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Abstract
Let r ≥ 1, 1≤ p < 2, and α,β > 0 with 1/α + 1/β = 1/p. Let {ank , 1 ≤ k ≤ n,n≥ 1} be
an array of constants satisfying supn≥1 n

–1 ∑n
k=1 |ank|α <∞, and let {Xn,n ≥ 1} be a

sequence of identically distributed ρ∗-mixing random variables. For each of the three
cases α < rp, α = rp, and α > rp, we provide moment conditions under which

∞∑

n=1

nr–2P

{

max
1≤m≤n

∣
∣
∣
∣

m∑

k=1

ankXk

∣
∣
∣
∣ > εn1/p

}

< ∞, ∀ε > 0.

We also provide moment conditions under which

∞∑

n=1

nr–2–q/pE

(

max
1≤m≤n

∣
∣
∣
∣

m∑

k=1

ankXk

∣
∣
∣
∣ – εn1/p

)q

+

<∞, ∀ε > 0,

where q > 0. Our results improve and generalize those of Sung (Discrete Dyn. Nat. Soc.
2010:630608, 2010) and Wu et al. (Stat. Probab. Lett. 127:55–66, 2017).
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1 Introduction
Due to the estimation of least squares regression coefficients in linear regression and non-
parametric curve estimation, it is very interesting and meaningful to study the limit be-
haviors for the weighted sums of random variables.

We recall the concept of ρ∗-mixing random variables.

Definition 1.1 Let {Xn, n ≥ 1} be a sequence of random variables defined on a probability
space (�,F , P). For any S ⊂ N = {1, 2, . . .}, define FS = σ (Xi, i ∈ S). Given two σ -algebras
A and B in F , put

ρ(A,B) = sup

{
EXY – EXEY

√
E(X – EX)2E(Y – EY )2

: X ∈ L2(A), Y ∈ L2(B)
}

.
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Define the ρ∗-mixing coefficients by

ρ∗
n = sup

{
ρ(FS,FT ) : S, T ⊂ N with dist(S, T) ≥ n

}
,

where dist(S, T) = inf{|s – t| : s ∈ S, t ∈ T}. Obviously, 0 ≤ ρ∗
n+1 ≤ ρ∗

n ≤ ρ∗
0 = 1. Then the

sequence {Xn, n ≥ 1} is called ρ∗-mixing if there exists k ∈ N such that ρ∗
k < 1.

A number of limit results for ρ∗-mixing sequences of random variables have been es-
tablished by many authors. We refer to Bradley [3] for the central limit theorem, Bryc and
Smolenski [4], Peligrad and Gut [5], and Utev and Peligrad [6] for the moment inequalities,
and Sung [1] for the complete convergence of weighted sums.

Special cases for weighted sums have been studied by Bai and Cheng [7], Chen et al.
[8], Choi and Sung [9], Chow [10], Cuzick [11], Sung [12], Thrum [13], and others. In this
paper, we focus on the array weights {ank , 1 ≤ k ≤ n, n ≥ 1} of real numbers satisfying

sup
n≥1

n–1
n∑

k=1

|ank|α < ∞ (1.1)

for some α > 0. In fact, under condition (1.1), many authors have studied the limit behav-
iors for the weighted sums of random variables.

Let {X, Xn, n ≥ 1} be a sequence of independent and identically distributed random vari-
ables. When α = 2, Chow [10] showed that the Kolmogorov strong law of large numbers

n–1
n∑

k=1

ankXk → 0 a.s. (1.2)

holds if EX = 0 and EX2 < ∞. Cuzick [11] generalized Chow’s result by showing that (1.2)
also holds if EX = 0 and E|X|β < ∞ for β > 0 with 1/α + 1/β = 1. Bai and Cheng [7] proved
that the Marcinkiewicz–Zygmund strong law of large numbers

n–1/p
n∑

k=1

ankXk → 0 a.s. (1.3)

holds if EX = 0 and E|X|β < ∞, where 1 ≤ p < 2 and 1/α + 1/β = 1/p. Chen and Gan [14]
showed that if 0 < p < 1 and E|X|β < ∞, then (1.3) still holds without the independent
assumption.

Under condition (1.1), a convergence rate in the strong law of large numbers is also
discussed. Chen [15] showed that

∞∑

n=1

nr–2P

{

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ankXk

∣
∣
∣
∣
∣

> εn1/p

}

< ∞, ∀ε > 0, (1.4)

if {X, Xn, n ≥ 1} is a sequence of identically distributed negatively associated (NA) random
variables with EX = 0 and E|X|(r–1)β < ∞, where r > 1, 1 ≤ p < 2, 1/α + 1/β = 1/p, and
α < rp. The main tool used in Chen [15] is the exponential inequality for NA random
variables (see Theorem 3 in Shao [16]). Sung [1] proved (1.4) for a sequence of identically
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distributed ρ∗-mixing random variables with EX = 0 and E|X|rp < ∞, where α > rp, by
using the Rosenthal moment inequality. Since the Rosenthal moment inequality for NA
has been established by Shao [16], it is easy to see that Sung’s result also holds for NA
random variables. However, for ρ∗-mixing random variables, we do not know whether
the corresponding exponential inequality holds or not, and so the method of Chen [15]
does not work for ρ∗-mixing random variables. On the other hand, the method of Sung
[1] is complex and not applicable to the case α ≤ rp.

In this paper, we show that (1.4) holds for a sequence of identically distributed ρ∗-mixing
random variables with suitable moment conditions. The moment conditions for the cases
α < rp and α > rp are optimal. The moment conditions for α = rp are nearly optimal. Al-
though the main tool is the Rosenthal moment inequality for ρ∗-mixing random variables,
our method is simpler than that of Sung [1] even in the case α > rp.

We also extend (1.4) to complete moment convergence, that is, we provide moment
conditions under which

∞∑

n=1

nr–2–q/pE

(

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ankXk

∣
∣
∣
∣
∣

– εn1/p

)q

+

< ∞, ∀ε > 0, (1.5)

where q > 0.
Note that if (1.5) holds for some q > 0, then (1.4) also holds. The proof is well known.
Throughout this paper, C always stands for a positive constant that may differ from

one place to another. For events A and B, we denote I(A, B) = I(A ∩ B), where I(A) is the
indicator function of an event A.

2 Preliminary lemmas
To prove the main results, we need the following lemmas. The first one belongs to Utev
and Peligrad [6].

Lemma 2.1 Let q ≥ 2, and let {Xn, n ≥ 1} be a sequence of ρ∗-mixing random variables
with EXn = 0 and E|Xn|q < ∞ for every n ≥ 1. Then for all n ≥ 1,

E max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

Xk

∣
∣
∣
∣
∣

q

≤ Cq

{ n∑

k=1

E|Xk|q +

( n∑

k=1

E|Xk|2
)q/2}

,

where Cq > 0 depends only on q and the ρ∗-mixing coefficients.

Remark 2.1 By the Hölder inequality, (1.1) implies that

sup
n≥1

n–1
n∑

k=1

|ank|s < ∞

for any 0 < s ≤ α, and

sup
n≥1

n–q/α
n∑

k=1

|ank|q < ∞

for any q > α. These properties will be used in the proofs of the following lemmas and
main results.
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Lemma 2.2 Let r ≥ 1, 0 < p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, and let X be a random
variable. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). Then

∞∑

n=1

nr–2
n∑

k=1

P
{|ankX| > n1/p} ≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp,

CE|X|rp if α > rp.

(2.1)

Proof Case 1: α ≤ rp. We observe by the Markov inequality that, for any s > 0,

P
{|ankX| > n1/p}

= P
{|ankX| > n1/p, |X| > n1/β}

+ P
{|ankX| > n1/p, |X| ≤ n1/β}

≤ n–α/p|ank|αE|X|αI
(|X| > n1/β)

+ n–s/p|ank|sE|X|sI(|X| ≤ n1/β)
. (2.2)

It is easy to show that

∞∑

n=1

nr–2 · n–α/p

( n∑

k=1

|ank|α
)

E|X|αI
(|X| > n1/β)

≤ C
∞∑

n=1

nr–1–α/pE|X|αI
(|X| > n1/β)

≤
⎧
⎨

⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp.
(2.3)

Taking s > max{α, (r – 1)β}, we have that

∞∑

n=1

nr–2 · n–s/p

( n∑

k=1

|ank|s
)

E|X|sI(|X| ≤ n1/β)

≤ C
∞∑

n=1

nr–2–s/p+s/αE|X|sI(|X| ≤ n1/β)

= C
∞∑

n=1

nr–2–s/βE|X|sI(|X| ≤ n1/β)

≤ CE|X|(r–1)β , (2.4)

since s > (r – 1)β . Then (2.1) holds by (2.2)–(2.4).
Case 2: α > rp. The proof is similar to that of Case 1. However, we use a different trun-

cation for X. We observe by the Markov inequality that, for any t > 0,

P
{|ankX| > n1/p}

= P
{|ankX| > n1/p, |X| > n1/p} + P

{|ankX| > n1/p, |X| ≤ n1/p}

≤ n–t/p|ank|tE|X|tI(|X| > n1/p) + n–α/p|ank|αE|X|αI
(|X| ≤ n1/p). (2.5)
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Taking 0 < t < rp, we have that

∞∑

n=1

nr–2 · n–t/p

( n∑

k=1

|ank|t
)

E|X|tI(|X| > n1/p)

≤ C
∞∑

n=1

nr–1–t/pE|X|tI(|X| > n1/p)

≤ CE|X|rp. (2.6)

It is easy to show that

∞∑

n=1

nr–2 · n–α/p

( n∑

k=1

|ank|α
)

E|X|αI
(|X| ≤ n1/p)

≤ C
∞∑

n=1

nr–1–α/pE|X|αI
(|X| ≤ n1/p)

≤ CE|X|rp, (2.7)

since α > rp. Then (2.1) holds by (2.5)–(2.7). �

Lemma 2.3 Let r ≥ 1, 0 < p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, and let X be a random
variable. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). Then, for any
s > max{α, (r – 1)β},

∞∑

n=1

nr–2–s/p
n∑

k=1

E|ankX|sI(|ankX| ≤ n1/p)

≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp,

CE|X|rp if α > rp.

(2.8)

Proof Case 1: α ≤ rp. By (2.3) and (2.4) we get that

∞∑

n=1

nr–2–s/p
n∑

k=1

E|ankX|sI(|ankX| ≤ n1/p)

=
∞∑

n=1

nr–2–s/p
n∑

k=1

E|ankX|sI(|ankX| ≤ n1/p, |X| > n1/β)

+
∞∑

n=1

nr–2–s/p
n∑

k=1

E|ankX|sI(|ankX| ≤ n1/p, |X| ≤ n1/β)

≤
∞∑

n=1

nr–2–s/pn(s–α)/p
n∑

k=1

E|ankX|αI
(|X| > n1/β)

+
∞∑

n=1

nr–2–s/p
n∑

k=1

E|ankX|sI(|X| ≤ n1/β)
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≤
⎧
⎨

⎩

CE|X|(r–1)β if α < rp,

CE|X|(r–1)β log(1 + |X|) if α = rp.

Case 2: α > rp. Taking 0 < t < rp, we have by (2.6) and (2.7) that

∞∑

n=1

nr–2–s/p
n∑

k=1

E|ankX|sI(|ankX| ≤ n1/p)

=
∞∑

n=1

nr–2–s/p
n∑

k=1

E|ankX|sI(|ankX| ≤ n1/p, |X| > n1/p)

+
∞∑

n=1

nr–2–s/p
n∑

k=1

E|ankX|sI(|ankX| ≤ n1/p, |X| ≤ n1/p)

≤
∞∑

n=1

nr–2–s/pn(s–t)/p
n∑

k=1

E|ankX|tI(|X| > n1/p)

+
∞∑

n=1

nr–2–s/pn(s–α)/p
n∑

k=1

E|ankX|αI
(|X| ≤ n1/p)

≤ CE|X|rp.

Therefore (2.8) holds. �

The following lemma is a counterpart of Lemma 2.3. The truncation for |ankX| is re-
versed.

Lemma 2.4 Let q > 0, r ≥ 1, 0 < p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, and let X be a
random variable. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). Then
the following statements hold.

(1) If α < rp, then

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p)

≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if q < (r – 1)β ,

CE|X|(r–1)β log(1 + |X|) if q = (r – 1)β ,

CE|X|q if q > (r – 1)β .

(2.9)

(2) If α = rp, then

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p)

≤
⎧
⎨

⎩

CE|X|(r–1)β log(1 + |X|) if q ≤ α = rp,

CE|X|q if q > α = rp.
(2.10)
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(3) If α > rp, then

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p)

≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|rp if q < rp,

CE|X|rp log(1 + |X|) if q = rp,

CE|X|q if q > rp.

(2.11)

Proof Without loss of generality, we may assume that n–1 ∑n
k=1 |ank|α ≤ 1 for all n ≥ 1.

From this we have that |ank| ≤ n1/α for all 1 ≤ k ≤ n and n ≥ 1.
(1) In this case, we have that α < rp < (r – 1)β . If 0 < q < α, then

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p)

≤
∞∑

n=1

nr–2–q/pn–(α–q)/p
n∑

k=1

E|ankX|αI
(|ankX| > n1/p)

≤
∞∑

n=1

nr–2–q/pn–(α–q)/p
n∑

k=1

E|ankX|αI
(∣
∣n1/αX

∣
∣ > n1/p)

≤ C
∞∑

n=1

nr–1–α/pE|X|αI
(|X| > n1/β)

= C
∞∑

i=1

E|X|αI
(
i1/β < |X| ≤ (i + 1)1/β) i∑

n=1

nr–1–α/p

≤ CE|X|(r–1)β . (2.12)

If q ≥ α, then

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p)

≤
∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(∣
∣n1/αX

∣
∣ > n1/p)

=
∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|X| > n1/β)

≤ C
∞∑

n=1

nr–2–q/p+q/αE|X|qI
(|X| > n1/β)

= C
∞∑

i=1

E|X|qI
(
i1/β < |X| ≤ (i + 1)1/β) i∑

n=1

nr–2–q/β

≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|(r–1)β if α ≤ q < (r – 1)β ,

CE|X|(r–1)β log(1 + |X|) if q = (r – 1)β ,

CE|X|q if q > (r – 1)β .

(2.13)

Combining (2.12) and (2.13) gives (2.9).
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(2) In this case, we have that α = rp = (r – 1)β . If q ≤ α = rp = (r – 1)β , then

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p)

≤
∞∑

n=1

nr–2–q/p+(q–α)/p
n∑

k=1

E|ankX|αI
(∣
∣n1/αX

∣
∣ > n1/p)

≤ C
∞∑

n=1

nr–1–α/pE|X|αI
(|X| > nβ

)

= C
∞∑

n=1

n–1E|X|αI
(|X| > nβ

)

= C
∞∑

i=1

E|X|αI
(
iβ < |X| ≤ (i + 1)β

) i∑

n=1

n–1

≤ CE|X|(r–1)β log
(
1 + |X|). (2.14)

If q > α = rp = (r – 1)β , then

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p)

≤ C
∞∑

n=1

nr–2–q/pnq/αE|X|q ≤ CE|X|q. (2.15)

Combining (2.14) and (2.15) gives (2.10).
(3) In this case, we have that (r – 1)β < rp < α. If q ≤ rp, then

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p)

=
∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p, |X| > n1/p)

+
∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p, |X| ≤ n1/p)

≤
∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|X| > n1/p)

+
∞∑

n=1

nr–2–q/pn–(α–q)/p
n∑

k=1

E|ankX|αI
(|X| ≤ n1/p)

≤ C
∞∑

n=1

nr–1–q/pE|X|qI
(|X| > n1/p)

+ C
∞∑

n=1

nr–1–α/pE|X|αI
(|X| ≤ n1/p)
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= C
∞∑

i=1

E|X|qI
(
i1/p < |X| ≤ (i + 1)1/p)

i∑

n=1

nr–1–q/p

+ C
∞∑

i=1

E|X|αI
(
(i – 1)1/p < |X| ≤ i1/p)

∞∑

n=i

nr–1–α/p

≤
⎧
⎨

⎩

CE|X|rp if q < rp,

CE|X|rp log(1 + |X|) if q = rp.
(2.16)

If rp < q < α, then

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p)

≤ C
∞∑

n=1

nr–1–q/pE|X|q ≤ CE|X|q. (2.17)

If q ≥ α, then

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankX|qI
(|ankX| > n1/p)

≤ C
∞∑

n=1

nr–2–q/pnq/αE|X|q ≤ CE|X|q, (2.18)

since q ≥ α > (r – 1)β .
Combining (2.16)–(2.18) gives (2.11). �

Lemma 2.5 Let 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p, and let X be a random vari-
able. Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). If E|X|p < ∞, then

n–1/p
n∑

k=1

E|ankX|I(|ankX| > n1/p) → 0 (2.19)

as n → ∞, and hence, in addition, if EX = 0, then

n–1/p max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ankEXI
(|ankX| ≤ n1/p)

∣
∣
∣
∣
∣
→ 0 (2.20)

as n → ∞.

Proof Denote Aα = supn≥1 n–1 ∑n
k=1 |ank|α . Then |ank| ≤ An1/α for all 1 ≤ k ≤ n and n ≥ 1.

It follows that

n–1/p
n∑

k=1

E|ankX|I(|ankX| > n1/p)

≤ n–1
n∑

k=1

E|ankX|pI
(|ankX| > n1/p)
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≤ n–1

( n∑

k=1

|ank|p
)

E|X|pI
(|AX| > n1/β)

≤ CE|X|pI
(|AX| > n1/β) → 0 (2.21)

as n → ∞. Hence (2.19) holds.
If, in addition, EX = 0, then we get by (2.21) that

n–1/p max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ankEXI
(|ankX| ≤ n1/p)

∣
∣
∣
∣
∣

= n–1/p max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ankEXI
(|ankX| > n1/p)

∣
∣
∣
∣
∣

≤ n–1/p
n∑

k=1

E|ankX|I(|ankX| > n1/p) → 0

as n → ∞. Hence (2.20) holds. �

The following lemma shows that if 0 < p < 1, then (2.20) holds without the condition
EX = 0.

Lemma 2.6 Let 0 < p < 1, α > 0, β > 0 with 1/α+1/β = 1/p, and let X be a random variable.
Let {ank , 1 ≤ k ≤ n, n ≥ 1} be an array of constants satisfying (1.1). If E|X|p < ∞, then

n–1/p
n∑

k=1

E|ankX|I(|ankX| ≤ n1/p) → 0

as n → ∞, and hence (2.20) holds.

Proof Note that

n–1/p
n∑

k=1

E|ankX|I(|ankX| ≤ n1/p)

= n–1/p
n∑

k=1

E|ankX|I(|ankX| ≤ n1/p, |X| > n1/β)

+ n–1/p
n∑

k=1

E|ankX|I(|ankX| ≤ n1/p, |X| ≤ n1/β)

≤ n–1/pn(1–p)/p
n∑

k=1

E|ankX|pI
(|X| > n1/β)

+ n–1/p
n∑

k=1

E|ankX|I(|X| ≤ n1/β)

≤ CE|X|pI
(|X| > n1/β)

+ Cn–1/p+1/(α∧1)E|X|I(|X| ≤ n1/β)

≤ CE|X|pI
(|X| > n1/β)

+ Cn–1/p+1/(α∧1)+(1–p)/βE|X|p → 0

as n → ∞, since –1/p+1/(α∧1)+(1–p)/β = –p/β if α ≤ 1 and –1/p+1/(α∧1)+(1–p)/β =
–(1 – p)/α if α > 1. �
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3 Main results
We first present complete convergence for weighted sums of ρ∗-mixing random variables.

Theorem 3.1 Let r ≥ 1, 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p. Let {ank , 1 ≤ k ≤
n, n ≥ 1} be an array of constants satisfying (1.1), and let {X, Xn, n ≥ 1} be a sequence of
identically distributed ρ∗-mixing random variables. If

EX = 0,

⎧
⎪⎪⎨

⎪⎪⎩

E|X|(r–1)β < ∞ if α < rp,

E|X|(r–1)β log(1 + |X|) < ∞ if α = rp,

E|X|rp < ∞ if α > rp,

(3.1)

then (1.4) holds.
Conversely, if (1.4) holds for any array {ank , 1 ≤ k ≤ n, n ≥ 1} satisfying (1.1) for some

α > p, then EX = 0, E|X|rp < ∞ and E|X|(r–1)β < ∞.

Remark 3.1 When 0 < p < 1, (3.1) without the condition EX = 0 implies (1.4). The proof is
the same as that of Theorem 3.1 except that Lemma 2.5 is replaced by Lemma 2.6.

Remark 3.2 The case α > rp (r > 1) of Theorem 3.1 corresponds to Theorem 2.2 of Sung
[1], and the proof is much simpler than that of Sung [1]. Hence Theorem 3.1 generalizes
the result of Sung [1].

Remark 3.3 Suppose that r ≥ 1, 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p. Then the case
α < rp is equivalent to the case rp < (r – 1)β , and in this case, α < rp < (r – 1)β . The case
α = rp is equivalent to the case rp = (r – 1)β , and in this case, α = rp = (r – 1)β . The case
α > rp is equivalent to the case rp > (r – 1)β , and in this case, α > rp > (r – 1)β .

Remark 3.4 In two cases α < rp and α > rp, the moment conditions are necessary and
sufficient conditions, but in the case α = rp, the moment condition E|X|(r–1)β log(1 + |X|) =
E|X|rp log(1 + |X|) < ∞ is only sufficient for (1.4). It may be difficult to prove (1.4) under
the necessary moment condition E|X|rp < ∞. An and Yuan [17] proved (1.4) under the
moment condition E|X|rp < ∞ and the condition

sup
n≥1

n–δ

n∑

k=1

|ank|rp < ∞

for some δ ∈ (0, 1). However, their result is not an extension of the classical one and is a
particular case of Sung [1]. In fact, if we set α = rp/δ, then α > rp, and (1.1) holds.

Proof of Theorem 3.1 Sufficiency. For any 1 ≤ k ≤ n and n ≥ 1, set

Xnk = ankXkI
(|ankXk| ≤ n1/p).

Note that
{

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

ankXk

∣
∣
∣
∣
∣

> εn1/p

}

⊂ ∪n
k=1

{|ankXk| > n1/p} ∪
{

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

Xnk

∣
∣
∣
∣
∣

> εn1/p

}

.
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Then by Lemmas 2.2 and 2.5, to prove (1.4), it suffices to prove that

∞∑

n=1

nr–2P

{

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(Xnk – EXnk)

∣
∣
∣
∣
∣

> εn1/p

}

< ∞, ∀ε > 0. (3.2)

When r > 1, set s ∈ (p, min{2,α}) if α ≤ rp and s ∈ (p, min{2, rp}) if α > rp. Note that, when
r = 1, we cannot choose such s, since α > p = rp. Then p < s < min{2,α}, and E|X|s < ∞
by Remark 3.3. Taking q > max{2,α, (r – 1)β , 2p(r – 1)/(s – p)}, we have by the Markov
inequality and Lemma 2.1 that

P

{

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(Xnk – EXnk)

∣
∣
∣
∣
∣

> εn1/p

}

≤ Cn–q/p

( n∑

k=1

E(Xnk – EXnk)2

)q/2

+ Cn–q/p
n∑

k=1

E|Xnk – EXnk|q. (3.3)

Since q > 2p(r – 1)/(s – p), we have that r – 2 + q(1 – s/p)/2 < –1. It follows that

∞∑

n=1

nr–2 · n–q/p

( n∑

k=1

E(Xnk – EXnk)2

)q/2

≤
∞∑

n=1

nr–2 · n–q/p

( n∑

k=1

E|ankXk|2I
(|ankXk| ≤ n1/p)

)q/2

≤
∞∑

n=1

nr–2 · n–q/p

(

n(2–s)/p
n∑

k=1

E|ankXk|sI
(|ankXk| ≤ n1/p)

)q/2

≤
∞∑

n=1

nr–2 · n–q/p

(

n(2–s)/p
n∑

k=1

|ank|sE|X|s
)q/2

≤ C
∞∑

n=1

nr–2+q(1–s/p)/2 < ∞. (3.4)

By Lemma 2.3 we have

∞∑

n=1

nr–2 · n–q/p
n∑

k=1

E|Xnk – EXnk|q

≤ C
∞∑

n=1

nr–2 · n–q/p
n∑

k=1

E|ankXk|qI
(|ankXk| ≤ n1/p)

< ∞. (3.5)

Hence (3.2) holds by (3.3)–(3.5).
When r = 1, we always have that α > p = rp. If (1.1) holds for some α > 0, then (1.1) also

holds for any α′ (0 < α′ ≤ α) by Remark 2.1. Thus we may assume that p < α < 2. Taking
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q = 2, we have by the Markov inequality and Lemmas 2.1 and 2.3 that

∞∑

n=1

nr–2P

{

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(Xnk – EXnk)

∣
∣
∣
∣
∣

> εn1/p

}

≤ C
∞∑

n=1

nr–2 · n–2/p
n∑

k=1

E|ankXk|2I
(|ankXk| ≤ n1/p)

< ∞.

Necessity. Set ank = 1 for all 1 ≤ k ≤ n and n ≥ 1. Then (1.4) can be rewritten as

∞∑

n=1

nr–2P

{

max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

Xk

∣
∣
∣
∣
∣

> εn1/p

}

< ∞, ∀ε > 0,

which implies that EX = 0 and E|X|rp < ∞ (see Theorem 2 in Peligrad and Gut [5]). Set
ank = 0 if 1 ≤ k ≤ n – 1 and ann = n1/α . Then (1.4) can be rewritten as

∞∑

n=1

nr–2P
{

n1/α|Xn| > εn1/p} < ∞, ∀ε > 0,

which is equivalent to E|X|(r–1)β < ∞. The proof is completed. �

Now we extend Theorem 3.1 to complete moment convergence.

Theorem 3.2 Let q > 0, r ≥ 1, 1 ≤ p < 2, α > 0, β > 0 with 1/α + 1/β = 1/p. Let {ank , 1 ≤
k ≤ n, n ≥ 1} be an array of constants satisfying (1.1), and let {X, Xn, n ≥ 1} be a sequence
of identically distributed ρ∗-mixing random variables. Assume that one of the following
conditions holds.

(1) If α < rp, then

EX = 0,

⎧
⎪⎪⎨

⎪⎪⎩

E|X|(r–1)β < ∞ if q < (r – 1)β ,

E|X|(r–1)β log(1 + |X|) < ∞ if q = (r – 1)β ,

E|X|q < ∞ if q > (r – 1)β .

(3.6)

(2) If α = rp, then

EX = 0,

⎧
⎨

⎩

E|X|(r–1)β log(1 + |X|) < ∞ if q ≤ α = rp,

E|X|q < ∞ if q > α = rp.
(3.7)

(3) If α > rp, then

EX = 0,

⎧
⎪⎪⎨

⎪⎪⎩

E|X|rp < ∞ if q < rp,

E|X|rp log(1 + |X|) < ∞ if q = rp,

E|X|q < ∞ if q > rp.

(3.8)

Then (1.5) holds.
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Remark 3.5 As stated in the Introduction, if (1.5) holds for some q > 0, then (1.4) also
holds. If α < rp, EX = 0, and E|X|(r–1)β < ∞, then (3.6) holds for some 0 < q < (r – 1)β . If
α = rp, EX = 0, and E|X|(r–1)β log(1+ |X|) < ∞, then (3.7) holds for some 0 < q ≤ α. If α > rp,
EX = 0, and E|X|rp < ∞, then (3.8) holds for some 0 < q < rp. Therefore the sufficiency of
Theorem 3.1 holds by Theorem 3.2.

Remark 3.6 The case α > rp of Theorem 3.2 corresponds to combining Theorems 3.1 and
3.2 in Wu et al. [2]. The condition on weights {ank} in Wu et al. [2] is

sup
n≥1

n–1
n∑

k=1

|ank|t < ∞ for some t > max{rp, q},

which is stronger than (1.1) with α > rp. Hence Theorem 3.2 generalizes and improves the
results of Wu et al. [2].

Remark 3.7 In this paper, the ρ∗-mixing condition is only used in Lemma 2.1. There-
fore our main results (Theorems 3.1 and 3.2) also hold for random variables satisfying
Lemma 2.1.

Proof of Theorem 3.2 We apply Theorems 2.1 and 2.2 in Sung [18] with Xnk = ankXk , bn =
nr–2, an = n1/p. When the second moment of X does not exist, we apply Theorem 2.1 in
Sung [18]. We can easily prove that Theorem 2.1 in Sung [18] still holds for 0 < q < 1. When
the second moment of X exists, we apply Theorem 2.2 in Sung [18].

(1) If α < rp, then α < rp < (r – 1)β by Remark 3.3. We first consider the case q < (r – 1)β .
In this case, the moment conditions are EX = 0 and E|X|(r–1)β < ∞. When q < (r – 1)β < 2,
we prove (1.5) by using Theorem 2.1 in Sung [18]. To apply Theorem 2.1 in Sung [18], we
take s = 2. By Lemma 2.1,

E max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(
X ′

nk(x) – EX ′
nk(x)

)
∣
∣
∣
∣
∣

2

≤ C
n∑

k=1

E
∣
∣X ′

nk(x)
∣
∣2, ∀n ≥ 1,∀x > 0,

where X ′
nk(x) = ankXkI(|ankXk| ≤ x1/q) + x1/qI(ankXk > x1/q) – x1/qI(ankXk < –x1/q). By

Lemma 2.3,

∞∑

n=1

nr–2–s/p
n∑

k=1

E|ankXk|sI
(|ankXk| ≤ n1/p) ≤ CE|X|(r–1)β < ∞. (3.9)

By Lemma 2.4,

∞∑

n=1

nr–2–q/p
n∑

k=1

E|ankXk|qI
(|ankXk| > n1/p) ≤ CE|X|(r–1)β < ∞. (3.10)

By Lemma 2.5 (note that E|X|p < ∞, since p ≤ rp < (r – 1)β),

n–1/p
n∑

k=1

E|ankXk|I
(|ankXk| > n1/p) → 0. (3.11)
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Hence all conditions of Theorem 2.1 in Sung [18] are satisfied. Therefore (1.5) holds by
Theorem 2.1 in Sung [18].

When q < (r – 1)β and (r – 1)β ≥ 2, we prove (1.5) by using Theorem 2.2 in Sung [18].
To apply Theorem 2.2 in Sung [18], we take s > 0 such that s > max{2, q,α, (r – 1)β , (r –
1)p(α ∧ 2)/((α ∧ 2) – p)}. By Lemma 2.1,

E max
1≤m≤n

∣
∣
∣
∣
∣

m∑

k=1

(
X ′

nk(x) – EX ′
nk(x)

)
∣
∣
∣
∣
∣

s

≤ C

{ n∑

k=1

E
∣
∣X ′

nk(x)
∣
∣s +

( n∑

k=1

E
∣
∣X ′

nk(x)
∣
∣2

)s/2}

, ∀n ≥ 1,∀x > 0.

Since s > max{α, (r – 1)β}, (3.9) holds. Also, (3.10) and (3.11) hold. Since E|X|2 < ∞ and
s > (r – 1)p(α ∧ 2)/((α ∧ 2) – p), we have that

∞∑

n=1

nr–2

(

n–2/p
n∑

k=1

E|ankXk|2
)s/2

≤ C
∞∑

n=1

nr–2(n–2/pn2/(α∧2))s/2 < ∞.

Hence all conditions of Theorem 2.2 in Sung [18] are satisfied. Therefore (1.5) holds by
Theorem 2.2 in Sung [18].

For the cases q = (r – 1)β and q > (r – 1)β , the proofs are similar to that of the previous
case and are omitted.

The proofs of (2) and (3) are similar to that of (1) and are omitted. �
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