
Masjed-Jamei et al. Journal of Inequalities and Applications  (2018) 2018:116 
https://doi.org/10.1186/s13660-018-1709-8

R E S E A R C H Open Access

A new type of Taylor series expansion
Mohammad Masjed-Jamei1, Zahra Moalemi1, Iván Area2* and Juan J. Nieto3

*Correspondence: area@uvigo.es
2Departamento de Matemática
Aplicada II, E.E. Aeronáutica e do
Espazo, Universidade de Vigo, Vigo,
Spain
Full list of author information is
available at the end of the article

Abstract
We present a variant of the classical integration by parts to introduce a new type of
Taylor series expansion and to present some closed forms for integrals involving
Jacobi and Laguerre polynomials, which cannot be directly obtained by usual
symbolic computation programs, i.e., only some very specific values can be
computed by the mentioned programs. An error analysis is given in the sequel for the
introduced expansion.

MSC: 41A58

Keywords: Generalized Taylor expansion; Integration by parts; Integral remainder;
Error bound; Jacobi and Laguerre polynomials

1 Introduction
Let {xj}n

j=0 ∈ [a, b] and {fj}n
j=0, which may be samples of a function, say f (x), be given. The

main aim of an interpolation problem is to find an appropriate model to approximate f (x)
at any arbitrary point of [a, b] other than xj. In other words, if �(x; a0, . . . , an) is a family
of functions of a single variable x with n + 1 free parameters {aj}n

j=0, then the interpolation
problem for � consists of determining {aj}n

j=0 so that, for n + 1 given real or complex pairs
of distinct numbers {(xj, fj)}n

j=0, we have

�(xj; a0, . . . , an) = fj.

For a polynomial type interpolation problem, various classical methods, such as La-
grange, Newton, and Hermite interpolations, are used. Lagrange’s interpolation as a clas-
sical method for approximating a continuous function f : [a, b] →R at n + 1 distinct nodes
a ≤ x0 < · · · < xn ≤ b is applied in several branches of numerical analysis and approxima-
tion theory. It is expressed in the form [1, pp. 39–40]

Pn(f ; x) =
n∑

j=0

f (xj)�(n)
j (x)

for

�
(n)
j (x) =

wn(x)
(x – xj)w′

n(xj)
,

where wn(x) =
∏n

j=0(x–xj) is the node polynomial and �
(n)
j (x) are the Lagrange polynomials.
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Then Pn(f ; x) is a unique element in the space of all polynomials of degree at most n, say
Pn, which solves the interpolation problem

Pn(f ; xj) = f (xj), j = 0, 1, 2, . . . , n.

For non-polynomial type interpolation problems, an interpolating function of the form

ψn(x) =
n∑

j=0

ajuj(x)

is usually considered [2], where {uj(x)}n
j=0 is a set of linearly independent real-valued con-

tinuous functions on [a, b] and {aj}n
j=0 are determined by the initial conditions

ψn(xj) = f (xj), j = 0, 1, . . . , n.

The function ψn(x) exists and is unique in the space of span{uj}n
j=0 for all f ∈ C[a, b] if and

only if the matrix {uj(xk)}n
j,k=0 is nonsingular.

The general case of an interpolation problem was proposed by Davis [3] containing all
the above-mentioned cases. It is indeed concerned with reconstructing functions on a
basis of certain functional information, which are linear in many cases. Let � be a linear
space of dimension n + 1 and L0, L1, . . . , Ln be n + 1 given linear functionals defined on �,
which are independent in �∗ (the algebraic conjugate space of �). For a given set of values
w0, w1, . . . , wn, we can find an element f ∈ � such that

Lj(f ) = wj, j = 0, 1, . . . , n.

Hence, one can construct new interpolation formulae using linear operators [4]. For
instance, considering � = Pn and linear independent functionals as

Lj(f ) = f (j)(x0), for j = 0, 1, . . . , n,

leads to Taylor’s interpolation problem.
Davis also mentioned that the expansion of a function based on a series of predeter-

mined (basis) functions can be interpreted as an interpolation problem with an infinite
number of conditions. See also [5] in this regard.

The problem of the representation of an arbitrary function by means of linear combina-
tions of prescribed functions has received a lot of attention in approximation theory. It is
well known that a special case of this problem directly leads to the Taylor series expansion
where the prescribed functions are monomial bases [6].

The main aim of this paper is to introduce a new type of Taylor series expansion through
a variant of the classical integration by parts. In the next section, we present the general
form of this expansion and consider some interesting cases of it leading to new closed
forms for integrals involving Jacobi and Laguerre polynomials. Also, an error analysis is
given in Sect. 3 for the introduced expansion.
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2 A new type of Taylor series expansion
Let F and G be two smooth enough functions such that repeated differentiation and re-
peated integration by parts are allowed for them. The rule of integration by parts [7] allows
one to perform successive integrations on the integrals of the form

∫
F(t)G(t) dt without

tedious algebraic computations.
By the general rule

∫
u dv = uv –

∫
v du,

one obtains

∫ b

a
F(t)G(t) dt =

(
F(t)G1(t) – F ′(t)G2(t) + · · · + (–1)n–1F (n–1)(t)Gn(t)

)∣∣b
a

+ (–1)n
∫ b

a
F (n)(t)Gn(t) dt

=
n–1∑

k=0

(–1)k(F (k)(t)Gk+1(t)
)∣∣b

a + (–1)n
∫ b

a
F (n)(t)Gn(t) dt, (1)

where Gn denotes the nth antiderivative of G.
Formula (1) provides a straightforward proof for Taylor’s theorem with an integral re-

mainder term, according to the following result.

Theorem 2.1 Let f ∈ Cn+1[a, b] and x0 ∈ [a, b]. Then, for all a ≤ x ≤ b, we have

f (x) =
n∑

k=0

1
k!

(x – x0)kf (k)(x0) +
1
n!

∫ x

x0

f (n+1)(t)(x – t)n dt. (2)

Proof For a classical proof using different arguments, see, e.g., [3]. However, if in (1) one
chooses F(t) = 1

n! (x – t)n, G(t) = f (n+1)(t) and then calculates

1
n!

∫ x

a
(x – t)nf (n+1)(t) dt,

formula (2) is obtained. �

For a given function f , assume in (1) that G(t) = f (n+1)(t) and F(t) = pn(x – t), where
pn(x) =

∑n
k=0 ckxk is an arbitrary polynomial of degree n. So, we have

∫ x

a
pn(x – t)f (n+1)(t) dt

=
n–1∑

k=0

(–1)k
(

dk

dtk pn(x – t)|t=x f (n–k)(x) –
dk

dtk pn(x – t)|t=a f (n–k)(a)
)

+ (–1)n
∫ x

a

dn

dtn pn(x – t)f ′(t) dt

=
n–1∑

k=0

(–1)k
(

(–1)kk!ckf (n–k)(x) –
dk

dtk pn(x – t)|t=a f (n–k)(a)
)
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+ (–1)n
∫ x

a
(–1)nn!cnf ′(t) dt

=
n∑

k=0

(
k!ckf (n–k)(x) – (–1)k dk

dtk pn(x – t)|t=a f (n–k)(a)
)

=
n∑

k=0

(
k!ckf (n–k)(x) – p(k)

n (x – a)f (n–k)(a)
)
,

which is equivalent to

n∑

k=0

k!ckf (n–k)(x) =
n∑

k=0

p(k)
n (x – a)f (n–k)(a) +

∫ x

a
pn(x – t)f (n+1)(t) dt, (3)

and can be written as

f (x) =
1

n!cn

( n∑

k=0

p(k)
n (x – a)f (n–k)(a) –

n–1∑

k=0

k!ckf (n–k)(x) +
∫ x

a
pn(x – t)f (n+1)(t) dt

)
.

Remark 1 If pn(x – t) = 1
n! (x – t)n, then cj = 0 for every j = 0, 1, . . . , n – 1 and cn = 1

n! . In this
case, (3) is reduced to

f (x) =
n∑

k=0

(x – a)n–k

(n – k)!
f (n–k)(a) +

1
n!

∫ x

a
(x – t)nf (n+1)(t) dt,

which is the same as formula (2).

Now, let us consider some particular examples of the main formula (3). We would like
to notice here that the closed forms for the integrals involving Jacobi and Laguerre poly-
nomials in the following examples are new in the literature (see, e.g., [8, 9]) to the best of
our knowledge, and they can be computed only for specific values of the parameters by
using symbolic computation.

Example 2.2 Let pn(x) = P(α,β)
n (x) be the Jacobi polynomials [10]. It is known that, for α,β >

–1,

P(α,β)
n (x) =

n∑

k=0

C(α,β ,n)
k xk , C(α,β ,n)

k =
n∑

j=k

(–1)j–k2–j

(
n + α + β + j

j

)(
n + α

n – j

)(
j
k

)

satisfies the orthogonality relation

∫ 1

–1
(1 – x)α(1 + x)βP(α,β)

m (x)P(α,β)
n (x) dx =

(∫ 1

–1
(1 – x)α(1 + x)β

(
P(α,β)

n (x)
)2 dx

)
δm,n,

where

δn,m =

⎧
⎨

⎩
1, m = n,

0, m �= n.
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Moreover, they satisfy the important relation

dk

dxk P(α,β)
n (x) =

	(α + β + n + 1 + k)
2k	(α + β + n + 1)

P(α+k,β+k)
n–k (x), k ≤ n.

Now, according to (3), we obtain

n∑

k=0

k!C(α,β ,n)
k f (n–k)(x)

=
1

	(α + β + n + 1)

n∑

k=0

(x – a)k
n–k∑

j=0

1
2j f (n–j)(a)	(α + β + n + 1 + j)C(α+j,β+j,n–j)

k

+
n∑

k=0

C(α,β ,n)
k

∫ x

a
(x – t)kf (n+1)(t) dt. (4)

For instance, if f (x) = 1
1–x , then

f (n–k)(x) = (n – k)!(1 – x)–(n–k+1),

and relation (4) for a = 0 and x < 1 reads as

∫ x

0
P(α,β)

n (t)(t – x + 1)–(n+2) dt

=
(1 – x)–(n+1)

n + 1

n∑

k=0

C(α,β ,n)
k

(
n
k

)–1

(1 – x)k

–
1

(n + 1)!	(n + α + β + 1)

n∑

k=0

xk
n–k∑

j=0

2–j(n – j)!	(n + α + β + 1 + j)C(α+j,β+j,n–j)
k .

Also if for example f (x) = ex, then for a = 0 we obtain

ex =
1

	(α + β + n + 1)
∑n

k=0 k!C(α,β ,n)
k

n∑

k=0

n–k∑

j=0

1
2j 	(α + β + n + 1 + j)C(α+j,β+j,n–j)

k xk

+
1

∑n
k=0 k!C(α,β ,n)

k

n∑

k=0

C(α,β ,n)
k

∫ x

0
et(x – t)k dt.

Remark 2 In Example 2.2, choosing α = β = – 1
2 gives the first kind of Chebyshev polyno-

mials [10] as

Tn(x) = cos(n arccos x) =
n∑

k=0

C(n)
k xn,

with

C(n)
k = 22n

(
2n
n

)–1 n∑

j=k

(–1)j–k2–j

(
n + j – 1

j

)(
n – 1

2
n – j

)(
j
k

)
.
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This means that

Tn(x) = cos(n arccos x) = 22n
(

2n
n

)–1

P(– 1
2 ,– 1

2 )
n (x).

Hence, replacing pn(x) = Tn(x) in (3) gives

n∑

k=0

k!C(n)
k f (n–k)(x)

=
n∑

k=0

dk

dxk cos
(
n arccos(x – a)

)
f (n–k)(a) +

∫ x

a
cos

(
n arccos(x – t)

)
f (n+1)(t) dt

=
22n

(n – 1)!

n∑

k=0

(x – a)k
n–k∑

j=0

2–j(n + j – 1)!C(j– 1
2 ,j– 1

2 ,n–j)
k f (n–j)(a)

+
∫ x

a
cos

(
n arccos(x – t)

)
f (n+1)(t) dt, n ≥ 1.

For instance, if f (x) = ex, then

n∑

k=0

k!C(n)
k = ea–x

n∑

k=0

dk

dxk cos
(
n arccos(x – a)

)
+

∫ x–a

0
e–t cos(n arccos t) dt,

and for x = a we obtain

n∑

k=0

k!C(n)
k =

n∑

k=0

dk

dxk cos
(
n arccos(x)

)
|x=0

=
22n

(n – 1)!

n∑

j=0

2–j(n + j – 1)!C(j– 1
2 ,j– 1

2 ,n–j)
0 .

Another special case of Jacobi polynomials is the Legendre polynomials, which are di-
rectly derived from the definition of P(α,β)

n (x) for α = β = 0 and has the explicit represen-
tation [10]

Pn(x) =
1
2n

[ n
2 ]∑

l=0

(–1)l (2n – 2l)!
l!(n – l)!(n – 2l)!

xn–2l.

Hence, according to (4), we obtain

[ n
2 ]∑

l=0

(n – 2l)!s(n)
l f (2l)(x) =

1
n!

n∑

k=0

(x – a)k
n–k∑

j=0

2–jf (n–j)(a)(n + j)!C(j,j,n–j)
k

+
∫ x

a
Pn(x – t)f (n+1)(t) dt, (5)

in which

s(n)
l = (–1)l (2n – 2l)!

2nl!(n – l)!(n – 2l)!
.
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For instance, replacing f (x) = cos x for a = 0 in (5) gives

( [ n
4 ]∑

k=0

(n – 4k)!s(n)
2k –

[
[ n

2 ]–1
2 ]∑

k=0

(n – 2 – 4k)!s(n)
2k+1

)
cos x

=
1
n!

n∑

k=0

xk
n–k∑

j=0

2–j(n + j)! cos

(
(n – j)

π

2

)
C(j,j,n–j)

k

+
∫ x

0
Pn(x – t) cos

(
t + (n + 1)

π

2

)
dt,

generating many new identities for different values of x.

Example 2.3 For α > –1, let pn(x) = L(α)
n (x) be the Laguerre polynomials [10] given by

L(α)
n (x) =

n∑

k=0

C(α,n)
k xk , C(α,n)

k = (–1)k 1
k!

(
n + α

n – k

)
.

It is known that

dk

dxk L(α)
n (x) = (–1)kL(α+k)

n–k (x) for any k ≤ n.

Hence, according to (3), we have

n∑

k=0

(–1)k

(
n + α

n – k

)
f (n–k)(x) =

n∑

k=0

(–1)k

k!
(x – a)k

n–k∑

j=0

(–1)j

(
n + α

n – k – j

)
f (n–j)(a)

+
∫ x

a
L(α)

n (x – t)f (n+1)(t) dt.

As a special case, assume that f (x) = xex. Since dk

dxk (xex) = (x + k)ex, we get

ex
n∑

k=0

(–1)k
(

n + α

n – k

)
(x + n – k)

= ea
n∑

k=0

(–1)k

k!
(x – a)k

n–k∑

j=0

(–1)j

(
n + α

n – k – j

)
(a + n – j)

+
∫ x

a
(t + n + 1)etL(α)

n (x – t) dt. (6)

For instance, if x = 1 and a = 0 in (6), then

∫ 1

0
(n + 2 – t)e–tL(α)

n (t) dt

=
n∑

k=0

(–1)k

(
n + α

n – k

)
(n – k + 1) – e–1

n∑

k=0

(–1)k

k!

n–k∑

j=0

(–1)j

(
n + α

n – k – j

)
(n – j). (7)
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For α = 0, the right-hand side of (7) can be expressed in terms of hypergeometric series
and evaluations of Laguerre polynomials as

n1F0(1 – n; ; 1) +1 F0(–n; ; 1) +
n2

1F1(1 – n; 2; 1) – L(0)
n–1(1)

e(n – 1)
.

For α �= 0, the right-hand side of (7) can be written as

(αn + α + n2 + n – 1)	(α + n – 1)
	(α)	(n + 1)

– e–1
n∑

k=0

(–1)k

k!
(n(α + n) – k)	(α + n – 1)

	(α + k)	(–k + n + 1)
,

where the latter sum can be expressed in terms of hypergeometric series as

n∑

k=0

(–1)k

k!
(n(α + n) – k)	(α + n – 1)

	(α + k)	(–k + n + 1)

= 1F1(1 – n;α + 1; 1)	(α + n – 1)
	(α + 1)	(n)

+
(α + n)	(α + n – 1)

	(α)	(n) 1F1(–n;α; 1).

For more certain new, interesting, and useful integrals and expansion formulas involving
the hypergeometric function and the Laguerre polynomials, see [11].

3 Error analysis
It is clear that relation (3) can be considered as an approximation. This means that the
expression

∑n
k=0 k!ckf (n–k)(x) can be approximated by

∑n
k=0 p(k)

n (x – a)f (n–k)(a), which is
indeed a polynomial of degree n. Hence, the exact remainder [3] of this approximation
reads as

En(x; f ) =
∫ x

a
pn(x – t)f (n+1)(t) dt.

Now, if f ∈ Cn+1[a, b], a direct result for the corresponding error term is that

∣∣En(x; f )
∣∣ =

∣∣∣∣
∫ x

a
pn(x – t)f (n+1)(t) dt

∣∣∣∣ ≤
∫ x

a

∣∣pn(x – t)f (n+1)(t)
∣∣dt

≤ Mn

∫ x

a

∣∣pn(x – t)
∣∣dt,

where Mn = maxa≤t≤x |f (n+1)(t)|.
Moreover, if the polynomial pn(·) is nonnegative on [0, x – a], e.g., when the coefficients

{ck}n
k=0 are all nonnegative, then we have

∫ x

a

∣∣pn(x – t)
∣∣dt =

∫ x–a

0
pn(t) dt =

n∑

k=0

ck

k + 1
(x – a)k+1,

and therefore

∣∣En(x; f )
∣∣ ≤ Mn

n∑

k=0

ck

k + 1
(x – a)k+1.
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For instance, let us consider the function f ∈ C(n+1)[0, 1] and choose the polynomial as

pn(x) =
n∑

k=0

1
2k xk .

Then we obtain

∣∣En(x; f )
∣∣ ≤ max

0≤t≤x

∣∣f (n+1)(t)
∣∣

n∑

k=0

1
2k(k + 1)

xk+1.

As another example, consider the polynomial pn(x) =
∑n

k=0
(m)k

k! xk for 0 < m < 1, where
(m)k =

∏k–1
j=0 (m + j) is the Pochhammer symbol. If f ∈ C(n+1)[0, 1], then for any x ∈ [0, 1] we

obtain

∣∣En(x; f )
∣∣ ≤ max

0≤t≤x

∣∣f (n+1)(t)
∣∣

n∑

k=0

(m)k

k!(k + 1)
xk+1 = max

0≤t≤x

∣∣f (n+1)(t)
∣∣x

n∑

k=0

(m)k(1)k

(2)k

xk

k!
.

Now if n → ∞, then we get

∣∣En(x; f )
∣∣ ≤ max

0≤t≤x

∣∣f (n+1)(t)
∣∣x

∞∑

k=0

(m)k(1)k

(2)k

xk

k!
= max

0≤t≤x

∣∣f (n+1)(t)
∣∣x2F1(m, 1; 2; x), (8)

where 2F1(m, 1; 2; x) denotes the Gauss hypergeometric function [12]. For instance, replac-
ing f (x) = ex in (8) yields

∣∣En
(
x; ex)∣∣ ≤ xex

2F1(m, 1; 2; x),

and the error bound for x = 1 can be computed as

∣∣En
(
1; ex)∣∣ ≤ e2F1(m, 1; 2; 1) =

	(1 – m)
	(2 – m)

e,

where we have used the Gauss formula [13, 14]

2F1(a, b; c; 1) =
	(c)	(c – b – a)
	(c – b)	(c – a)

.
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