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Abstract
The purpose of this paper is to propose a modified proximal point algorithm for
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1 Introduction
Let (X, d) be a metric space and f : X → (–∞,∞] be a proper and convex function. One
of the most important problems in convex analysis is the convex optimization problem to
find x∗ ∈ X such that

f
(
x∗) = min

y∈X
f (y).

We denote by argminy∈X f (y) the set of minimizers of f in X.
Convex optimization provides us with algorithms for solving a variety of problems which

may appear in sciences and engineering. One of the most popular methods for approxima-
tion of a minimizer of a convex function is the proximal point algorithm (PPA), which was
introduced by Martinet [1] and Rockafellar [2] in Hilbert spaces. Indeed, let f be a proper,
convex and lower semicontinuous function on a real Hilbert space H which attains its
minimum. The PPA is defined by x1 ∈ H and

xn+1 = argmin
y∈H

(
f (y) +

1
2λn

‖y – xn‖2
)

, λn > 0,∀n ≥ 1.

It was proved that the sequence {xn} converges weakly to a minimizer of f provided
∑∞

n=1 λn = ∞. However, as shown by Güer [3], the PPA does not necessarily converges
strongly (i.e., convergence in metric) in general. For getting the strong convergence of the
proximal point algorithm, Xu [4] and Kamimura and Takahashi [5] introduced a Halpern-
type regularization of the proximal point algorithm in Hilbert spaces. They proved the
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strong convergence of Halpern proximal point algorithm under some certain conditions
on the parameters.

Recently, many convergence results by PPA for solving optimization problems have been
extended from the classical linear spaces such as Euclidean spaces,Hilbert spaces and Ba-
nach spaces to the setting of manifolds [6–9]. The minimizers of the objective convex
functionals in the spaces with nonlinearity play a crucial role in the branch of analysis and
geometry.

In 2013, Bačák [10] introduced the PPA in a CAT(0) space (X, d) as follows: x1 ∈ X and

xn+1 = argmin
y∈X

(
f (y) +

1
2λn

d(y, xn)2
)

, λn > 0,∀n ≥ 1.

Based on the concept of Fejér monotonicity, it was shown that if f has a minimizer and
∑∞

n=1 λn = ∞, then {xn} �-converges to its minimizer (see also [11]).
In 2015 Cholamjiak [12] presented the modified PPA by Halpern iteration and then

prove strong convergence theorem in the framework of CAT(0) spaces.
Very recently, Khatibzadeh et al. [13] presented a Halpern-type regularization of the

proximal point algorithm, under suitable conditions they proved that the sequence gen-
erated by the algorithm converges strongly to a minimizer of the convex function in
Hadamard spaces.

It is therefore, in this work, to continue along these lines and by using the viscosity im-
plicit rules to introduce the modified PPA in Hadamard space for solving minimization
problems. We prove that the sequence generated by the algorithm converges strongly to
a minimizer of convex objective functions. The results presented in the paper extend and
improve the main results of Martinet [1], Rockafellar [2] Bačák [10], Cholamjiak [12], Xu
[4], Kamimura and Takahashi [5], Khatibzadeh et al. [13, Theorem 4.4].

2 Preliminaries and lemmas
In order to prove the main results, the following notions, lemmas and conclusions will be
needed.

Let (X; d) be a metric space and let x, y ∈ X. A geodesic path joining x to y is an isometry
c : [0, d(x; y)] → X such that c(0) = x, c(d(x; y)) = y. The image of a geodesic path joining
x to y is called a geodesic segment between x and y. The metric space (X; d) is said to be
a geodesic space, if every two points of X are joined by a geodesic, and X is said to be
uniquely geodesic space, if there is exactly one geodesic joining x and y for each x, y ∈ X.

A geodesic space (X; d) is a CAT(0) space, if and only if

d2((1 – t)x ⊕ ty, z
) ≤ (1 – t)d2(x, z) + td2(y, z) – t(1 – t)d2(x, y) (2.1)

for all x, y, z ∈ X and all t ∈ [0, 1] [14].
It is well known that any complete and simply connected Riemannian manifold having

non-positive sectional curvature is a CAT(0) space. Other examples of CAT(0) spaces in-
clude pre-Hilbert spaces [15], R-trees, Euclidean buildings [16]. A complete CAT(0) space
is often called a Hadamard space. We write (1 – t)x ⊕ ty for the unique point z in the
geodesic segment joining from x to y such that d(x, z) = td(x, y) and d(y, z) = (1 – t)d(x, y).
We also denote by [x, y] the geodesic segment joining x to y, that is, [x, y] = {(1 – t)x ⊕ ty :
0 ≤ t ≤ 1}. A subset C of a CAT(0) space is convex if [x, y] ⊂ C for all x, y ∈ C.
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For a thorough discussion of CAT(0) spaces, some fundamental geometric properties
and important conclusions, we refer to Bridson and Haefliger [15, 16].

The following lemmas play an important role in proving our main results.

Lemma 2.1 ([17]) Let X be a CAT(0) space. For all x, y, z ∈ X and t, s ∈ [0, 1], we have the
following:

(1) d(tx ⊕ (1 – t)y, z) ≤ td(x, z) + (1 – t)d(y, z);
(2) d(tx ⊕ (1 – t)y, sx ⊕ (1 – s)y) = |t – s|d(x, y);
(3) d(tx ⊕ (1 – t)y, tu ⊕ (1 – t)w) ≤ td(x, u) + (1 – t)d(y, w).

Berg and Nikolaev [18] introduced the following concept of quasi-linearization in
CAT(0) space X:

• Denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector. Quasi-linearization in CAT(0)

space X is defined as a mapping 〈·, ·〉 : (X × X) × (X × X) →R such that

〈−→ab,
−→
cd〉 =

1
2
(
d2(a, d) + d2(b, c) – d2(a, c) – d2(b, d)

)
(2.2)

for all a, b, c, d ∈ X .
• We say that X satisfies the Cauchy–Schwarz inequality if

〈−→ab,
−→
cd〉 ≤ d(a, b)d(c, d), ∀a, b, c, d ∈ X. (2.3)

It is well known [18, Corollary 3] that a geodesically connected metric space is a
CAT(0) space if and only if it satisfies the Cauchy–Schwarz inequality.

• By using quasi-linearization, Ahmadi Kakavandi [19] proved that {xn} �-converges to
x ∈ X if and only if

lim sup
n→∞

〈−→xxn,−→xy〉 ≤ 0, ∀y ∈ X. (2.4)

• Let C be a nonempty closed convex subset of a complete CAT(0) space X (i.e., a
Hadamard space). The metric projection PC : X → C is defined by

u = PC(x) ⇐⇒ d(u, x) = inf
{

d(y, x) : y ∈ C
}

, x ∈ X. (2.5)

Lemma 2.2 ([18]) Let C be a nonempty closed and convex subset of a Hadamard space X,
x ∈ X and u ∈ C. Then u = PC(x) if and only if

〈−→yu,−→ux〉 ≥ 0, ∀y ∈ C. (2.6)

Let C be a convex subset of a CAT(0) space X. Recall that a function f : C → (–∞,∞] is
said to be convex if, for any geodesic γ : [a, b] → C, the function f ◦ γ is convex, i.e.,

f
(
γ [a, b]

)
:= f

(
(1 – t)a ⊕ tb

) ≤ (1 – t)f (a) + tf (b), ∀a, b ∈ C and t ∈ (0, 1). (2.7)



Chang et al. Journal of Inequalities and Applications  (2018) 2018:124 Page 4 of 10

Some important examples of convex functions can be found in [15]. For r > 0, define the
Moreau–Yosida resolvent of f in CAT(0) spaces as

Jr(x) = argmin
y∈X

(
f (y) +

1
2r

d2(y, x)
)

(2.8)

for all x ∈ X (see [20]). The mapping Jr is well defined for all r > 0 (see [20]).

Lemma 2.3 ([11]) Let (X, d) be a Hadamard space and f : X → (–∞,∞] be a proper,
convex and lower semicontinuous function. Then, for every r > 0:

(1) the resolvent Jr is firmly nonexpansive, that is,

d(Jrx, Jry) ≤ d
(
(1 – λ)x ⊕ λJrx, (1 – λ)y ⊕ λJry

)

for all x, y ∈ X and for all λ ∈ (0, 1);
(2) the set Fix(Jr) of fixed points of the resolvent Jr associated with f coincides with the set

argminy∈X f (y) of minimizers of f .

Remark 2.4 Every firmly nonexpansive mapping is nonexpansive. Hence Jr is a nonexpan-
sive mapping.

Lemma 2.5 ([21]) Let X be a CAT(0) space, C be a nonempty closed and convex subset of X
and T : C → C be a nonexpansive mapping. For any contraction φ : C → C and t ∈ (0, 1),
let xt ∈ C be the unique fixed point of the contraction x �→ tf (x) ⊕ (1 – t)Tx, i.e.,

xt = tφ(xt) ⊕ (1 – t)Txt . (2.9)

Then {xt} converge strongly as t → 0 to a point x∗ such that

x∗ = PFix(T)φ
(
x∗),

which is the unique solution to the following variational inequality:

〈−−−−→
x∗φ

(
x∗),

−→
xx∗〉 ≥ 0, ∀x ∈ Fix(T). (2.10)

Lemma 2.6 ([22]) Let {an} be a sequence of nonnegative real numbers satisfying

an+1 ≤ (1 – γn)an + δn (2.11)

for all n ≥ 0, where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that:
(a)

∑∞
n=1 γn = ∞;

(b) lim supn→∞
δn
γn

≤ 0 or
∑∞

n=1 |δn| < ∞.
Then limn→∞ an = 0.

3 The main results
Now, we are in a position to give the main results in this paper.
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Theorem 3.1 Let C be a nonempty closed and convex subset of a Hadamard space X. Let
r > 0, and f : C → (–∞,∞] be a proper, convex and lower semicontinuous function with
Fix(Jr) �= ∅, where Jr is the Moreau–Yosida resolvent of f defined by

Jr(x) = argmin
y∈C

(
f (y) +

1
2r

d2(y, x)
)

.

Let φ : C → C be a contraction with the contractive coefficient k ∈ [0, 1) and, for arbitrary
initial point x0 ∈ C, let {xn} be the implicit iterative sequence generated by

xn+1 = αnφ(xn) ⊕ (1 – αn)Jr
(
βnxn ⊕ (1 – βn)xn+1

)
(3.1)

for all n ≥ 0, where αn ∈ (0, 1), βn ∈ [0, 1] satisfy the following conditions:
(a) limn→∞ αn = 0;
(b)

∑∞
n=0 αn = ∞;

(c) |αn–αn–1|
α2

n
→ 0 as n → ∞.

Then the sequence {xn} converges strongly to x∗ = PFix(Jr )φ(x∗), which is a fixed point of Jr

(therefore, by Lemma 2.3, it is a minimizer of f ) and it is also a solution of the following
variational inequality:

〈−−−−→
x∗φ

(
x∗),

−→
xx∗〉 ≥ 0, ∀x ∈ Fix(Jr).

Proof We divide the proof into four steps.
Step 1. First, we prove that the sequence {xn} defined by (3.1) is well defined. In fact, for

arbitrarily given u ∈ C, the mapping

x �→ Tu(x) := αφ(u) ⊕ (1 – α)Jr
(
βu ⊕ (1 – β)x

)
, x ∈ C, and α ∈ (0, 1),β ∈ [0, 1] (3.2)

is a contraction with the contractive constant 1 – α.
Indeed, it follows from Lemma 2.1 and Lemma 2.3 that, for any x, y ∈ C,

d(Tux, Tuy)

= d
(
αφ(u) ⊕ (1 – α)Jr

(
βu ⊕ (1 – β)x

)
,αφ(u) ⊕ (1 – α)Jr

(
βu ⊕ (1 – β)y

))

≤ (1 – α)d
(
Jr
(
βu ⊕ (1 – β)x

)
, Jr

(
βu ⊕ (1 – β)y

))

≤ (1 – α)(1 – β)d(x, y) ≤ (1 – α)d(x, y).

This implies that the mapping Tu : C → C is a contraction. Hence the implicit iterative
sequence {xn} defined by (3.1) is well defined.

Step 2. Next, we prove that {xn} is bounded.
In fact, taking p ∈ Fix(Jr), we have

d(xn+1, p)

= d
(
αnφ(xn) ⊕ (1 – αn)Jr

(
βnxn ⊕ (1 – βn)xn+1

)
, p

)

≤ αnd
(
φ(xn), p

)
+ (1 – αn)d

(
Jr
(
βnxn ⊕ (1 – βn)xn+1

)
, p

)
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≤ αn
(
d
(
φ(xn),φ(p)

)
+ d

(
φ(p), p

))
+ (1 – αn)d

(
Jr
(
βnxn ⊕ (1 – βn)xn+1

)
, Jr(p)

)

≤ αnkd(xn, p) + αnd
(
φ(p), p

)
+ (1 – αn)

(
βnd(xn, p) + (1 – βn)d(xn+1, p)

)
,

which implies that

d(xn+1, p) ≤ 1
αn + (1 – αn)βn

{(
αnk + (1 – αn)βn

)
x(xn, p) + αnd

(
φ(p), p

)}

=
(

1 –
αn(1 – k)

αn + (1 – αn)βn

)
d(xn, p) +

αn(1 – k)d(φ(p), p)
(αn + (1 – αn)βn)(1 – k)

≤ max

{
d(xn, p),

d(φ(p), p)
1 – k

}
.

By induction, we can prove that

d(xn, p) ≤ max

{
d(x0, p),

d(φ(p), p)
1 – k

}

for all n ≥ 0. This implies that {xn} is bounded and so are {φ(xn)} and {Jr(βnxn ⊕ (1 –
βn)xn+1)}.

Step 3. Next, we prove that the sequence {xn} converges strongly to some point in Fix(Jr).
Letting

zn = αnφ(zn) ⊕ (1 – αn)Jrzn (3.3)

for all n ≥ 0. By Lemma 2.5, the sequence {zn} converges strongly as n → ∞ to a point
x∗ = PFix(Jr )φ(x∗), which is the unique solution to the following variational inequality:

〈−−−−→
x∗φ

(
x∗),

−→
xx∗〉 ≥ 0, ∀x ∈ Fix(Jr). (3.4)

On the other hand, it follows from (3.1), Lemma 2.3 and Lemma 2.1 that

d(xn+1, zn)

= d
(
αnφ(xn) ⊕ (1 – αn)Jr

(
βnxn ⊕ (1 – βn)xn+1

)
,αnφ(zn) ⊕ (1 – αn)Jrzn

)

≤ αnd
(
φ(xn),φ(zn)

)
+ (1 – αn)d

(
Jr
(
βnxn ⊕ (1 – βn)xn+1

)
, Jrzn

)

≤ αnkd(xn, zn) + (1 – αn)
(
βnd(xn, zn) + (1 – βn)d(xn+1, zn)

)
,

which implies that

d(xn+1, zn) ≤ αnk + (1 – αn)βn

αn + (1 – αn)βn
d(xn, zn)

=
(

1 –
αn(1 – k)

αn + (1 – αn)βn

)
d(xn, zn)

≤ (
1 – αn(1 – k)

)(
d(xn, zn–1) + d(zn–1, zn)

)

≤ (
1 – αn(1 – k)

)
d(xn, zn–1) + d(zn–1, zn). (3.5)
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In order to use Lemma 2.6, it should be proved that

lim sup
n→∞

d(zn–1, zn)
αn(1 – k)

≤ 0. (3.6)

In fact, by Lemma 2.1 and Lemma 2.3, we have

d(zn, zn–1)

= d
(
αnφ(zn) ⊕ (1 – αn)Jrzn,αn–1φ(zn–1) ⊕ (1 – αn–1)Jrzn–1

)

≤ d
(
αnφ(zn) ⊕ (1 – αn)Jrzn,αnφ(zn) ⊕ (1 – αn)Jrzn–1

)

+ d
(
αnφ(zn) ⊕ (1 – αn)Jrzn–1,αnφ(zn–1) ⊕ (1 – αn)Jrzn–1

)

+ d
(
αnφ(zn–1) ⊕ (1 – αn)Jrzn–1,αn–1φ(zn–1) ⊕ (1 – αn–1)Jrzn–1

)

≤ (1 – αn)d(Jrzn, Jrzn–1) + αnd
(
φ(zn),φ(zn–1)

)
+ |αn – αn–1|d

(
φ(zn–1), Jrzn–1

)

≤ (1 – αn)d(zn, zn–1) + αnkd(zn, zn–1) + |αn – αn–1|M,

where M = supn≥1 d(φ(zn–1), Jrzn–1), which implies that

d(zn, zn–1) ≤ 1
αn(1 – k)

|αn – αn–1|M.

By the condition (c), we have

lim sup
n→∞

d(zn–1, zn)
αn(1 – k)

≤ lim sup
n→∞

|αn – αn–1|M
α2

n(1 – k)2 = 0.

Hence (3.6) is proved. By Lemma 2.6 and (3.5), it follows that

lim
n→∞ d(xn+1, zn) = 0.

Since zn → x∗ = PFix(Jr )φ(x∗), this implies that xn → x∗ ∈ Fix(Jr). By Lemma 2.3, x∗ ∈
argminy∈C f (y) and x∗ is also the unique solution of the variational inequality (3.4).

This completes the proof. �

Remark An simple example of a sequence {αn} satisfying conditions (a)–(c) is given by
{αn = 1/nσ }, where 0 < σ < 1.

Looking at the proof of Theorem 3.1, we only use the fact that the resolvent operator
Jr is nonexpansive. If we replace the resolvent operator Jr with a nonexpansive mapping
T : C → C in Theorem 3.1, then we can obtain the following.

Theorem 3.2 Let C be a nonempty closed and convex subset of a Hadamard space X. Let
T : C → C be a nonexpansive mapping with Fix(T) �= ∅. Let φ : C → C be a contraction
with the contractive coefficient k ∈ [0, 1) and, for arbitrary initial point x0 ∈ C, let {xn} be
the implicit iterative sequence generated by

xn+1 = αnφ(xn) ⊕ (1 – αn)T
(
βnxn ⊕ (1 – βn)xn+1

)
(3.7)
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for all n ≥ 0, where αn ∈ (0, 1),βn ∈ [0, 1] satisfy the following conditions:
(a) limn→∞ αn = 0;
(b)

∑∞
n=0 αn = ∞;

(c) |αn–αn–1|
α2

n
→ 0 as n → ∞.

Then the sequence {xn} converges strongly to x∗ = PFix(T)φ(x∗), which is a fixed point of T
and it is also a solution of the following variational inequality:

〈−−−−→
x∗φ

(
x∗),

−→
xx∗〉 ≥ 0, ∀x ∈ Fix(T).

Since every Hilbert space is a Hadamard space, the following result can be obtained from
Theorem 3.1 immediately.

Theorem 3.3 Let C be a nonempty closed and convex subset of a real Hilbert H . Let r > 0,
and f : C → (–∞,∞] be a proper, convex and lower semicontinuous function with Fix(Jr) �=
∅, where Jr is the Moreau–Yosida resolvent of f defined by

Jr(x) = argmin
y∈C

(
f (y) +

1
2r

d2(y, x)
)

.

Let φ : C → C be a contraction with the contractive coefficient k ∈ [0, 1) and, for arbitrary
initial point x0 ∈ C, let {xn} be the sequence generated by

xn+1 = αnφ(xn) + (1 – αn)Jr
(
βnxn + (1 – βn)xn+1

)
(3.8)

for all n ≥ 0, where αn ∈ (0, 1), βn ∈ [0, 1] satisfy the conditions (a)–(c) in Theorem 3.1. Then
the conclusions in Theorem 3.1 still hold.

4 Applications
In this section, we shall utilize the results presented in the paper to study a class of inclu-
sion problems in Hilbert space.

Let H be a real Hilbert space and f : H → (–∞,∞] be a proper and convex lower semi-
continuous function. Now we consider the following inclusion problem: to find a point
x∗ ∈ H such that

x∗ ∈ (∂f )–1(0), (4.1)

where ∂f is the subdifferential of f . By Fermat’s theorem (see Rockafellar [2]), it is easy to
see that

x∗ ∈ (∂f )–1(0) ⇔ x∗ ∈ Fix
(
J∂f
r

) ⇔ f
(
x∗) = min

y∈H
f (y), (4.2)

where J∂f
r is the resolvent associated with ∂f defined by

J∂f
r (x) := (I + r∂f )–1(x), x ∈ H , r > 0, (4.3)

where I stands for the identity mapping on H .
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We note that, for all r > 0, the resolvent mapping J∂f
r is a single-valued nonexpansive

mapping.
Therefore the following result can be obtained from Theorem 3.2 immediately.

Theorem 4.1 Let H be a real Hilbert space, r > 0 and f : H → (–∞,∞] be a proper, con-
vex and lower semicontinuous function with Fix(J∂f

r ) �= ∅. Let φ : H → H be a contraction
with the contractive coefficient k ∈ [0, 1). For arbitrary initial point x0 ∈ H , let {xn} be the
sequence generated by

xn+1 = αnφ(xn) + (1 – αn)J∂f
r

(
βnxn + (1 – βn)xn+1

)
, n ≥ 0, (4.4)

where αn ∈ (0, 1), βn ∈ [0, 1] satisfy the conditions (a)–(c) in Theorem 3.2. Then {xn} con-
verges strongly to a point x∗ ∈ H which is a solution of inclusion problem (4.1), also it is a
minimizer of f in H .

Similarly, by using the same method mentioned above, we can study the monotone vari-
ational inclusion problem (in short, (MVIP)) in real Hilbert space H to find a point x∗ ∈ H
such that

0 ∈ M
(
x∗), (4.5)

where M : H → 2H is a maximal monotone mapping.
It is easy to see that the problem (MVIP) (4.5) is equivalent to find x∗ ∈ H such that

x∗ ∈ Fix
(
JM
r

)
, r > 0,

where JM
r is the resolvent associated with M defined by

JM
r (x) = (I + rM)–1(x), x ∈ H , (4.6)

which is nonexpansive. Replacing the resolvent J∂f
r by the resolvent JM

r in Theorem 4.1, we
have the following.

Theorem 4.2 Let H be a real Hilbert H . Let r > 0, and M : H → 2H be a maximal mono-
tone mapping with Fix(JM

r ) �= ∅. Let φ : H → H be a contraction with the contractive coef-
ficient k ∈ [0, 1). For arbitrary initial point x0 ∈ H , let {xn} be the sequence generated by

xn+1 = αnφ(xn) + (1 – αn)JM
r

(
βnxn + (1 – βn)xn+1

)
, n ≥ 0, (4.7)

where αn ∈ (0, 1), βn ∈ [0, 1] satisfy the conditions (a)–(c) in Theorem 4.1. Then {xn} con-
verges strongly to a point x∗ ∈ H which is a solution of inclusion problem (4.5).
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