively.
(1) Let fi(-|F)) € CL1= 0, (i) = [ Ifi(wl Fo) —filul F§) I (w3 80) du and
Y (u380) = |9 (u + 8o)| + |9 (u = 80)|. If Yooy w(i) < 00, then (A6) holds.
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(2) Let
= /R LDl Fo) = £ (1 ) || 43 80)

and &@) = [, [fiw) = @)1y D (u; 80) du. If Y35, @(i) < 00 and Y_3%) @(i) < 0o, then
assumption (A7) holds.

Proof (1) By the conditions of (1), we have

o]

sup [E(v" (8 Fia) 1 Fo) - E(wi” (8 F71)175) |

= 1810

/ WO+ 8)[fi(ul Fo) — fi(ul )] da

sup
1 181=do

+ sup
181=do

/Rw“)(u+a>[f%(u|f_1)—ﬁ)(ulf—1>] du

<> /R 1 el Fo) = £ () FE) | (s + 80) da
i=1

= (i) < oo. (2.7)
i=1

Namely (A6) holds.
(2) (A7) follows from

2 @“‘3 [Ew" (55 F20)1F0) = (v (8 F) o) |
i=1 1°1=%
=3 sup /w Y+ [P W) Fo) - 2wl F 1) du
i1 181=80
- sup /¢<l)(u+8)[ﬁ)(u|.7-"_1)—ﬁ)(u|fjl)]du
<Z/|Lfl) ulFo) — £ (ul Fy )| ¥ (s + 8) du Za(i)<oo
i=1
and
3 sup [E@O(e; +8) - EWO(e; +5))|
o 181<b0
- S Oy + ) F () — F*
> s /R YO+ 8) () - £ (1)

= Z/Rlﬁ'(u) —fF @) O (w;80) du = Zc?)(i) < 00.
=1 i=1

Hence, the proposition is proved. d
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Define the M-processes

Ki(Bn) = 2(Bn) —E(Qu(Bn)),  Ku(B) = 2u(B) —E(Qu(B)),

where
QB =Y Vlei—xhB)xins Q) =DV (ei-x] B)xi

i=1 i=1

Theorem 2.1 Let {8,,n € N} be a sequence of positive numbers such that 8, — oo and
8ury — 0. If (A1)—(A5), and (A6) and (A7) with [ =0,1,...,p hold, then

(2.8)

sup |K,,(ﬁn) —K,,(O)’ =0, (\/ 7,,(8,) logn + 6,

[B1=<én

where
0(8) = Y [&inl (12 (|%in8) + m* (=Iin]8)),  8>0.
i=1

Corollary 2.1 Assume that (A1)—(A5), and (A6) and (A7) with[=0,1,...,p hold. If p(t) =
t¢'(0) + O(t?) as t — 0, Q(B,) = O, (1), then, for |Bu| <5,

‘p,(O)Bn - Z v (en)xin = Oy (\/ 7,(8,) logn + (ﬁl’y,). (2.9)
i=1

Moreover, if, as t — 0, m(t) = O(|t|") for some A > 0, then

(p/(o)ﬁn - Z w(ei)xin = Op(

i=1

Z |%in |22+ log m + rn). (2.10)

i=1

Remark 2 If {e;} i.i.d., then |,3,,| <8, follows from (3.2) of Rao and Zhao [42]. If {¢;} i.i.d,,
then |,3,,| < §, follows from Theorem 1 of Wu [49] and Zhou and Shao [52]. If e; = f(e;_1) +
&;, where the function f : R x R — R satisfies some condition and {¢;} i.i.d., then |/§,,| <
8, follows from Theorem 2.2 of Fan et al. [20]. If {&;} NA, then |B,| < §, follows from
Theorem 1 of Wu [47]. Therefore the condition |8,| < §, is not strong. In the paper, we

do not discuss it.

Theorem 2.2 Assume that (A1)—(A3), (A5), and (A6) and (A7) with [ =0,1,...,p hold.
Let ), be the minimum eigenvalue of %, b, = n’%(logn)?’/z(loglogn)l/z*“, v>0, 7=
2loenoe2l gpg g > 3. If liminf, oo A/ > 0,3 1 |%i|* = O(n) and 7, = maxy<i<, |xi| =
O(n'2(log n)~2), then

sup |f(n(ﬂ) - f(n(o)| = Ogs.(Li + Bi),
1B1<bn
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where Ly, = \/T,(2b,)(l0g,)?, By = b,(3_1L; x:|*)*(log n)*?(log log n) "2 and
z,(8) = Z ;|2 (2 (1%:18) + m* (= |x:18)), 8> 0.

Corollary 2.2 Assume that ¢(t) = t¢'(0) + O(t*) and m(t) = O(/t) as t — 0, and Q,, =
O,5.(7y). Under the conditions of Theorem 2.2, we have:

( ) lgn = as( n);
() (,0 O)Enﬂn Z, 1 Y(e)xi = Ops(Lin + Bi + bi Zle |xi|3 +7p),
where By, is the minimizer of (1.2).

Remark 3 From the above results, we easily obtain the corresponding conclusions of
Wu [49].

From the corollary below, we only derive convergence rates of f,. However, it is to be
regretted that we cannot give laws of the iterated logarithm 7'/?(loglog #)'/2, which is still
an open problem.

Corollary 2.3 Under the conditions of Corollary 2.2, we have

%uBn = O (max{ (nl/z(log n)*%(loglog n)l/2+u)’

(nl/Z(logn)—1/4+q(log10gn 1/4+U/2 (Zw ez)xz> })

Proof Note that 72 = 2M1°27/1°¢21 = O() and m(t) = O(+/2) as t — 0; we have

Li =V %.(2b,)(logn)? = O(Z |xi|2|xi|bn) (logn)?

i=1

= \/O(nnl/z(log n)~2n~12(log n)32(log log n)1/2+v)(10g n)?
— O(nm(log n)—1/4+q(10g log n)1/4+u/2)’

)1/2

B = O(n*(log n)*”*(log log n)"/*** (n¥ )(1+0)i2)

(logn)**(loglog n

= O(nm(log n)(loglog n)1+3“/2)
and
b’ 2": x> = O(n' (log n)?(log log n)'** nn'*(log n) %)
= O(nl/z(log n)(loglog n)“z“).

By Corollary 2.2, we have

¢' (0B = Y Yr(e)xi + Ous (n'*(log n)™/*4(loglog m)/*+?) (2.11)
i=1
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and
2,8 = Ous.(nby) = O, (n*(log n)**(loglog n) /). (2.12)
Thus the conclusion follows from (2.11) and (2.12). O

3 Applications

In the following three subsections, we shall investigate some applications of our results.
In Sect. 3.1, we consider that ¢; is a m-dependent random variable sequence. We shall
investigate that {g;} are (¢, )-weakly dependent in Sect. 3.2, and martingale difference

errors {&;} in Sect. 3.3.

3.1 m-dependent process

In the subsection, we shall firstly show that the m-dependent sequence satisfies condi-
tions (A6) and (A7) and secondly obtain the asymptotic normal distribution and strong
convergence rates for M-estimators of the parameter. Koul [30] discussed the asymptotic
behavior of a class of M-estimators in the model (1.1) with long range dependence er-
rors e; = g(g;), where ¢; i.i.d. Here we assume that ¢; is a m-dependent sequence, of which
the definition was given by Example 2.8.1 in Lehmann [32]. For m-dependent sequences
or processes, there are some results (e.g., see Hu et al. [27], Romano and Wolf [43] and
Valk [46]).

Proposition 3.1 Let ¢; in (1.4) be a m-dependent sequence. Then (A6) and (A7) hold.

Proof Note that ¢; is a m-dependent sequence, we have

o0

> sup | E(v (6 Fio) 1 Fo) - E(w (8 Fi )1 F5) |

i=1 [81<d0

o]

=" sup [E(¥ (e + )| Fo) —E(w? (e} +8)175)|

= 151<80
+ sup ”E(w(”(ei +8)|F1) - E(w(l) (e;‘ + 8)|]—'_1) H
181=do

o]

= Z sup |E(w(e; +8)) - E(w(ef +9))|

T 181<do

=0<o00 (3.1

and

o0

> sup |E(w (8 F5)1F0) — E(w (8 F5,) 1 F2) |

i=1 [81=<d0

[ee]

-3 s [EGHOe; + 9)155) - B Oes + )|

T 181<do

+ sup ||E(1p(l)(eo +8)|F.1) —E(w(l)(eg +8)|F1) H

18]=do
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= Z sup | Ey D (e +8) — Ey (e +6)|
i=1 181=do
=0<o0. (3.2)
Therefore, (A6) and (A7) follow from (3.1), (3.2) and Ey¥(e; + 8) = Ew(l)(el’.‘ +8). |

Corollary 3.1 Assume that (A1)—(A5) hold. If p(t) = t¢'(0) + O(t2) and m(t) = O(|t|*) for
some ) >0ast— 0,Q(B,) =0and0 < ai = E[yr(e)]? < oo, then

n 2B, ([¢'(0)] oy) = N(O,L,), n— oo.
In order to prove Corollary 3.1, we give the following lemmas.

Lemma 3.1 (Lehmann [32]) Let {§;,i > 1} be a stationary m-dependent sequence of ran-
dom variables with E§; = 0 and 0 < 0% = Var(§;) < 0o, and T, = > -, &. Then

2T,/ = N(0,1),
where ® = lim,,_, o, Var(n™V2T,)) = 0 + 273 Cov(&}, &).

Using the argument of Lemma 3.1, we easily obtain the following result. Here we omit
the proof.

Lemma 3.2 Let {&;,i > 1} be a stationary m-dependent sequence of random variables with
E& =0and0<o}f = Var(§) <oo,and T, =Y ., &. Then

n 2T,/ — N(0,1),
where t* = Var(n™2T,) = ™' Y1, o + 2071 315 (n — i) Cov(£1, &)

Proof of Corollary 3.1 By (2.10), we have
n
n 2B, =n? [go’(O)]f1 Z Y (e)xin + Oy (n™2r log n). (3.3)
i1

Since {&;,i > 1} is a stationary m-dependent sequence, so is {[¢'(0)] "2 (e;)%ss, i > 1}. Let
u € R?, |u = 1. Then E(u” [¢'(0)] 'y (e;)xin) = 0 and

o2 = E(u"[¢'(0)] " yr(ewin)” = [¢/(O)] " xiuxluE[wr(e)]".
Therefore, by r, = 0(1) and 0 < J,/% = E[Yr(e;)]? < 0o, we have

2=pt Z[w/(o)]_zuTxmx;uE[w(ei)]z
i-1

m+1

+ 207! Z(n i) COV(uT[w’(O)]_lw(el)xlm u'[¢'(0)]

i=2

-1

4 (ei)xin)
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n m+1

=[¢ @] m IS E[w(e]” +2 ) (n — iy xipadyu Cov (v (er), v (e1))
i=2

i=1

- [¢' O] 2. (3.4)
Thus the corollary follows from Lemma 3.2, (3.3) and (3.4). O

Corollary 3.2 Assume that (A1)—(A5) hold. If p(t) = t¢'(0) + O(t2) and m(t) = O(\/t) as
t — 0, and Q,(B,) = Ous.(7),0 < 0} = E[Y(e;)]* < 00, then

ﬂn = Oa.s, (n_l/z(log n)3/2(]0g ]Og 1/1)1/2“)).
Proof The corollary follows from Proposition 3.1 and Corollary 2.2. 0

3.2 (&, ¥)-weakly dependent process

In the subsection, we assume that {g;} are (e, )-weakly dependent (Doukhan and
Louhichi [14] and Dedecker et al. [11]) random variables. In 1999, Doukhan and Louhichi
proposed a new idea of (&, y)-weakly dependence which focuses on covariance rather
than the total variation distance between joint distributions and the product of the cor-
responding marginal. It has been shown that this concept is more general than mixing
and includes, under natural conditions on the process parameters, essentially all classes
of processes of interest in statistics. Therefore, many researchers are interested in the
(e,¢)-weakly dependent and related possesses, and one obtained lots of sharp results.
For example, Doukhan and Louhichi [14], Dedecker and Doukhan [10], Dedecker and
Prieur [12], Doukhan and Neumann [16], Doukhan and Wintenberger [17], Bardet et al.
[3], Doukhan and Wintenberger [18], Doukhan et al. [13]. However, a few people (only
Hwang and Shin [29], Nze et al. [40]) investigated regression models with (¢, {)-weakly
dependent errors. Nobody has investigated a robust estimate for the regression model
with (e, y)-weakly dependent errors. To give the definition of the (¢, y)-weakly depen-
dence, let us consider a process & = {§,, n € Z} with values in a Banach space (&, || - ||). For
h:E* — R, u € N, we define the Lipschitz modulus of 4,

Liph = sgp!h(y) — h()|/1ly =l (3.5)
y#x

where we have the /;-norm, i.e., |(y1,¥2, .., ¥u)ll1 = Y iy Vil

Definition 1 (Doukhan and Louhich [14]) A process & = {£,,n € Z} with values in R?

is called a (¢, y)-weakly dependent process if, for some classes of functions £%,E" —

R,F,,G,:
C 2 EsreeanEs), s
8(}") = sup sup | OV(f(Esl ;):sz %‘Su) g(Stl Etz Etv))|
WV §1=82> - =Sy,b) = by > >by,r=t1-Sy f €Fy,g€Gy \I—’(f,g)
— 0

asr — oQ.
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According to the definition, mixing sequences (e, p, 8, ¢-mixing), associated sequences
(positively or negatively associated), Gaussian sequences, Bernoulli shifts and Markovian
models or time series bootstrap processes with discrete innovations are (¢, )-weakly de-
pendent (Doukhan et al. [15]).

From now on, assume that the classes of functions contain functions bounded by 1.
Distinct functions W yield 1,6, and a A weak dependence of the coefficients as follows
(Doukhan et al. [15]):

ulLipf + vLipg then denote &(r) = n(r),
vLipg then denote &(r) = (r),
V(f,g) = { uvLipf - Lipg then denote (r) = «(r), (3.6)
uLipf + vLipg + uvLipf - Lipg then denote (r) = A(r),
ulipf + vLipg + uvLipf - Lipg + u + v then denote &(r) = o(r).

In Corollary 3.3, we only consider A and n-weakly dependence. Let {¢;} be A or n-weakly
dependent, and assume that g satisfies: for each s € Z, if x,y € R satisfy x; = y; for each
index i #s

lg6) ~g)] = by (sup fxil' v 1) 5, - . (37)
i#s

Lemma 3.3 (Dedecker et al. [11]) Assume that g satisfies the condition (3.7) with [ > 0
and some sequence bs > 0 such that ) __ |s|bs < co. Assume that Eleo|™ < 0o with lm < m'
for some m > 2. Then:
) Ifthe process {e;,i € Z} is A-weakly dependent with coefficients L.(r), then e, is
A-weakly dependent with coefficients

Ae(k) =c inf (Zb) [@r+1)*A. (k- o)t ], (3.8)

r<[k/2]

(2) Ifthe process {&;,i € Z} is n-weakly dependent with coefficients n(r), then e, is
n-weakly dependent and there exists a constant ¢ > 0 such that

ne(k) = ¢ inf (Zb) [(2r+1) W lns(k—Zr)%].

r<[k/2]

Lemma 3.4 (Bardet et al. [3]) Let {£,,n € Z} be a sequence of R*-valued random variables.
Assume that there exists some constant C > 0 such that maxi<;<x |1&ill, < C,p > 1. Let h be
a function from R¥ to R such that h(0) = 0 and for x,y € R, there exist a in [1,p) and ¢ >0
such that

|h(x) = h()| < cla = yI(1+ |x[*7" + [y[*7). (3.9)

Now we define the sequence {¢,,n € Z} by ¢, = h(§,). Then:
(1) If the process {§;,i € Z} is A-weakly dependent with coefficients Ag(r), then {,,n € Z}
is also with coefficients

p—a

A (r) = O(AT™2 (r). (3.10)
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(2) If the process {&;,i € Z} is ¢ -weakly dependent with coefficients 1z (r), so is {{,,n € Z}
p—a
with coefficients 0 (r) = O(nE’F1 ().
Lemma 3.5 (Dedecker et al. [11]) Let {§;,i € Z} be a centered and stationary real-valued
sequence with E|&|**S <00, ¢ >0,02 =, ,Cov(&,&) and S, = > 11 &. If he(r) = O(r™)

for & >4 +2/¢, then n”V2S, — N(0,02) as n — oo.

Corollary 3.3 Let {¢;} be A-weakly dependent with coefficients L.(r) = O(exp(-r1)) for
some A > 0, and b; = O(exp(—ib)) for some b > 0. Assume that (0) = 0, and, for x,y € R,
there exists a constant ¢ > 0 such that

¥ @) -y ()] < clx -yl (3.11)
Under the conditions of Corollary 2.1, we have
@' (0)n™ V2T, — N(,%) asn— oo, (3.12)

where & =Y 1, x1, Cov(yr(e1), V()] .

Proof Note that {¢;} is A-weakly dependent. By Lemma 3.3, we find that {e;} is A-weakly
dependent with coefficients

~ N b(m' —1-1)
Ae(r) = O(r exp(—)»rb(m/ T4l 2 _1 —l))))’ a>0 (3.13)

from (3.8) and Proposition 3.1 in Chap. 3 (Dedecker et al. [11]).
Let u € R?, |u| = 1, and ¢; = h(e;) = uy(0)x;, = 0. Then 4(0) = 0 = uy(0)x;, = 0. Choose
p=2,a=1,in(3.9), and by (3.11), we have

|h(x) = h(Y)| = loinl [ (%) = ¥ ()] < clx -yl (3.14)
for x,y € R and ¢ > 0. Therefore, by Lemma 3.4, {¢;,i € N} is A-weakly dependent with
coefficients

_p=a_
de(r) = O(rz")nfmfz (r)) = O(rflv)»e(r)). (3.15)

By Corollary 2.1, we have

@ OB, = "W en)in + 0p(1). (3.16)

i=1

By (3.13) and (3.15), there exist b > 0,a > 0,/ > 0 and m' > [m for some m > 2 such that

B w2 b(m' -1-1) ~ o
Ae(r) = O(rn r exp(—)\rb(m/ Tl 2 -1 —l))) = O(r ) (3.17)

for enough large r and A > 4 + 2/¢ with ¢ > 0.
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By Lemma 3.5 and (3.16)—(3.17), we have

@' (0)n™?uT, — N(0,0?),

2

where 62 =37 | ulx1, Cov(yr(er), w(ei))xi{lu. Using the Cramer device, we complete the

proof of Corollary 3.3. O

Lemma 3.6 (Dedecker et al. [11]) Suppose that {§;,1 < i < n} are stationary real-valued
random variables with E§; = 0 and P(|§;| <M <oo)=1foralli=1,2,...,n. Let ¥ ‘N2
N be one of the following functions:

W(u,v) =2v, Y(u,v) =u+v, W (u,v) = uv,
(3.18)
Y(u,v) =a(u+v)+ (1 -a)uy,

for some 0 < a < 1. We assume that there exist constants K, Ly, Ly < 00, u > 0 and a nonin-

creasing sequence of real coefficients {p(n), n > 0} such that, for all u-tuples (s1,...,s,) and

all v-tuples (t1,...,t,) with1 <s; <--- <s, <t; <--- <t, < n, the following inequality is
Sfulfilled:

|Cov(Es,,...rEqiErren&)| < KPM™ 20 () p(ty — 54), (3.19)
where

oo

> (s + 1) pls) < LiLA(kY", VK= 0. (3.20)

s=0

Let S, =Y 1 & and o} =Var(Y L, &). If 0% = lim,_.oc 02/n > 0, then

. |Sn]
imsup

_—— 3.21
n—soo 0 (2nloglogn)t/z — (3:21)

Corollary 3.4 Let {¢;} be n-weakly dependent with coefficients n.(r) = O(exp(-rn)) for
some 1 >0, and b; = O(exp(—ib)) for some b > 0. Assume that (0) = 0 and (3.11) hold. Un-
der the conditions of Corollary 2.2 with 7, = O(n*'*(log n)~2) replaced by 0 < min; <;<, |x;| <
maxi <i<, %] < 00, and 0 < o) = EYr*(e;) < 00, we have:

(1) for3/2 < q <7/4 L., = Ous(nby,) = Oy (1> (log n)*?(log log n)/>+V);

(2) for g > 714, £uBy = Ogs.(n'*(log m)V/**1(loglog m) /4+2/).

Proof Let&; =y (e;)xy,j=1,...,p. Then for Vi, — oo as n — 0o

Ely(e)x;> 0y maxi<i<, %5

> 2

P{|y(exy| > n} < (322)

Therefore, there exists some 0 < M < 0o such that

P{|y(e)xy| <M} =1. (3.23)
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Similar to the proofs of (3.13) and (3.15), we easily obtain

ne(r) = (rwné” et (1) = O(F" ne(r)), (3.24)
where
#11-1 b(m' -2)
Ne(r) = O(r = exp(—nrb(m/ ) 2 - 2)>> (3.25)

By (3.24) and (3.25), we have

|COV($sl)"w‘i:su;stlr---v%-tv)

<@+ v)n(r) < (u+v)i, n.(r)

e b(m’ -2)
= w7l exp| = : 3.26
<(u+vi“r exp< nrb(m/—1)+2ﬂ(m/—2)) (3.26)
Let W(w,v) = u +v,K? = r* M'“+-2) and
m'-1-1 b(m’ _ 2)
=rotexpl = : 3.27
p(s)=r CXP( nrb(m,_1)+2n(m/_2)) ( )

Thus (3.19) holds. Since lim,_, , In(s + 1)/s = 0, there exist b > 0,17 >0,/ > 0 and ' > Im
for some m > 2 and »’ > 2 such that

b(m' —2) k)
- 1)~ Vk > 0. 3.28
exp( nsb(m/ -1+ 2n(m’2)> s+ 1) = (8.28)
Thus
2 b’ —2)
Z(s +1)*p(s) < ;(s +1) 1 exp(—nsb(m/ ) s 20 - 2))
<> (s+1) m oo, (3.29)
5=0

= lim { Y EYAew Y wpng Cov (e, v (ew) }
i=1

i k=Liik
=nlirgo{n'l D EYR(e)x + —O x5 Z(n—l)COV(w(el) w(em))}
i=1
= 2%, >0. (3.30)

By Lemma 3.6 and Corollary 2.3, we have

B = OM‘((ZM loglog n)m) + Oy, (nl/z(log n) Y4+4(loglog n)1/4+“/2)

= O, (n'*(log n)™"**(log log n)/*+/2). (3.31)

Therefore, by Corollary 2.3, (3.23) and (3.31), we complete the proof of Corollary 3.4. [
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3.3 Linear martingale difference processes

In the subsection, we will investigate martingale difference errors {g;}. We shall provide
some sufficient conditions for (A6) and (A7) and give the central limit theorem and strong
convergence rates.

Let {&;} be a martingale difference sequence, and a; be real numbers such that e; =
Z;fo aje;_j exists. It is well known that the theory of martingales provides a natural uni-
fied method for dealing with limit theorems. Under its influence, there is great interest
in the martingale difference. Liang and Jing [34] were concerned with the partial linear
model under the linear com of martingale differences and obtained asymptotic normal-
ity of the least squares estimator of the parameter. Nelson [39] has given conditions for
the pointwise consistency of weighted least squares estimators from multivariate regres-
sion models with martingale difference errors. Lai [31] investigated stochastic regression
models with martingale difference sequence errors and obtained strong consistency and
asymptotic normality of the least squares estimate of the parameter.

Let F, be the distribution function of ¢y and let f; be its density.

Proposition 3.2 Suppose that Egg = 0,89 € LY@, i, = SV W)y, (du) < 00,1 <y <
2 and Y ¥ _ [ fP W) o, (dv) < 0o, where w,(dv) = (1 + [V|). If Y-S0 lajl < oo, then
Y w(i) <00, Y @(i) < 00 and Yooy @(i) < 0o.

Proof Let Z, = Z;’fo Ajen_jy 2t = Zy — an€o — ane’, and
R, = / [t = Un) ~fo(t = Uy — a0en) @, (@), (3.32)
R

where U, = Z, — a,&9. By the Schwartz inequality, we have

w*(n) = (/Rn;g(t ~Z)—~fo(t=Z) | @+ 1)) - v eo) (1 +12]) dt)2
< /R W2t o)y (de) - /R 1t~ Z0) £ (¢ - Z2) 2oy ()
=K, /R It = Z,) — i (¢ = Z2) | ", (dt) < CE(R,). (3.33)
Note that
fe= ) ~fle- Uy aneo = [ fe-t, =)y (330
and
/R[f;(t— W) o, (de) = (1+ |ul)” fR[fg(v)]Z(l +lul) 7 (14 lu+v]) dv
< (1+1ul)” /I;[fs’(v)ra),,(dv) <5 (1+1ul). (3.35)
Let Iy = [ [P (v)]w, (dv). By the Schwartz inequality, we have

an€o an€o
Rn§// 12dv-/ [f(-U,-v)] dv
RIJO 0

,(dt)
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aneo
<lantol [ B (11 )
0

<langol*[(1 + |Ual)” + (1 + Uy + aneol)”]

< Claueol*[ (1 + 1Unl)” + laneol”]. (3.36)

By sup; Eejz < 0o and Chatterji’s inequality (Lin and Bai [35]), we have

o0 oo
U< Y @Ee; <> a’. (3.37)
j#mj=1 j=0

By (3.33)—(3.37) and the Schwartz inequality, we have

E(R,) < CE{laneol® + lansol*” + |aneol*|U,1" }
< C{I1 +l|anl” +E[lsol*|U,"]}

< Ca2 {11 +lanl” + (EIUL)"")

00 yi2
< Ca§[|1 +|an” + (Zaf) } (3.38)
j=0

Note that 3% |a;| < oo implies ) 2 < 00 and > iSola |'*7/2 < 00, and by (3.33) and

j=0 %4
(3.39), we have

oo o0
> o) <Y max(|al, |aal""?) < oo, (3.39)
i=0 n=0

The general case k > 1 similarly follows. Similar to the proof of (3.39), we easily prove the
other results. O

From Propositions 2.1 and 3.2, (A6) and (A7) hold. Hence, we can obtain the following
two corollaries from Corollaries 2.1 and 2.2. In order to prove the following two corollaries,
we first give some lemmas.

Lemma 3.7 (Liptser and Shiryayev [36]) Let & = (&x)_co<k<co b€ a strictly stationary se-
quence on a probability space (2, F,P), and G be a o-algebra of invariant sets of the se-
quence & and Fi = o (..., &1, &). For a certain p > 2, let E|&|” < 00 and ) ;. yk(p) < o0,

where y(p) = (E\E(E|Fo)|#T}'7 . Then
Z, = \/_ Z & —> Z(stably),

where the random variable Z has the characteristic function Eexp(-31*0?), and o* =

E(E519) + 2341 E(50&k|9).

Corollary 3.5 Assume that (A1)—(A5) hold, ¢(t) = t¢'(0) + O(t?) and m(t) = O(|t|*) for
someA>0ast— 0, Q(,Bn) = O,(r,). Under the conditions of Proposition 3.2, E|y (ex)|? Ll

Page 15 of 32
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00,p >2and Y y_y [%kn| < 00, we have
12p ¢
n B, — Z(stably), (3.40)

where the random variable Z has the characteristic function Eexp(-31*c?), and o? =

(' (0) %], %1, E(W2(e0)IG) + 2(¢'(0) %1, 3 psp %1 E (W (1) (€)1 G).-
Proof By Proposition 2.1, Proposition 3.2 and Corollary 2.1, we have
n 2B, = n 2 (¢'(0))” Z Y (e)xin + Op(n?(rh log"? n + 1))
=n(¢(0))” Z W (e)xin + 0p(1). (3.41)

i=1

By E|v(ex)|? 7T < 00 and Y ket [%kn| < 00, we have

p_p1
l}p

vi(p) = {E|E (¥ (ex)xknl Fo ) |7

< {E[E(|v e P71 7)]) 7

={E Iw(ek)ka’%1 }%1} < Cloxaul, (3.42)
D v) =D ol < 00 (3.43)
k>1 k=1

and

% = (¢'(0) E((¥(e)x1n)*1G) +2(¢'(0)) ™ D E(w (et (€l G)

k>2

= (¢'(0) "4 E(¥(e))IG) + 2(¢/(0)) "x1n Y xinE(¥r(e1) ¥ (ex)|G).

k>2

By Proposition 2.1, Proposition 3.2 and Corollary 2.2, we easily obtain the following

result. Here we omit the proof. O

Corollary 3.6 Assume that (A1)—(A5) hold, ¢(t) = tg'(0) + O(t?) and m(t) = O(\/t) as
t — 0, 2,(B,) = Ous.(7). Under the conditions of Proposition 3.2, we have

B = Ous(n™*(logn)**(loglogn)'**"), v >0.

4 Proofs of the main results
For the proofs of Theorem 2.1 and Theorem 2.2, we need some lemmas as follows.

Lemma 4.1 (Freedman [21]) Let t be a stopping time, and K a positive real number.

Suppose that P{|&| < K,i < 1} = 1, where {§;} are measurable random variables and
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E(&;|Fi-1) = 0. Then, for all positive real numbers a and b,

-2

n b Ka+b K
P ;éizaandﬂ,fb,forsomenfr S((Ka+b> eK“>

612
= exP(‘ 2Ka+b) )

Lemma 4.2 Let

n

M(Ba) =Y _{ (e = x,Bn) — E(¥ (€1 — %, Bu) | Fit) }in- (4.1)

i=1

Assume that (A5) and (A6) hold. Then

sup | M, (By) — M, (0)| = O, (v 7u(84) logn + n73). (4.2)

[Bnl=<dn

Proof Note that p = Y ", x] x;, < (maxi<i<, [%;)?n = nr2, and 8,7, — 0, we have §, =

o(n'?). For any positive sequence j1,, — 00, let

On =2y Tn((sn)log n, by = nv Tn((sn)/log Mns Uy = tﬁ;
ni(Bn) = (w (ei - x,];,,Bn) - 1p(ei))xirn T, = max sup ‘ni(ﬁn)’

l=izng,|<s,

and

n

U= E{[¥ (e + Winlda) = ¥ (& = xinl8n) |1 Fict i

i=1

By the monotonicity of ¢ and § > 0, we have

sup [n:(Bu)| < Il ‘EITPJI/f(ei D ACH]

|Bnl=<d
< |%in| max{v (e; = |xinl8) — ¥ (e:), ¥ (e; + 1in|8) — W (e)}
< [xinl{ ¥ (e + 1%in]8) — ¥ (€ — xn18) }. (4.3)

By (4.3), the ¢,-inequality and (A3), we have

E( sup [m(BI") < Bl (¥ s+ binl) = e = bl ]}

Bnl<én
< 2 P{E[¥ (e + xinl8) — ¥ (e)]* + E[W (e — Ixinl8) — wr(e)])
= 20> [ (|21 8) + m* (= |%:8) ].

Thus

n

E(T?) :E(max sup ’m(ﬂn)}z) < ZE( sup ‘m(ﬂn)‘z>

Lsi=n g, |<sy 1 Bal<sn
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<2 il [0 (Iin18) + 11 (= 6in18,) ] = 224(8.). (4.4)
i=1

By the Chebyshev inequality,

P(|T,| = t,) <E(T2)/t; < 21,(8,)/t, = 210g” o/ — 0. (4.5)
Similarly,
P(|Uy| = tn) < E(Uy)/un = O((l0g st/ 11)*) — 0. (4.6)

Let x;, = (xilnuu»xipn)T = (xil;unxip)T;Dx(i) = (2 X lxﬂzo -1,...,2 x lxipzo - 1) €
I,,I1,={-1,1}.Ford € I1,,j = 1,2,..., p, define

n

M, ja(Bn) = Z[W (e = x4,B1) — E(V (e: — %, Bu) |Fiz1) 451D, (- (4.7)
i=1
Since M, (B,) = Zdenp(Mn,Ld(ﬁn)' . ..,M,,,p,d(ﬁ,,))T, it suffices to prove that Lemma 4.2
holds with M,,(8,) replaced by (M,,;4(B,).
Let |Bul < 8 mija(Bn) = (W (e; — x L, Bu) — ¥ (€:))xi1p,()-a and

Bn(ﬂn) = ZE(ni,j,d(/gn)llm,i,d(ﬂn)bt,, |]:i—l)' (48)
i=1
Note that
n ty n w(8n)/ 1 n 1
Hn _ bn_ PTG log 0. (4.9)

LnPn B bn 2T B logn  2lognlogu,
By (4.9), for large enough 7, we have

n

> " EmijalBu)Ling oot Fict)

i=1

P(|Bn(,3n)| > ¢, U, < un) :P(

2 ¢m un S Mn)

n
=< P(tnl ZE(ni,j,d(ﬂn)l\m,;,d(ﬁn)|>tn |]:i—1) > ¢, U, < un)

i=1
= P(tglu”’ > ¢, Uy < Ltn) = P(tn¢n <u,=< Mn) =0. (410)
Let the projections Px(-) = E(-|Fk) — E(-| Fx_1)- Since
E{Pi(ni,j,d(ﬂn)lIm,,',d(ﬁn)\stn) | Fic1}
= E{ [E(ni:f,d(ﬁn)1\n/,;,d(ﬁn)|5rn |]:i) - E(ni,f,d(ﬂn)1\m,;,d(ﬁn)lstn |}-i—1)] |}—i—1}

= E(1:,a(Bn) Ling a(pm) i<t Fi1) = E(Miia (B iy g(pi<en | Ficn) = O- (4.11)

Note that {P[(my,‘,d(ﬁn)lm‘j’ J(Bn)I=t,)} are bound martingale differences. By Lemma 4.1 and
(4.10), for |B,| < t,, we have

P{ |M”:/vd(/3n) _Mn,j,d(o)‘ > 2¢}’17 Tn <tln un = Mn}
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<of
ool

n

Z Pi(13d B Ling s a(pri<en)

> P Ty <ty Uy < un]
i=1

n
Z Pi (Ui,j,d(ﬂn)llm,j,d(ﬁn)btn)

i=1

2¢n1Tn§tVl1u}’l§uVl}

2
= Cexp(_4tn¢n + 211,,,) +P(iBn(ﬂn)| = ¢mun = un)
~ P2
- O<p(m)> (.12

Let [ = n® and K; = {(ki/L,...,ky/1) : ki € Z,|k;| < n°}. Then #K; = (2n° + 1)?, where the
symbol # denotes the number of elements of the set Kj. It is easy to show

tupnlogn=o0(p2) and wu,logn=o(e}). (4.13)
By (4.12) and (4.13), for V¢ > 1, we have
P{ sup ‘Mn;jyd(ﬁn) _Mn,/,d(0)| = 2¢nr Tn <t U, < Mn}

BneK;

< ZP{ |Mn,j,d(,3n) _Mn,/,d(0)| > 2¢nr Tn < tn» Un < Mn}

#K;
2 1
< Cn’’exp S TR PO exp( - g
4t, P, + 2u, 4t, ¢, logn/Pp? + 2u, log n/p?2
logn
— Cn® exol - = o(i=P). 4.14
n exp( 0(1)> o(rz ) (4.14)

By (4.5), (4.6) and (4.14), we have

P[ SUp | M () — M a(0)| = 2¢>n] 50, n— o0 (4.15)
BneK;

For a, let (a);-1 = [a]; = [al]/l and (a);1 = la]; = |al]/l. For avector B, = (Bin, ..., Bpn)

let (Bu)ia = ((Bin)idys---» (Bpn)id,)-
By (A5), for |s|, [¢| < r,d, and large 1, we have

\E{[v(e; —t) — ¥(e; —9)]|Fi1 }| < Licals—tl.

Let V,, =Y ", Li_1. By condition (A5), the Markov inequality and L; € L', we have

P(V,>n*) <EV,/n* =) ELiy/n* < Cn. (4.16)
i=1

Note that |8, — (B4)14| < CI!, which implies maxi<j<y |x%,(B1 — (Bu)14)| = 0(1). Thus

sup ZE{[ﬂi((ﬂn)l,d) = 0i(Bu) || Fic1 Jtin

\Bnl<én| 3
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< sup > |E(( (e =i (Budia) — (€)= (¥ (e = x5, Bu) — ¥ (€)1 Fict )i

= sup D |E(v (e —xh(Budra) — ¥ (er — %, Bu) | Fict ) %in|

[Bn|=<én i=1

< sup D inlLica |, ((Badsa = Bu)| < CL V. (4.17)
n|=0n i=1

Without loss of generality, assume that j = 1 in the following proof.
Let d = (]-7_171 """" 1) Then (;3n>l,d = (l_IBInJl: |_,32n-|1: L,BSnJl :::: Lﬁpnjl) and (,871>l,—d =
(TB1a 11> LB2ndis TB3u 1y - > [ Bpn11). Since ¥ is nondecreasing,

Nitd((Bn)i-a) < Mi1d(Bu) < Mipa((Bndia)-

Note that

Nitd((Bn)i-a) — E[i1a((Budi-a)| Fic1 | + E[mi1a((Budi-a) | Fiz1]
~ E[ni1.a(Bn)| Fi1]
< Mi1.4a(Bu) = E[1i1,a(Bn)| Fii ]
< ird((Budia) = E[nira((Bn)1a) | Ficr] + E[nina((Bn)ia) | Fizi ]
= E[ni1a(Bu)| Fi ],

Namely

n

Z {nira((Bn)i-a) — E[mira((Bn)i-a)| Fi-1]

i=1

+ E[(ni1.4((Bn)1-a) — Min.a(Bn)) | Fic1 ]} 1p,()-a

< Z{m,l,d(ﬁn) — E[ni1,a(Bu)| Fic1 | 161 10, 0)-a

<> {mira((Budsa) = E[ni1.a((Budia) 1 Fia]

i=1

+ E[(mi1,.a((Bu)1d) = mi1,a(Bn)) | Fiz1 | }i1 1, (9 -a-

Therefore
Myupra((Bn)i-a) = Miu1,q(0) + ZE{[ﬂi,l,d«ﬁn)l,—d) = i1d(B) || Fic1 } i1 1, ()-a
i=1
< Mn,l,d(ﬁn) - Mn,l,d(o)

< Mn,l,d((,Bn)l,d) - Mn,l,d(o)

+ ZE{ [mi1.a((Budra) = mina(Bn) || Fict i1 1, )=a- (4.18)

i=1
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By (4.17) and (4.18), we have

Mu1.a({Budi-a) = Min1,4(0) = CI™'Vyy < My 1.a(Bn) — Mi1,4(0)
< Mu1.a({Budia) = Mu1.4(0) + CIT' V. (4.19)

Note that /7', = O,(n*n*) = O,(n™*), (4.2) immediately follows from (4.15) and (4.19). O

Lemma 4.3 Assume that the processes X; = g(F;) € L2. Let g,(Fo) = E(g(F,)|Fo),n > 0.
Then

g (Fo) = gu(F3) || < llg(Fn) - (F) .
1P Xoll < [ €n(Fo) - u(FE) | + R,

(4.20)

where R = || E[g,(F§)|F-1] — E[g.(F)IFolll.

Proof Since

E{[g(F) - g(F)JI(F1,€0,20) } = E[g(Fn)l(Fr, £0) | - E[g(F) 1 (F-1,6)]
:gn(]:()) _gn(]:g);

we have
E|E{[¢(F) - ¢(F) 1 (For, b 20) Y| = Elgu(Fo) - &n(F3)]” (4.21)
By the Jensen inequality, we have

E|E{[¢(F) - ¢(F)]1(Forehpe0) Y| < E{E[|g(F) - g(F) [*1(For, €6, 20) ]}
- Elg(F) -g(F)|- (4.22)

By (4.21) and (4.22), we have
Elgu(Fo) - gn(F3)|” < Elg(F) - (7).
That is,
| gn(Fo) - €u(F5) || < |lg(F) - g(Fi) |- (4.23)
Note that
E[gn(Fo)|F1] = E[E(g(F) | Fo) | F-1] = E(gu(Fg )| F-1) (4.24)
and

E[gn(Fo)F1] = E[gu(F3)1 Fo] + E[gn(F5) 1 F-1] - E[gn(F5) |1 Fo]- (4.25)
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By (4.24), (4.25) and the Jensen inequality, we have

IPoXoull = |E(g(F)lFo) — E(g(Fu)l F-1) |
= || E[gu(Fo) 1 Fo] - E[gu(Fo)l 1] |
= [ E[gn(Fo)1 Fo] - E[gn(F5)1F0] ~ E[gn(F5) 1 F-1] + E[gu(F5) 1 Fo] |
< [ E[gn(Fo) 1 Fo] - E[gu(F5) 1 Fo] | + | Elgn(F5)1F-1] - Elgn(F5)1 0] |
< | &n(Fo) - gu(F5)| + R. (4.26)
O

Remark 4 1If {g;} i.i.d., then R = 0. In this case, the above lemma becomes Theorem 1 of
Wu [48].

Lemma 4.4 Let {5,,n € N} be a sequence of positive numbers such that §, — oo and
8ury — 0. If (A6)—(A7) hold, then

| sup i) - N0 - O< > |xin|48n>, (427)
nl<0n i=1

where

n

Nu(B) =Y (Wi~ Bus Fict) — @ (=, Bu) .

i=1

Proof LetI={m,...,nz} € {1,2,...,p} be a nonempty setand 1 < #; <--- <ny and u; =
(u1liers ..., uplper), with vector u = (uy, ..., u,). Write

/ﬁ”" 1N, (ur) d
u
0 duy !

/Sn,ml lsn,rnq ann (MI)
= 76{”% "'dl/lmq,Wi:xl’nxl’ml ~~~x,~mq.
0 0

Oty -+ - Bumq

In the following, we will prove that

’8N(u1

s Fix) — 09 (—ahur) fwi

—O( Z|xm|2+24> (4.28)

i=1

uniformly over |u| < pé,,.
In fact, let

T,= Z (~xpurs Fior) - <P(q)(—xiTy,M1)}Wi

and

Ji = ZP —X; MI:]:i—l) - 90(q)( xﬂw)}wio
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Then T, = Y ;oo Jx and Jx are martingale differences. By the orthogonality of martingale
differences and the stationarity of {e;}, and Lemma 4.3, we have

AR ani-k{l//,'(q)(—xiul;ﬂ_l) - (—xiﬂul)}WiHZ
i=1
=S il | Pof v (ks Fir) — @0 (~alur) ). (4.29)
i=1

By Lemma 4.3, ¥;(-; Fi-1) € C!,1> 0 and the ¢,-inequality, for kK > 0, we have

[Pol i (~byass Ficr) = 6 (= un)} |
< |E{[vi® (e Fier) = 0 (=ciur) 1 Fo)
~E{[0” (=osbyuzs Fi) = 09 (b un) | F5 Y| + R}
< 2 E{® (ckyus Fir) | Fol = E{i® (ckyaass i) 1 F )|
+ 2| {0 (woyur) | Fo} — E{ g ()| F5 | + B
< 20 E{® (b us Fir) | Fo} = E{i® (chyaas i) 1 F )|

+ 2| EY D (e — x] ur) — EY'@ (e — xl ) |* + R, (4.30)

where

R = | E{ [ (b ur Fiy) — 00 (~ahur) ]| )
~ E{[? (~byurs Fy) = 0D (=) || Fo |
Note that Ey @ (e; + §) = % |t=5, we have
R < |E[v® (b5 Fi o )| Fa] - E[w® (~aurs Fiy )1 Fo] |
+ | E[p (~f,ur) |[F1] ~ E[0 (~h,) | Fo] |
= |E[w® (=t Fiy) | Fo] = E[® (= ) Fo) |
+ | Ew® (ex - 1) = Ep® (ewc — ahur) |

= HE[x//,gq) (—x,{nm; .7:,’:_1) I]:_l] - E[I/f,iq) (—x,&u,;f,f_l) |.7-"0] ||2 (4.31)

By the conditions (A6), (A7) and (4.29)—(4.31), we have

1T :@i el = O<@)
- o( g|xm|2+2q).
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Let |u| < pd,. By max;<;<, |xy,u| < pd,r, — 0. Note that §, — oo and §,r, — 0. By (4.28),

we have
Pui| 9PN, Sn S| 9PN,
[Bnl<dn JO aul —8n —8n 3u1
5 B
" || 9PN,
< / - / INwr) |
—8n —8y dup
- 0(83 > |x,-n|2+2q> - O<6n > |xm|4). (4.32)
i=1 i=1
Since
Bur gl N,
Nu(B4) — N,(0) = Z / ﬂ duy, (4.33)
0 ouy
1€{1,2,...p}
the result (4.27) follows from (4.32) and (4.33). O

Lemma 4.5 Let 7;,i > 1 be a sequence of bounded positive numbers, and let there exist
a constant co > 1 such that max,;,,d 7; < coMin ;o 77; holds for all large n. And let
wg = 2cT5a and q > 3/2. Assume that (A5) and 7, = O(\/n) hold. Then as d — oo

sup. max|1,(8) - 71,00) = 0y (v Bl + 2-512),

|Bnl<wg n<2?

where M,(B) = Y1 (W (e —x B) — E(r(e; — xF B)| Fiz1) i

Proof Let

Mn = (log ”’)qil: d;n =2od/ f2d(6‘)d)10g(2d): sz = Uod/ Toa(@a)/10g fhod,
flgd = B2y, 7i(B) = (¥ (ei — x] B) — ¥ (e))xi, Ty = max, = sup [7:(8)|

<i<2 |B,|<wy

and
2d
Uy = ZE{[W(% + |xilwa) — ¥ (e - |xi|wd)]2|]:i—1}|xi|2-
i-1

Since g >3/2and 2(g-1) > 1, 220:2(/5; log 4,4)* < 00. By the argument of Lemma 4.2 and
the Borel-Cantelli lemma, we have

P(Tyi > tyi,i0)=0 and  P(Uy > itya,i.0.) = 0. (4.34)
Similar to the proof of (4.12), we have

P[ma§|i\~/[k,j,d(ﬁ) _Mk,j,d(0)| > 203261, Tzd < sz, azd < ilzd}
k<2

72
=0l ex —+>> (435)
( p( Atoipoa + 2Uod
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Let [ = n® and K; = {(ki/l,...,k,/1) : k; € Z,|k;| < n®?}. Then #K; = (2n°? + 1)?. By (4.34)
and (4.35), for V¢ > 1, we have

P{ sup |Mpja(B) — Mij,a(0)| = 2¢54, Toa < Eya, Upa < ﬁzd} =0(ns%). (4.36)
BeK;
Therefore,
P[ SUp | M ja(B) — Micja(0)| = 2, i.o.] 50, n— oo (4.37)
BeK;

Since 7, = O(y/n) and max, _;_oa |57 (B—(B)1.4)| = 022’11, CI"'V in (4.17) can be replaced
by CI7122' v, and the lemma follows from P(Vya >2%,i0.) = 0. O

Lemma 4.6 Let 7r;,i > 1 be a sequence of bounded positive numbers, and let there exist a
constant co > 1 such that max,_;_,« T < comin, _;_,a 7; and 7, = o(n~?(logn)*) hold for
all large n. And let wy = 2¢o,a. Assume that (A6), (A7) and 7, = O(/n(logn)=2) hold. Then

| sup N8 - N,00)]| = O(

|BI=7n

> Ixil‘*nn), (4.38)
i-1

and, as d — oo, for any v > 0,

od
Sup max|N, () - N, (0)|” = 04 <Z il *wd® (log d)““), (4.39)
<wyg n< i=0

where N,(B) = S 1 (Y1 (=x] B; Fior) — o(=x7 B)}x,.

Proof Let Q,;j(B) = Y i, ¥1(—«] B; Fi1)x;,i <j < p, and

Su(B) = Quj(B) — Qnj(0). (4.40)
Note that
Tty = 0(n™*(logn)*) O(v/n(log n)2) = o(1). (4.41)

It is easy to see that the argument in the proof of Lemma 4.4 implies that there exists a
positive constant C < co such that

|Bl=wq i=n'+1

P n
El| sup [5.8) - s08)|| | <0 Y bl 24 (4.42)
q=1

holds uniformly over 1 < ' < n < 2. Therefore (4.38) holds.
Let A = Zf:o w, !, where

1/2

= {ZZH sup |Szrm(ﬁ)—szr<ml>(ﬁ)|H2] : (443)

m=1 |1Bl=wq
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For a positive integer k < 24 write its dyadic expansion k = 2" + --- + 2", where 0 < 7; <
--<r; <d,and k(i) = 2" + - - - + 2"i. By the Schwartz inequality, we have

j 2
sup |Sk(,3)|2 < iz ﬁsup Sk (B) —Sk(i—l)(ﬂ)|}
i=1

[Bl=wq |=wq

; 2
= {Z/,Lr’ ,uil/z sup | Sk (B) - Sk(i—l)(,B)|}
i-1

[Bl=wq

<Zlirl Zﬂr, sup Sk (B) = Skii-1) ,3)|

i-1 i-1 |Bl=eq
j 24
SAY Y sup [Sum(B) = Sy ()|
; m=1Bl=wq
d 2d-r )
§AZMrZ|ﬁS|uP |S2rm(B) = Sorem-1y(B)| " (4.44)
r=0 m=1PI=@d
Thus
2d
max sup [S, ,3)|H ’ sup |S, (,3)}”
n<2? |B| <oy

d

2 29172
< H sup |S,(B) H < E‘ sup [S.(B) ‘
; |ﬂ|§£))d| | ;{ \ﬂlfl;))d’ | }

»N

n

od-r

E|A Z 4 Z‘ sup |Sarim(B) = Sar(m-1)(B)| ‘

[Bl=wq

IA

1/2
2 }

172
A Z Ly Z H sup |Sarim(B) = Sar(m-1)(B)| Hz}

o iBl<wq

IA

M- M -

i
=)

r=0 r=0

d 1/2 d d 1/2
A Zurmf} = Z{Azu,l} — dA. (4.45)
r=0

Since v > 0 and a)zq Zizzdl |x;1>+%4 = O(o? Z?jl l;|%), (4.42) implies that

o0 max< su <a)S 2 Odzd 12
Z || n<2d p\ﬂl d| (/3)||| _ Z (5 ( + 13U) (4‘46)
= Wp) i 1|xll4d5(logd)1+v <= d>(logd)
By the Borel-Cantelli lemma, (4.39) follows from (4.46). 0

Lemma 4.7 Under the conditions of Theorem 2.2, we have:

(1) sup;gp, [Ku(B) = K(0)] = Og(Lis + By);
2) for and v > 0,K,(0) = Ous.(hy), where hy, = n'/?(log m)**(log log m) />,

Proof Observe that K;,(8) = M,(8) + N,,(8). Since n~>" = 0(B;), (1) follows from Lem-
ma 4.5 and 4.6. O
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As with the argument in (4.29), we have K,,(0) = O(/n).

Proof of Theorem 2.1 Observe that

Z W xm,Bn Xin — E(Z 4 (ei - xi];,ﬁn)xin>

i=1

n

= > (v (ei—xLBa) — E(w (e = x1,) | Fi) i

i=1
+ > AE(W (e = 8, Bu) | Fict) — EVr (e — 7, B i
i=1
= Mn(,Bn) + Nn(ﬂn)' (4~47)

By (4.47), Lemma 4.2 and Lemma 4.4, we have

sup |K (Bn) — |< sup |M (Bn) — (0)|+ sup |N,,(,3,,)—N,,(0)‘
|Bnl<dn 1Bn|<6én |Bnl=<6én

= 0, (VTu(8n) logn + %) + O(

=0, (N/ 7,(8,)logn + 6, (4.48)
This completes the proof of Theorem 2.1. d

Proof of Corollary 2.1 Take an arbitrary sequence 8, — oo, which satisfies the assumption
of Theorem 2.1. Note that

K,(0) = Z Y (en)xin — E(Z I/f(ei)xm> = Z Y (e)xin (4.49)
-1 i=1

i=1

and
Zw — o}y Bu)in — E(éw(ei —xgﬁn)xm)
Z«// = %3, B )i i:fﬂ(—xz,;/én)xm
=- Z @ (%3, Bu)%in + Op(r,) (4.50)

i=1

for |/§n| < §,. By Theorem 2.1 and (4.49), we have

(4.51)

= Z Y(e)xin + Op (mlog n+6,
i1
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By (4.50) and (4.51), we have

- Z (p(_xjj;q:én)xin + Op(rn)

(4.52)

= Z W(ei)xin + Op(\/ 7:n((()\n) 10g}’l + (Sn
i=1

By (4.52), (£) = t¢'(0) + O(£*) as t — 0,and > 1., Xipxl = =1I,, we have

_Z xmﬂn @ '(0) + O(( xmﬂn xm ZV/(ez)xm
i=1

=0, (w/r,,(&,)logn + 6,

Z |xin|4> - Op(rn)
i=1

and
Xn:xmx;go’(o)ﬁn - 2": V(e)xin
i=1 i=1
=— Z o(( xm,Bn Xin + Op <m10gn + 3y 2": |xm|4> = Op(ry).
i=1
Namely

- Z v (e)xin
i=1
= Op(v/1u(84) logn) + O, (8,1 Z o |* + Z(—xiTnﬁA,,)zxm + r,,)
i=1 i=1

n n
= 0p(V7u(8,) logn) + O (an D il + 1Bul> Y lwinl® + r,,)
\ i=1 i=1

= 0, (VTu(84) log 1) + Op (847 + 827 + 1)
= (\/r,, Ylogn + 38 r,,) (4.53)

By m(t) = O(|t|*) (t — 0) for some A > 0, we have

Tu(8,) = 2Z|xm| 1%in15) -282*Z| Xin| . (4.54)

i=1

Then it follows from (4.53) and (4.54) that

- Z V(e)%in
i=1
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= Op(VTu(84) logn + 827,,)

n
> li[226) logn + 8Zrn) (4.55)

i=1

for any 8, — oo, which implies

n n
- Z V(e)xim = Op( Z %2+ log 1 + r,,). (4.56)
i=1 i=1 O
Proof of Theorem 2.2 By Lemma 4.7, we have Theorem 2.2. d

Proof of Corollary 2.2 (1) By Lemma 4.7, we have

sup |f(n(,3n)| =< sup |f(n(,3n) _f(n(o)| + kn(o) = Oa.s.(Lﬂ + Bﬂ + hn)¢ (4'57)

[Bn|<bn |Bnl<bn

where b, = n~"2(log n)>?(log log n)/?*V. Let

n

Ou(B) =Y [p(ei— ! B) - ple)] (4.58)
i=1
and
n 1
AB) == / o(-x] B)x! pdt. (4.59)
i=1 70
Note that
1
ple) - plei—x/B) = / ¥ (ei—x; B)x; Bdt. (4.60)

By (4.57)—(4.60), we have

n

> /01[1/’(‘%‘ -] B) —o(~«] B)|x] pdt

i=1

sup |©,(B) - Au(B)| = sup
|Bul<by |Bul<by

= sup
[Bnl<bn

= Oa.s.((lfﬁ + Bfl + hn)bn) (4'61)

1
/ R.(B0)B dt‘
0

It is easy to show that b3 Y | |x;|* = O(n7,)b3 = o(nb2). By ¢(¢) = t¢'(0) + O(¢?), we have
f A = f - dt
a0 = o |3 [ ol nar

n 1
i {‘Z/O [6(0) + ¢ O)(~+7 8) + O((~! B)") ! B
i=1

|Bnl=bn
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"I
- ot A3 [Seoestaria- Sotarai]|
T =1
1, 7
:§<p (O)ZZ;xixibf,—— infbn{bZZOx xl }

=

1 n
¢/ O)Suby = 53 Y 1l b,O(1)

i=1

N =

=

@' (0)nb* liminf A,/n. (4.62)

n—00

A\ =

By m(t) = O(y/n) as t — 0, we have (L; + Bj; + h,)b, = o(nb2). Thus

inf ©,(8)= inf A,(f)- sup |©4(8) — Au(B)|

1Bnl=bn |Bul<bn
1
E (0)nb llmmfk /n+OM((L + Bj + h,)b, )
1 2. .
> 1('0 '(0)nb; liminfr,/n, as. (4.63)

By the convexity of the function ®,(-), we have

{Iﬂmf 0,(8) > go (O)nb2 hmlnfk /n}

1
= {Iﬂin_fh 0,(8) > Z(p’(O)nhi liminfk,,/n}. (4.64)

Therefore the minimizer B, satisfies B, = Ous.(by).
(2) Let | ﬁ,,| < b,. By a Taylor expansion, we have

—Zw T~ 3 [ OB + O )

i=1
=¢'(0)Z,8 + O<bi > |x,»|3>. (4.65)
i=1
Therefore (2) follows from Theorem 2.2 and (1). O
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