RESEARCH

Journal of Inequalities and Applications a SpringerOpen Journal

Open Access

A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations

Gonglin Yuan¹ and Wujie Hu^{1*}

*Correspondence: hwj@gxu.edu.cn ¹ College of Mathematics and Information Science, Guangxi University, Nanning, P.R. China

Abstract

For large-scale unconstrained optimization problems and nonlinear equations, we propose a new three-term conjugate gradient algorithm under the Yuan–Wei–Lu line search technique. It combines the steepest descent method with the famous conjugate gradient algorithm, which utilizes both the relevant function trait and the current point feature. It possesses the following properties: (i) the search direction has a sufficient descent feature and a trust region trait, and (ii) the proposed algorithm globally converges. Numerical results prove that the proposed algorithm is perfect compared with other similar optimization algorithms.

MSC: 90C26

Keywords: Conjugate gradient; Descent property; Global convergence

1 Introduction

It is well known that the model of small- and medium-scale smooth functions is simple since it has many optimization algorithms, such as Newton, quasi-Newton, and bundle algorithms. Note that three algorithms fail to effectively address large-scale optimization problems because they need to store and calculate relevant matrices, whereas the conjugate gradient algorithm is successful because of its simplicity and efficiency.

The optimization model is an important mathematic problem since it has been applied to various fields such as economics, engineering, and physics (see [1-12]). Fletcher and Reeves [13] successfully address large-scale unconstrained optimization problems on the basis of the conjugate gradient algorithm and obtained amazing achievements. The conjugate gradient algorithm is increasingly famous because of its simplicity and low requirement of calculation machine. In general, a good conjugate gradient algorithm optimization algorithm includes a good conjugate gradient direction and an inexact line search technique (see [14–18]). At present, the conjugate gradient algorithm is mostly applied to smooth optimization problems, and thus, in this paper, we propose a modified LS conjugate gradient algorithm to solve large-scale nonlinear equations and smooth problems. The common algorithms of addressing nonlinear equations include Newton and quasi-Newton methods (see [19–21]), gradient-based, CG methods (see [22–24]), trust region methods (see [25–27]), and derivative-free methods (see [28]), and all of them fail to address large-scale problems. The famous optimization algorithms of spectral gradient

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

approach, limited-memory quasi-Newton method and conjugate gradient algorithm, are suitable to solve large-scale problems. Li and Li [29] proposed various algorithms on the basis of modified PRP conjugate gradient, which successfully solve large-scale nonlinear equations.

A famous mathematic model is given by

$$\min\{f(x) \mid x \in \mathfrak{R}^n\},\tag{1.1}$$

where $f : \mathfrak{M}^n \to \mathfrak{M}$ and $f \in C^2$. The relevant model is widely used in life and production. However, it is a complex mathematic model since it needs to meet various conditions in the field [30–33]. Experts and scholars have conducted numerous in-depth studies and have made some significant achievements (see [14, 34, 35]). It is well known that the steepest descent algorithm is perfect since it is simple and its computational and memory requirements are low. It is regrettable that the steepest descent method sometimes fails to solve problems due to the "sawtooth phenomenon". To overcome this flaw, experts and scholars presented an efficient conjugate gradient method, which provides high performance with a simple form. In general, the mathematical formula for (1.1) is

$$x_{k+1} = x_k + \alpha_k d_k, \quad k \in \{0, 1, 2, \dots\},$$
(1.2)

where x_{k+1} is the next iteration point, α_k is the step length, and d_k is the search direction. The famous weak Wolfe–Powell (WWP) line search technique is determined by

$$g(x_k + \alpha_k d_k)^T d_k \ge \rho g_k^T d_k \tag{1.3}$$

and

$$f(x_k + \alpha_k d_k) \le f_k + \varphi \alpha_k g_k^T d_k, \tag{1.4}$$

where $\varphi \in (0, 1/2)$, $\alpha_k > 0$, and $\rho \in (\varphi, 1)$. The direction d_{k+1} is often defined by the formula

$$d_{k+1} = \begin{cases} -g_{k+1} + \beta_k d_k & \text{if } k \ge 1, \\ -g_{k+1} & \text{if } k = 0, \end{cases}$$
(1.5)

where $\beta_k \in \Re$. An increasing number of efficient conjugate gradient algorithms have been proposed by different expressions of β_k and d_k (see [13, 36–42] etc.). The well-known PRP algorithm is given by

$$\beta_k^{\text{PRP}} = \frac{g_{k+1}^T(g_{k+1} - g_k)}{\|g_k\| \|g_k\|},\tag{1.6}$$

where g_k , g_{k+1} , and f_k denote $g(x_k)$, $g(x_{k+1})$, and $f(x_k)$, respectively; $g_{k+1} = g(x_{k+1}) = \nabla f(x_{k+1})$ is the gradient function at the point x_{k+1} . It is well known that the PRP algorithm is efficient but has shortcomings, as it does not possess global convergence under the WWP line search technique. To solve this complex problem, Yuan, Wei, and Lu [43] developed the following creative formula (YWL) for the normal WWP line search technique and obtained many fruitful theories:

$$f(x_k + \alpha_k d_k) \le f(x_k) + \iota \alpha_k g_k^T d_k + \alpha_k \min\left[-\iota_1 g_k^T d_k, \iota \alpha_k \|d_k\|^2/2\right]$$
(1.7)

and

$$g(x_k + \alpha_k d_k)^T d_k \ge \tau g_k^T d_k + \min\left[-\iota_1 g_k^T d_k, \iota \alpha_k \|d_k\|^2\right],$$
(1.8)

where $\iota \in (0, \frac{1}{2})$, $\alpha_k > 0$, $\iota_1 \in (0, \iota)$, and $\tau \in (\iota, 1)$. Further work can be found in [24]. Based on the innovation of YWL line search technique, Yuan pay much attention to normal Armijo line search technique and make further study. They proposed an efficient modified Armijo line search technique:

$$f(x_k + \alpha_k d_k) \le f(x_k) + \lambda \alpha_k g_k^T d_k + \alpha_k \min\left[-\lambda_1 g_k^T d_k, \lambda \frac{\alpha_k}{2} \|d_k\|^2\right],$$
(1.9)

where $\lambda, \gamma \in (0, 1), \lambda_1 \in (0, \lambda)$, and α_k is the largest number of $\{\gamma^k | k = 0, 1, 2, ...\}$. In addition, experts and scholars pay much attention to the three-term conjugate gradient formula. Zhang et al. [44] proposed the famous formula

$$d_{k+1} = -g_{k+1} + \frac{g_{k+1}^T y_k d_k - d_k^T g_{k+1} y_k}{g_k^T g_k}.$$
(1.10)

Nazareth [45] proposed the new formula

$$d_{k+1} = -y_k + \frac{y_k^T y_k}{y_k^T d_k} d_k + \frac{y_{k-1}^T y_k}{y_{k-1}^T d_{k-1}} d_{k-1},$$
(1.11)

where $y_k = g_{k+1} - g_k$ and $s_k = x_{k+1} - x_k$. These two conjugate gradient methods have a sufficient descent property but fail to have the trust region feature. To improve these methods, Yuan et al. [46, 47] make a further study and get some good results. This inspires us to continue the study and extend the conjugate gradient methods to get better results. In this paper, motivated by in-depth discussions, we express a modified conjugate gradient algorithm, which has the following properties:

- The search direction has a sufficient descent feature and a trust region trait.
- Under mild assumptions, the proposed algorithm possesses the global convergence.
- The new algorithm combines the steepest descent method with the conjugate gradient algorithm.
- Numerical results prove that it is perfect compared to other similar algorithms.

The rest of the paper is organized as follows. The next section presents the necessary properties of the proposed algorithm. The global convergence is stated in Sect. 3. In Sect. 4, we report the corresponding numerical results. In Sect. 5, we introduce the large-scale nonlinear equations and express the new algorithm. Some necessary properties are listed in Sect. 6. The numerical results are reported in Sect. 7. Without loss of generality, $f(x_k)$ and $f(x_{k+1})$ are replaced by f_k and f_{k+1} , and $\|\cdot\|$ is the Euclidean norm.

Algorithm 2.1 Modified three-term conjugate gradient algorithm for optimization modelStep 1: (Initiation) Choose an initial point x_0 , $\iota \in (0, \frac{1}{2})$, $\iota_1 \in (0, \iota)$, $\eta_i > 0$ (i = 1, 2, 3, 4, 5), $\tau \in (\iota, 1)$, and positive constants $\varepsilon \in (0, 1)$. Let k = 0 and $d_0 = -g_0$.Step 2: Stop if $||g_k|| \le \varepsilon$.Step 3: Find the step length α_k similar to (1.7) and (1.8).Step 4: Set a new iteration point of $x_{k+1} = x_k + \alpha_k d_k$.Step 5: Update the search direction by (2.1).Step 6: If $||g_{k+1}|| \le \varepsilon$, then stop. Otherwise, go to the next step.Step 7: Let k := k + 1, and return to Step 3.

2 New modified conjugate gradient algorithm

Experts and scholars have conducted thorough research on the conjugate gradient algorithm and have obtained rich theoretical achievements. In light of the previous work by experts on the conjugate gradient algorithm, a sufficient descent feature is necessary for the global convergence. Thus, we express a new conjugate gradient algorithm under the YWL line search technique as follows:

$$d_{k+1} = \begin{cases} -\eta_1 g_{k+1} + (1 - \eta_1) (d_k^T g_{k+1} y_k^* - g_{k+1}^T y_k^* d_k) / \delta & \text{if } k \ge 1, \\ -g_{k+1} & \text{if } k = 0, \end{cases}$$
(2.1)

where $\delta = \max(\min(\eta_5|s_k^T y_k^*|, |d_k^T y_k^*|), \eta_2 ||y_k^*|| ||d_k||, \eta_3 ||g_k||^2) + \eta_4 * ||d_k||^2, y_k^* = g_{k+1} - \frac{||g_{k+1}||^2}{||g_k||^2}g_k$, and $\eta_i > 0$ (i = 1, 2, 3, 4, 5). The search direction is well defined, and its properties are stated in the next section. Now, we introduce a new conjugate gradient algorithm called Algorithm 2.1.

3 Important characteristics

This section lists some important properties of sufficient descent, the trust region, and the global convergence of Algorithm 2.1. It expresses the necessary proof.

Lemma 3.1 If search direction d_k meets condition of (2.1), then

$$g_k^T d_k = -\eta_1 \|g_k\|^2 \tag{3.1}$$

and

$$\|d_k\| \le \left(\eta_1 + 2(1-\eta_1)/\eta_2\right) \|g_k\|.$$
(3.2)

Proof It is obvious that formulas of (3.1) and (3.2) are true for k = 0. Now consider the condition $k \ge 1$. Similarly to (2.1), we have

$$g_{k+1}^T d_{k+1} = g_{k+1}^T \Big[-\eta_1 g_{k+1} + (1 - \eta_1) \Big(d_k^T g_{k+1} y_k^* - g_{k+1}^T y_k^* d_k \Big) / \delta \Big]$$

= $-\eta_1 \|g_{k+1}\|^2 + (1 - \eta_1) \Big(g_{k+1}^T d_k^T g_{k+1} y_k^* - g_{k+1}^T g_{k+1}^T y_k^* d_k \Big) / \delta$
= $-\eta_1 \|g_{k+1}\|^2$

and

$$\begin{aligned} \|d_{k+1}\| &= \left\| -\eta_1 g_{k+1} + (1-\eta_1) \left(d_k^T g_{k+1} y_k^* - g_{k+1}^T y_k^* d_k \right) / \delta \right\| \\ &\leq \eta_1 \|g_{k+1}\| + 2(1-\eta_1) \|g_{k+1}\| \left\| y_k^* \right\| \|d_k\| / \delta \\ &\leq \eta_1 \|g_{k+1}\| + 2(1-\eta_1) \|g_{k+1}\| \left\| y_k^* \right\| \|d_k\| / \left(\eta_2 \left\| y_k^* \right\| \|d_k\| \right) \\ &= \left(\eta_1 + 2(1-\eta_1) / \eta_2 \right) \|g_{k+1}\|. \end{aligned}$$

Thus, the statement is proved.

Similarly to (3.1) and (3.2), the algorithm has a sufficient descent feature and a trust region trait. To obtain the global convergence, we propose the following necessary assumptions.

Assumption 1

- (i) The level set of $\pi = \{x | f(x) \le f(x_0)\}$ is bounded.
- (ii) The objective function $f \in C^2$ is bounded from below, and its gradient function g is Lipschitz continuous, thats is, there exists a constant ζ such that

$$\|g(x) - g(y)\| \le \zeta \|x - y\|, \quad x, y \in \mathbb{R}^n.$$
 (3.3)

The existence and necessity of the step length α_k are established in [43]. In view of the discussion and established technique, the global convergence of the proposed algorithm is expressed as follows.

Theorem 3.1 If Assumptions (i)–(ii) are satisfied and the relative sequences of $\{x_k\}$, $\{d_k\}$, $\{g_k\}$, and $\{\alpha_k\}$ are generated by Algorithm 2.1, then

$$\lim_{k \to \infty} \|g_k\| = 0. \tag{3.4}$$

Proof By (1.7), (3.1), and (3.3) we have

$$f(x_k + \alpha_k d_k) \leq f_k + \iota \alpha_k g_k^T d_k + \alpha_k \min[-\iota_1 g_k^T d_k, \iota \alpha_k ||d_k||^2 / 2]$$

$$\leq f_k + \iota \alpha_k g_k^T d_k - \alpha_k \iota_1 g_k^T d_k$$

$$\leq f_k + \alpha_k (\iota - \iota_1) g_k^T d_k$$

$$\leq f_k - \eta_1 \alpha_k (\iota - \iota_1) ||g_k||^2.$$

Summing these inequalities from k = 0 to ∞ , under Assumption (ii), we obtain

$$\sum_{k=0}^{\infty} \eta_1 \alpha_k (\iota - \iota_1) \|g_k\|^2 \le f(x_0) - f_\infty < +\infty.$$
(3.5)

This means that

$$\lim_{k \to \infty} \alpha_k \|g_k\|^2 = 0. \tag{3.6}$$

Similarly to (1.8) and (3.1), we obtain

$$g(x_k + \alpha_k d_k)^T d_k \ge \tau g_k^T d_k + \min[-\iota_1 g_k^T d_k, \iota \alpha_k \| d_k \|^2]$$
$$\ge \tau g_k^T d_k.$$

Thus, we obtain the following inequality:

$$\begin{split} -\eta_{1}(\tau-1) \|g_{k}\|^{2} &\leq (\tau-1)g_{k}^{T}d_{k} \\ &\leq \left[g(x_{k}+\alpha_{k}d_{k})-g(x_{k})\right]^{T}d_{k} \\ &\leq \left\|g(x_{k}+\alpha_{k}d_{k})-g(x_{k})\right\|\|d_{k}\| \\ &\leq \alpha_{k}\zeta \|d_{k}\|^{2}, \end{split}$$

where the last inequality is obtained since the gradient function is Lipschitz continuous. Then, we have

$$\alpha_k \geq \frac{(1-\tau)\eta_1 \|g_k\|^2}{\zeta \|d_k\|^2} \geq \frac{(1-\tau)\eta_1 \|g_k\|^2}{(\zeta (\eta_1 + 2(1-\eta_1)/\eta_2)^2 \|g_k\|^2))} = \frac{(1-\tau)\eta_1}{(\zeta (\eta_1 + 2(1-\eta_1)/\eta_2)^2)}$$

By (3.6) we arrive at the conclusion

$$\lim_{k\to\infty}\|g_k\|^2=0,$$

as claimed.

4 Numerical results

In this section, we list the numerical result in terms of the algorithm characteristics NI, NFG, and CPU, where NI is the total iteration number, NFG is the sum of the calculation frequency of the objective function and gradient function, and CPU is the calculation time in seconds.

4.1 Problems and test experiments

The tested problems listed in Table 1 stem from [48]. At the same time, we introduce two different algorithms into this section to measure the objective algorithm efficiency through the tested problems. We denote the two algorithms as Algorithm 2 and Algorithm 3. They are different from Algorithm 2.1 only at Step 5. One is determined by (1.10), and the other is computed by (1.11).

Stopping rule: If the inequality $|f(x_k)| > e_1$ is correct, let $stop1 = \frac{|f(x_k)-f(x_{k+1})|}{|f(x_k)|}$ or $stop1 = |f(x_k) - f(x_{k+1})|$. The algorithm stops when one of the following conditions is satisfied: $||g(x)|| < \epsilon$, the iteration number is greater than 2000, or $stop1 < e_2$, where $e_1 = e_2 = 10^{-5}$ and $\epsilon = 10^{-6}$. In Table 1, "No" and "problem" represent the index of the the tested problems and the name of the problem, respectively.

Initiation: $\iota = 0.3$, $\iota_1 = 0.1$, $\tau = 0.65$, $\eta_1 = 0.65$, $\eta_2 = 0.001$, $\eta_3 = 0.001$, $\eta_4 = 0.001$, $\eta_5 = 0.1$. *Dimension:* 1200, 3000, 6000, 9000.

Calculation environment: The calculation environment is a computer with 2 GB of memory, a Pentium(R) Dual-Core CPU E5800@3.20 GHz, and the 64-bit Windows 7 operation system.

No.	Problem	No.	Problem
1	Extended Freudenstein and Roth Function	38	ARWHEAD Function (CUTE)
2	Extended Trigonometric Function	38	ARWHEAD Function (CUTE)
3	Extended Rosenbrock Function	40	NONDQUAR Function (CUTE)
4	Extended White and Holst Function	41	DQDRTIC Function (CUTE)
5	Extended Beale Function	42	EG2 Function (CUTE)
6	Extended Penalty Function	43	DIXMAANA Function (CUTE)
7	Perturbed Quadratic Function	44	DIXMAANB Function (CUTE)
8	Raydan 1 Function	45	DIXMAANC Function (CUTE)
9	Raydan 2 Function	46	DIXMAANE Function (CUTE)
10	Diagonal 1 Function	47	Partial Perturbed Quadratic Function
11	Diagonal 2 Function	48	Broyden Tridiagonal Function
12	Diagonal 3 Function	49	Almost Perturbed Quadratic Function
13	Hager Function	50	Tridiagonal Perturbed Quadratic Function
14	Generalized Tridiagonal 1 Function	51	EDENSCH Function (CUTE)
15	Extended Tridiagonal 1 Function	52	VARDIM Function (CUTE)
16	Extended Three Exponential Terms Function	53	STAIRCASE S1 Function
17	Generalized Tridiagonal 2 Function	54	LIARWHD Function (CUTE)
18	Diagonal 4 Function	55	DIAGONAL 6 Function
19	Diagonal 5 Function	56	DIXON3DQ Function (CUTE)
20	Extended Himmelblau Function	57	DIXMAANF Function (CUTE)
21	Generalized PSC1 Function	58	DIXMAANG Function (CUTE)
22	Extended PSC1 Function	59	DIXMAANH Function (CUTE)
23	Extended Powell Function	60	DIXMAANI Function (CUTE)
24	Extended Block Diagonal BD1 Function	61	DIXMAANJ Function (CUTE)
25	Extended Maratos Function	62	DIXMAANK Function (CUTE)
26	Extended Cliff Function	63	DIXMAANL Function (CUTE)
27	Quadratic Diagonal Perturbed Function	64	DIXMAAND Function (CUTE)
28	Extended Wood Function	65	ENGVAL1 Function (CUTE)
29	Extended Hiebert Function	66	FLETCHCR Function (CUTE)
30	Quadratic Function QF1 Function	67	COSINE Function (CUTE)
31	Extended Quadratic Penalty QP1 Function	68	Extended DENSCHNB Function (CUTE)
32	Extended Quadratic Penalty QP2 Function	69	DENSCHNF Function (CUTE)
33	A Quadratic Function QF2 Function	70	SINQUAD Function (CUTE)
34	Extended EP1 Function	71	BIGGSB1 Function (CUTE)
35	Extended Tridiagonal-2 Function	72	Partial Perturbed Quadratic PPQ2 Function
36	BDQRTIC Function (CUTE)	73	Scaled Quadratic SQ1 Function
37	TRIDIA Function (CUTE)		

Table 1 Test problems

A list of the numerical results with the corresponding problem index is listed in Table 2. Then, based on the technique in [49], the plots of the corresponding figures are presented for the three discussed algorithms.

Other case: To save the paper space, we only list the data of dimension of 9000, and the remaining data are listed in the attachment.

4.2 Results and discussion

Obviously, the objective algorithm (Algorithm 2.1) is more effective than the other algorithms since the point value on the algorithm curve is largest among the three curves. In Fig. 1, the proposed algorithm curve is above the other curves. This means that the objective algorithm solves complex problems with fewer iterations, and Algorithm 3 is better than Algorithm 2. In Fig. 2, we obtain that the proposed algorithm has a large initial point, which means that it has high efficiency and its curve seems smoother than others. It is well known that the most important metric of an algorithm is the calculation time (CPU time), which is an essential aspect to measure the efficiency of an algorithm. Based on Fig. 3, the

NO Dim		Algorithm 2.1		Algorithm 2			Algorithm 3			
		NI	NFG	CPU	NI	NFG	CPU	NI	NFG	CPU
1	9000	4	20	0.124801	14	48	0.405603	5	26	0.249602
2	9000	71	327	1.965613	27	89	0.670804	32	136	0.858005
3	9000	7	20	0.0312	37	160	0.249602	27	147	0.202801
4	9000	12	49	0.280802	34	161	0.717605	42	219	0.951606
5	9000	13	56	0.202801	20	63	0.249602	5	24	0.0624
6	9000	65	252	0.421203	43	143	0.280802	3	9	0.0312
7	9000	11	37	0.0624	478	979	2.215214	465	1479	2.558416
8	9000	5	20	0.0624	22	55	0.156001	14	54	0.156001
9	9000	6	16	0.0312	5	21	0.0624	3	8	0.0312
10	9000	2	13	0.0156	2	13	0.000001	2	13	0.000001
11	9000	3	17	0.0312	7	34	0.0624	17	87	0.218401
12	9000	3	10	0.0312	19	40	0.202801	14	50	0.202801
13	9000	3	24	0.0624	3	24	0.0312	3	24	0.0156
14	9000	4	12	4.305628	5	14	5.382034	5	14	5.226033
15	9000	19	77	9.984064	22	66	9.516061	21	71	10.296066
16	9000	3	11	0.0624	6	27	0.078	6	18	0.0624
17	9000	11	45	0.374402	27	69	0.780005	27	87	0.811205
18	9000	5	23	0.0312	3	10	0.000001	3	10	0.0312
19	9000	3	9	0.0624	3	9	0.0312	3	19	0.0312
20	9000	19	76	0.124801	15	36	0.0624	3	9	0.0312
21	9000	12	47	0.156001	13	61	0.187201	15	59	0.218401
22	9000	7	46	0.795605	8	70	0.577204	6	46	0.686404
23	9000	9	45	0.218401	101	357	2.090413	46	150	0.873606
24	9000	5	47	0.093601	14	88	0.156001	14	97	0.249602
25	9000	9	28	0.0312	40	214	0.249602	8	46	0.0624
26	9000	24	102	0.327602	24	100	0.249602	3	24	0.0312
27	9000	6	20	0.0312	34	109	0.187201	92	321	0.530403
28	9000	13	50	0.124801	20	83	0.109201	23	84	0.140401
29	9000	6	36	0.0468	4	21	0.0312	4	21	0.0312
30	9000	11	37	0.0624	454	931	1.450809	424	1346	1.747211
31	9000	18	63	0.124801	15	51	0.093601	3	10	0.0312
32	9000	18	70	0.218401	23	61	0.218401	3	18	0.0624
33	9000	2	5	0.000001	2	5	0.0312	2	5	0.000001
34	9000	8	16	0.0312	6	12	0.0312	3	6	0.0312
35	9000	4	13	0.0312	4	10	0.0312	3	8	0.000001
36	9000	7	23	4.602029	8	28	5.569236	10	47	8.673656
37	9000	7	23	0.0624	1412	2829	6.942044	2000	6021	11.356873
38	9000	4	18	0.0312	8	35	0.187201	4	11	0.0312
39	9000	5	19	0.0312	28	56	0.124801	3	8	0.0312
40	9000	13	43	0.561604	835	2936	36.223432	9	41	0.421203
41	9000	10	32	0.0624	17	41	0.093601	22	81	0.124801
42	9000	4	33	0.0624	13	35	0.124801	9	47	0.109201
43	9000	16	62	1.029607	16	38	0.951606	13	48	0.780005
44	9000	3	17	0.156001	9	50	0.624004	3	17	0.187201
45	9000	21	118	1.49761	12	81	0.858006	3	24	0.202801
46	9000	20	81	1.435209	209	443	11.24/6/2	110	362	6.630042
47	9000	11	37	27.066173	30	97	68.64044	37	112	87.220159
48	9000	13	54	9./18862	31	92	18.610919	23	50	11.9808/7
49	9000	11	37	0.0624	4/8	9/9	1.51321	504	1592	1.887612
50	9000	11	37	7.971651	4/2	967	263.68849	444	12/3	299.381519
51	9000	6	31	0.156001	/	25	0.218401	3	17	0.124801
52	9000	62	186	0.998406	63	195	0.842405	4	21	0.0624
53	9000	10	32	0.0312	2000	4059	7.72205	1865	5618	7.9/1651
54	9000	4	11	0.0312	21	79	0.156001	17	79	0.124801
55	9000	10	24	3.010819	7	25	3.213621	3	10	1.0/6407
56	9000	7	21	0.0156	2000	4003	6.489642	1390	4107	5.335234
57	9000	5	39	0.358802	67	220	4.024826	3	24	0.202801
58	9000	5	24	0.343202	114	282	6.411641	82	315	5.257234
59	9000	5	39	0.343202	68	310	4.72683	3	23	0.171601

 Table 2
 Numerical results

NO	Dim	Dim Algorithm 2.1		Algorit	Algorithm 2			Algorithm 3		
		NI	NFG	CPU	NI	NFG	CPU	NI	NFG	CPU
60	9000	18	74	1.294808	206	437	11.107271	119	363	6.957645
61	9000	5	39	0.358802	85	247	4.929632	3	24	0.218401
62	9000	4	32	0.234001	4	32	0.249602	3	22	0.187201
63	9000	3	22	0.187201	3	22	0.187201	3	22	0.187201
64	9000	5	39	0.343202	23	147	1.747211	3	23	0.218401
65	9000	12	59	15.334898	14	51	14.944896	7	21	6.130839
66	9000	3	9	1.62241	2000	4022	1114.767546	529	2196	443.526443
67	9000	5	28	0.093601	15	58	0.280802	3	23	0.0312
68	9000	13	55	0.109201	11	27	0.0624	9	25	0.0624
69	9000	16	73	0.218401	24	55	0.187201	20	70	0.171601
70	9000	4	13	2.542816	41	203	36.332633	35	231	37.783442
71	9000	11	35	0.093601	2000	4014	6.708043	1491	4631	5.600436
72	9000	9	30	21.85574	1089	3897	2675.588751	287	1015	704.391315
73	9000	19	65	0.093601	607	1269	1.856412	669	2062	2.293215

objective algorithm successfully fully utilizes its outstanding characteristics. Therefore, it saves time compared to the other algorithms in addressing complex problems.

5 Nonlinear equations

The model of nonlinear equations is given by

h(x)=0,

where the function of *h* is continuously differentiable and monotonous, and $x \in \mathbb{R}^n$, that is,

$$(h(x) - h(y))(x - y) > 0, \quad \forall x, y \in \mathbb{R}^n.$$

Scholars and writers paid much attention to this model since it significantly influences various fields such as physics and computer technology (see [1-3, 8-11]), and it has resulted in many fruitful theories and good techniques (see [47, 50-54]). By mathematical calculations we obtain that (5.1) is equivalent to the model

$$\min F(x),\tag{5.2}$$

where $F(x) = \frac{\|h(x)\|^2}{2}$, and $\|\cdot\|$ is the Euclidean norm. Then, we pay much attention to the mathematical model (5.2) since (5.1) and (5.2) have the same solution. In general, the mathematical formula for (5.2) is $x_{k+1} = x_k + \alpha_k d_k$. Now, we introduce the following famous line search technique into this paper [47, 55]:

$$-h(x_k + \alpha_k d_k)^T d_k \ge \sigma \alpha_k \|h(x_k + \alpha_k d_k)\| \|d_k\|^2,$$
(5.3)

where $\alpha_k = \max\{s, s\rho, s\rho^2, \ldots\}, s, \rho > 0, \rho \in (0, 1), \text{ and } \sigma > 0$. Solodov [56] proposes a projection proximal point algorithm in a Hilbert space that finds the zeros of set-valued maximal monotone operators. Ceng and Yao [57–60] paid much attention to the research in Hilbert spaces and obtained successful achievements. Solodov and Svaiter [61] applied the projection technique to large-scale nonlinear equations and obtained some ideal achievements. For the projection-based technique, the famous formula

$$h(w_k)^T(x_k-w_k)>0$$

is flexible, where $w_k = x_k + \alpha_k d_k$. The search direction is extremely important for the proposed algorithm since it largely determines the efficiency. Likewise, the algorithm contains the perfect line search technique. By the monotonicity of h(x) we obtain

$$h(w_k)^T(x^*-w_k)\leq 0,$$

Algorithm 5.1	Modified three-ter	m conjugate	gradient a	lgorithm f	or large-sca	le nonlin-
ear equations						

Step 1: Choose an initial point $x_1 \in \mathbb{R}^n$, $\sigma > 0$, $s > 0$, $\rho \in (0, 1)$, $\eta_i > 0$ ($i = 1, 2, 3, 4, 5$), and
positive constants $\varepsilon \in (0, 1)$. Let $k = 1$.
Step 2: Stop if $ h(x_k) \le \varepsilon$. Otherwise, calculate d_{k+1} similar to (5.6).
Step 3: Find the step length α_k similar to (5.3).
Step 4: Reset the new iteration point of $w_k = x_k + \alpha_k d_k$.
Step 5: If $ h(w_k) \le \varepsilon$, then stop and set $x_{k+1} = w_k$. Otherwise, calculate x_{k+1} similar to
(5.5).
Step 6: Let $k := k + 1$ and return to Step 2.

where x^* is the solution of $h(x^*) = 0$. We consider the hyperplane

$$\Lambda = \left\{ x \in \mathbb{R}^n | h(w_k)^T (x - w_k) = 0 \right\}.$$
(5.4)

It is obvious that the hyperplane separates the current iteration point of x_k from the zeros of the mathematical model (5.1). Then, we need to calculate the next iteration point x_{k+1} through projection of current point x_k . Therefore, we give the following formula for the next point:

$$x_{k+1} = x_k - \frac{h(w_k)^T (x_k - w_k) h(w_k)}{\|h(w_k)^2\|}.$$
(5.5)

In [55], it is proved that formula (5.5) is effective since it not only obtains perfect numerical results but also has perfect theoretical characteristics. Thus, we introduce it here. The formula of the search direction d_{k+1} is given by

$$d_{k+1} = \begin{cases} -\eta_1 h_{k+1} + (1 - \eta_1) (d_k^T h_{k+1} y_k^* - h_{k+1}^T y_k^* d_k) / \delta & \text{if } k \ge 1, \\ -h_{k+1} & \text{if } k = 0, \end{cases}$$
(5.6)

where $\delta = \max(\min(\eta_5|s_k^T y_k^*|, |d_k^T y_k^*|), \eta_2 ||y_k^*|| ||d_k||, \eta_3 ||g_k||^2) + \eta_4 * ||d_k||^2, y_k^* = h_{k+1} - \frac{||h_{k+1}||^2}{||h_k||^2}h_k$, and $\eta_i > 0$ (i = 1, 2, 3). Now, we express the specific content of the proposed algorithm.

6 The global convergence of Algorithm 5.1

First, we make the following necessary assumptions.

Assumption 2

- (i) The objective model of (5.1) has a nonempty solution set.
- (ii) The function *h* is Lipschitz continuous on *Rⁿ*, which means that there is a positive constant *L* such that

$$||h(x) - h(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n.$$
 (6.1)

By Assumption 2(ii) it is obvious that

$$\|h_k\| \le \theta, \tag{6.2}$$

where θ is a positive constant. Then, the necessary properties of the search direction are the following (we omit the proof):

$$h_k^T d_k = -\eta_1 \|h_k\| \|h_k\|$$
(6.3)

and

$$\|d_k\| \le \left(\eta_1 + 2(1 - \eta_1)/\eta_2\right) \|h_k\|.$$
(6.4)

Now, we give some lemmas, which we utilize to obtain the global convergence of the proposed algorithm.

Lemma 6.1 If Assumption 2 holds, the relevant sequence $\{x_k\}$ is produced by Algorithm 5.1, and the point x^* is the solution of the objective model (5.1). We obtain that the formula

$$||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2 - ||x_{k+1} - x_k||^2$$

is correct and the sequence $\{x_k\}$ is bounded. Furthermore, either the last iteration point is the solution of the objective model and the sequence of $\{x_k\}$ is bounded, or the sequence of $\{x_k\}$ is infinite and satisfies the condition

$$\sum_{k=0}^{\infty} \|x_{k+1} - x_k\|^2 < \infty.$$

This paper merely proposes, but omits, the relevant proof since it is similar to the proof in [61].

Lemma 6.2 Algorithm 5.1 generates an iteration point in a finite number of iteration steps, which satisfies the formula of $x_{k+1} = x_k + \alpha_k d_k$ if Assumption 2 holds.

Proof We denote $\Psi = N \cup \{0\}$. We suppose that Algorithm 5.1 has terminated or the formula $||h_k|| \to 0$ is erroneous. This means that there exists a constant ε_* such that

$$\|h_k\| \ge \varepsilon_*, \quad k \in \Psi. \tag{6.5}$$

We prove this conclusion by contradiction. Suppose that certain iteration indexes k^* fail to meet the condition (5.3) of the line search technique. Without loss of generality, we denote the corresponding step length as $\alpha_{k^*}^{(l)}$, where $\alpha_{k^*}^{(l)} = \rho^l s$. This means that

$$-h(x_{k^*}+\alpha_{k^*}^{(l)}d_{k^*})^Td_{k^*}<\sigma\alpha_{k^*}^{(l)}\|h(x_{k^*}+\alpha_{k^*}^{(l)}d_{k^*})\|\|d_{k^*}\|^2.$$

By (6.3) and Assumption 2(ii) we obtain

$$\begin{split} \|h_{k^*}\|^2 &= -\eta_1 h_{k^*}^T d_{k^*} \\ &= \eta_1 \Big[\big(h \big(x_{k^*} + \alpha_{k^*}^{(l)} d_{k^*} \big) - h(x_{k^*}) \big)^T d_{k^*} - \big(h \big(x_{k^*} + \alpha_{k^*}^{(l)} d_{k^*} \big)^T d_{k^*} \big) \Big] \\ &< \eta_1 \Big[L + \sigma \, \big\| h \big(x_{k^*} + \alpha_{k^*}^{(l)} d_{k^*} \big) \big\| \Big] \alpha_{k^*}^{(l)} \| d_{k^*} \|^2, \quad \forall l \in \Psi. \end{split}$$

By (6.3) and (6.4) we have

$$\begin{split} \|h(x_{k^*} + \alpha_{k^*}^{(l)} d_{k^*})\| &\leq \|h(x_{k^*} + \alpha_{k^*}^{(l)} d_{k^*}) - h(x_{k^*})\| + \|h(x_{k^*})\| \\ &\leq L\alpha_{k^*}^{(l)} \|d_{k^*}\| + \theta \\ &\leq Ls\theta(\eta_1 + 2(1 - \eta_1)/\eta_2) + \theta. \end{split}$$

By (6.6) we obtain

$$\begin{split} \alpha_{k^*}^{(l)} &> \frac{\|h_{k^*}\|^2}{\eta_1 [L + \sigma \|h(x_{k^*} + \alpha_{k^*}^{(l)} d_{k^*})\|] \|d_{k^*}\|^2} \\ &> \frac{\|h_{k^*}\|^2}{\eta_1 [L + \sigma (Ls\theta(\eta_1 + 2(1 - \eta_1)/\eta_2) + \theta)] \|d_{k^*}\|^2} \\ &> \frac{\eta_2^2}{\eta_1 [L + \sigma (Ls\theta(\eta_1 + 2/\eta_3) + \theta)] (2(1 - \eta_1) + \eta_2 \eta_1)^2}, \quad \forall l \in \Psi. \end{split}$$

It is obvious that this formula fails to meet the definition of the step length $\alpha_{k^*}^{(l)}$. Thus, we conclude that the proposed line search technique is reasonable and necessary. In other words, the line search technique generates a positive constant α_k in a finite frequency of backtracking repetitions. By the established conclusion we propose the following theorem on the global convergence of the proposed algorithm.

Theorem 6.1 If Assumption 2 holds and the relevant sequences $\{d_k, \alpha_k, x_{k+1}, h_{k+1}\}$ are calculated using Algorithm 5.1, then

$$\liminf_{k \to \infty} \|h_k\| = 0. \tag{6.6}$$

Proof We prove this by contradiction. This means that there exist a constant $\varepsilon_0 > 0$ and an index k_0 such that

$$||h_k|| \ge \varepsilon_0, \quad \forall k \ge k_0.$$

On the one hand, by (6.2) and (6.4) we obtain

$$\|d_k\| \le \left(\eta_1 + 2(1-\eta_1)/\eta_2\right) \|h_k\| \le \left(\eta_1 + 2(1-\eta_1)/\eta_2\right) \theta, \quad \forall k \in \Psi.$$
(6.7)

On the other hand, from (6.3) we have

$$\|d_k\| \ge \eta_1 \|h_k\| \ge \eta_1 \theta. \tag{6.8}$$

These inequalities indicate that the sequence of $\{d_k\}$ is bounded. This means that there exist an accumulation point d^* and the corresponding infinite set N_1 such that

$$\lim_{k\to\infty}d_k=d^*,\quad k\in N_1.$$

By Lemma 6.1 we obtain that the sequence of $\{x_k\}$ is bounded. Thus, there exist an infinite index set $N_2 \subset N_1$ and an accumulation point x^* that meet the formula

$$\lim_{k\to\infty} x_k = x^*, \quad \forall k \in N_2.$$

By Lemmas 6.1 and 6.2 we obtain

$$\alpha_k \|d_k\| \to 0, \quad k \to \infty.$$

Since $\{d_k\}$ is bounded, we obtain

$$\lim_{k \to \infty} \alpha_k = 0. \tag{6.9}$$

By the definition of α_k we obtain the following inequality:

$$-h(x_k + \alpha_k^* d_k)^T d_k \le \sigma \alpha_k^* \|h(x_k + \alpha_k^* d_k)\| \|d_k\|^2,$$
(6.10)

where $\alpha_k^* = \alpha_k / \rho$. Now, we take the limit on both sides of (6.10) and (6.3) and obtain

$$h(x^*)^T d^* > 0$$

and

$$h(x^*)^T d^* \le 0$$

The obtained contradiction completes the proof.

7 The results of nonlinear equations

In this section, we list the relevant numerical results of nonlinear equations and present the objective function $h(x) = (f_1(x), f_2(x), \dots, f_n(x))$, where the relevant functions' information is listed in Table 1.

7.1 Problems and test experiments

To measure the efficiency of the proposed algorithm, in this section, we compare this method with (1.10) (as Algorithm 6) using three characteristics "NI", "NG", and "CPU" and the remind that Algorithm 6 is identical to Algorithm 5.1. "NI" presents the number of iterations, "NG" is the calculation frequency of the function, and "CPU" is the time of the process in addressing the tested problems. In Table 1, "No" and "problem" express the indices and the names of the test problems.

Stopping rule: If $||g_k|| \le \varepsilon$ or the whole iteration number is greater than 2000, the algorithm stops.

Initiation: $\varepsilon = 1e-5$, $\sigma = 0.8$, s = 1, $\rho = 0.9$, $\eta_1 = 0.85$, $\eta_2 = \eta_3 = 0.001$, $\eta_4 = \eta_5 = 0.1$. *Dimension:* 3000, 6000, 9000.

Calculation environment: The calculation environment is a computer with 2 GB of memory, a Pentium(R) Dual-Core CPU E5800@3.20 GHz, and the 64-bit Windows 7 operation system.

No.	Problem	No.	Problem
1	Exponential function 1	11	Linear function-full rank
2	Exponential function 2	12	Penalty function
3	Trigonometric function	13	Variable dimensioned function
4	Singular function	14	Extended Powel singular function
5	Logarithmic function	15	Tridiagonal system
6	Broyden tridiagonal function	16	Five-diagonal system
7	Trigexp function	17	Extended Freudentein and Roth function
8	Strictly convex function 1	18	Extended Wood problem
9	Strictly convex function 2	19	Discrete boundary value problem
10	Zero Jacobian function		

Table 3 Test problems

The numerical results with the corresponding problem index are listed in Table 4. Then, by the technique in [49], the plots of the corresponding figures are presented for two discussed algorithms.

7.2 Results and discussion

From the above figures, we safely arrive at the conclusion that the proposed algorithm is perfect compared to similar optimization methods since the algorithm (1.10) is perfect to a large extent. In Fig. 4 we see that the proposed algorithm quickly arrives at a value of 1.0, whereas the left one slowly approaches 1.0. This means that the objective method is successful and efficient for addressing complex problems in our life and work. It is well known that the calculation time is one of the most essential characteristics in an evaluation index of the efficiency of an algorithm. From Figs. 5 and 6, it is obvious that the two algorithms are good since their corresponding point values arrive at 1.0. This result expresses that the above two algorithms solve all of the tested problems and that the proposed algorithm is efficient.

8 Conclusion

This paper focuses on the three-term conjugate gradient algorithms and use them to solve the optimization problems and the nonlinear equations. The given method has some good properties.

(i) The proposed three-term conjugate gradient formula possesses the sufficient descent property and the trust region feature without any conditions. The sufficient descent property can make the objective function value be descent, and then the iteration sequence {*x_k*} converges to the global limit point. Moreover, the trust region is good for the proof of the presented algorithm to be easily turned out.

 Table 4
 Numerical results

NI NFG CPU NI NFG CPU 1 3000 161 162 391225 146 147 4.149627 1 6000 126 127 12760862 115 116 11.12287 2 3000 5 76 1.185068 5 76 4.009226 2 9000 5 62 6.926444 5 62 6.754843 3 3000 33 228 3.324813 18 106 6.084924 4 3000 4 61 0.842405 4 61 0.332781 4 9000 4 47 5.256033 4 61 6.817244 5 3000 25 263 14.13691 25 263 13.393889 5 9000 26 9278 3.0186193 26 278 3.0026292 6 6000 88 1307 68.11237 199 29986	NO	Dim	Algorithm 5.1		Algorithm 6			
			NI	NFG	CPU	NI	NFG	CPU
1 6000 1126 127 122,068144 115 116 11.122871 2 3000 5 76 1.185608 5 76 1.060807 2 6000 6 91 4758031 5 76 4.060826 3 3000 33 228 3276021 18 106 6.778413 3 6000 40 225 15.490699 18 106 6.626439 4 9000 4 47 2269817 4 61 0.332831 4 9000 23 237 3.24481 23 237 3.354022 5 9000 25 263 14.133691 25 263 13.390859 6 9000 65 962 101.806253 1999 29986 3113.998361 7 6000 4 47 0.248805 3 46 0.624004 7 9000 4 47 52572	1	3000	161	162	3.931225	146	147	4.149627
1 9000 111 112 22.424144 99 100 1951725 2 6000 6 91 4.758031 5 76 106807 2 6000 5 62 6.926444 5 62 6.9754843 3 3000 33 228 3.76021 18 106 6.084039 3 9000 40 225 15.490899 18 106 6.084039 4 6000 4 47 5.226033 4 61 0.332602 5 6000 23 237 3.244821 23 237 3.334022 6 6000 26 278 30.186193 26 278 3.938391 6 9000 26 278 30.186193 26 278 3.938361 7 9000 4 47 2.589617 3 46 5.054324 7 9000 4 47 2.52534	1	6000	126	127	12.760882	115	116	11.122871
2 3000 5 76 1.185608 5 76 4.00620 2 9000 5 62 6.926444 5 62 6.754843 3 3000 33 228 3.276021 18 106 1.72411 3 6000 40 225 15.490899 18 106 1.624248 4 9000 4 61 0.824248 61 0.932066 4 6000 4 47 5.26633 4 61 6.8329821 5 9000 26 278 3.0186193 26 278 3.0393089 6 6000 199 29986 382.951255 1999 29986 313.390893 7 3000 4 47 0.74805 3 46 0.024004 6 6000 88 1307 68.141237 1999 29986 313.3998361 7 6000 4 47 2.557234	1	9000	111	112	22.464144	99	100	19.515725
2 6000 6 91 4.758031 5 76 4.009226 2 9000 5 62 6.926444 5 62 6.758433 3 3000 33 228 3.276021 18 106 1.0778111 3 9000 40 225 15.490899 18 106 1.254248 4 9000 4 47 2.526033 4 61 0.332821 4 9000 4 47 5.226033 4 61 6.332821 5 9000 25 263 1.1339089 25 263 1.339089 5 9000 26 278 30.186193 26 278 30.389361 6 6000 88 1307 68.141237 1999 29986 31839381 7 9000 4 47 2.589617 3 46 5.536942 8 3000 25 156 2.854818 </td <td>2</td> <td>3000</td> <td>5</td> <td>76</td> <td>1.185608</td> <td>5</td> <td>76</td> <td>1.060807</td>	2	3000	5	76	1.185608	5	76	1.060807
2 9000 5 6.2 6.926444 5 6.2 6.754843 3 3000 40 2275 15.490899 18 106 6.084039 3 9000 40 2285 33.243813 18 106 1.254248 4 3000 4 61 0.842405 4 61 0.932084 4 9000 4 47 2.698817 4 61 6.8322841 5 3000 23 237 3.3244821 23 237 3.334022 5 9000 26 278 30.186193 26 278 30.092533 6 6000 88 1307 68.141237 1999 29986 1484.240314 6 9000 4 47 2.527234 3 46 0.524444 7 9000 4 47 2.527234 17 142 18727254 8 9000 28 192	2	6000	6	91	4.758031	5	76	4.009226
3 3000 33 228 3276021 18 106 1.778411 3 6000 40 275 15.490699 18 106 6.084399 4 3000 4 61 0.842405 4 61 0.33226021 4 6000 4 47 5.226033 4 61 6.3322821 5 6000 25 263 14.133691 25 263 13.930889 5 9000 26 278 30.186193 26 278 30.0318619 25 263 13.393089 6 9000 26 9278 30.186193 269 29986 343.1399361 7 3000 4 47 0.748805 3 46 0.624004 7 9000 25 156 2.854818 17 142 18727012 8 9000 28 192 21.512538 19 174 1.8938521 9	2	9000	5	62	6.926444	5	62	6.754843
3 6000 40 2/5 15/490899 18 106 12.54/48 4 3000 4 61 0.842405 4 61 0.3322821 4 9000 4 47 526033 4 61 6.817244 5 3000 23 237 3.244821 23 237 3.354025 5 9000 26 278 30.186193 26 278 30.092593 6 3000 1999 29986 382.951255 1999 29986 1363.36984 6 9000 65 962 101.806253 1999 29986 311.399361 7 3000 4 47 2.589617 3 46 0.236815 7 9000 4 47 2.589617 3 46 2.386815 7 9000 4 61 5.257234 3 46 2.368615 7 9000 4 61 3	3	3000	33	228	3.276021	18	106	1.778411
3 9000 40 285 33,243813 18 100 12,2428 4 6000 4 47 2698817 4 61 0.932606 4 9000 4 47 526033 4 61 6.817244 5 3000 23 237 3.244821 23 237 3.354022 5 6000 25 263 11.1366193 26 278 3.0092593 6 3000 1999 29986 382.951255 1999 29986 3113.998361 7 3000 4 47 0.748805 3 46 0.5248132 8 0000 4 47 5.257234 3 46 5.054432 8 0000 22 189 10.826469 18 162 8.377254 8 9000 28 192 2151238 19 174 18.938811 9 9000 4 61 3.51	3	6000	40	275	15.490899	18	106	6.084039
4 5000 4 61 0.322821 4 9000 4 47 2.526033 4 61 3.322821 5 9000 23 237 3.244821 23 237 3.354022 5 9000 25 263 14.133691 25 263 11.393889 6 9000 26 278 3.0186193 26 278 3.009293 6 6000 88 1307 68.141237 1999 29986 113.99361 7 9000 4 47 0.74805 3 46 0.624004 7 9000 4 47 0.259917 3 46 0.504435 8 9000 25 156 2.854818 17 142 1.872012 8 9000 28 192 2.151238 19 174 18.336521 9 3000 10 151 1.934412 5 76 1.01400	3	9000	40	285	33.243813	18	106	12.54248
	4	6000	4	47	2.608817	4	61	2 2 2 2 2 2 1
1 1	4	9000	4	47	5 226033	4	61	6.817244
5 6000 25 263 14.133691 25 263 13.930889 5 9000 26 278 30.186193 26 278 30.092593 6 3000 1999 2986 382.951255 1999 29986 313.398361 7 3000 4 47 0.748805 3 46 0.624004 7 6000 4 47 2.589617 3 46 0.624004 7 6000 4 47 2.589617 3 46 0.624004 8 0000 28 192 2.151238 19 174 18.72012 8 6000 32 189 10.826469 18 162 8.377254 9 9000 4 61 6.51442 6 91 9.609662 10 0000 1999 29986 3164.339884 1999 29986 318.4366 10 6000 1999 29986 <td>5</td> <td>3000</td> <td>23</td> <td>237</td> <td>3 244821</td> <td>23</td> <td>237</td> <td>3 354022</td>	5	3000	23	237	3 244821	23	237	3 354022
5 9000 26 278 30.186193 26 278 30.092593 6 3000 1999 29986 382.951255 1999 29986 3143.420314 6 9000 65 962 101.806253 1999 29986 3143.998361 7 3000 4 47 0.748805 3 46 0.624044 7 6000 4 47 2.57234 3 46 0.624044 7 9000 4 47 5.257234 3 46 0.64432 8 9000 28 192 21.512538 19 174 18.938521 9 3000 10 151 1.934412 5 76 1.84425 9 9000 4 61 6.61442 6 91 9.60862 10 3000 1999 29986 3164.33984 1999 29986 387.712193 11 3000 1999 299	5	6000	25	263	14 133691	25	263	13 930889
6 3000 1999 29986 382.951255 1999 29986 1484.240314 6 9000 65 962 101.806253 1999 29986 313.998361 7 3000 4 47 0.748805 3 46 0.624004 7 6000 4 47 0.589617 3 46 0.584815 7 9000 4 47 2.589617 3 46 0.584815 8 3000 25 156 2.854818 17 142 1.872012 8 9000 28 192 2.1512538 19 174 1.8938521 9 3000 10 151 1.934412 5 76 1.014007 9 9000 4 61 6.614442 6 91 9.6008,771213 10 3000 1999 29986 3164.33984 1999 29986 34571273 11 3000 498 <td< td=""><td>5</td><td>9000</td><td>26</td><td>278</td><td>30.186193</td><td>26</td><td>278</td><td>30.092593</td></td<>	5	9000	26	278	30.186193	26	278	30.092593
6 6000 88 1307 68.141237 1999 29986 1484.240314 6 9000 65 962 101.866253 1999 29986 3113.998361 7 3000 4 47 0.748805 3 46 0.624004 7 6000 4 47 0.748805 3 46 0.54432 8 3000 25 156 2.854818 17 142 187212 9 3000 10 151 1.934412 5 76 1.014007 9 6000 4 61 6.614442 6 91 9.609662 10 3000 1999 29986 3164.339844 1999 29986 3359.816306 10 9000 1999 29986 3164.339844 1999 29986 3367.873754 11 3000 1999 2000 51.059127 199 2000 462.578795 11 9000 1	6	3000	1999	29986	382.951255	1999	29986	365.369942
6 9000 65 962 101.806253 1999 29986 3113.998361 7 3000 4 47 0.748805 3 46 0.624004 7 6000 4 47 2.589617 3 46 2.386815 7 9000 4 47 2.527234 3 46 5.054432 8 3000 25 156 2.854818 17 142 1.872754 8 9000 28 192 2.1512538 19 174 1.893851 9 9000 4 61 3.510023 5 76 1.014007 9 9000 4 61 3.510023 5 76 3.884425 9 9000 1999 29986 316.634479 1999 29986 359.816306 10 9000 1999 29986 3164.339884 1999 2472 367.78758 11 9000 498 7457 </td <td>6</td> <td>6000</td> <td>88</td> <td>1307</td> <td>68.141237</td> <td>1999</td> <td>29986</td> <td>1484.240314</td>	6	6000	88	1307	68.141237	1999	29986	1484.240314
7 3000 4 47 0.748805 3 46 0.624004 7 6000 4 47 2.589617 3 46 2.368615 8 3000 25 156 2.854818 17 142 1.872012 8 6000 32 189 10.826469 18 162 8.377254 9 3000 10 151 1.934412 5 76 1.014007 9 6000 4 61 6.614442 6 91 9.60662 10 3000 1999 29986 336.804479 1999 29986 359.816306 10 6000 1999 29986 3164.33984 1999 29986 387.712193 11 3000 498 7457 385.026068 499 7472 367.787958 11 9000 498 7457 784.07629 488 7457 774.825767 12 6000 1999	6	9000	65	962	101.806253	1999	29986	3113.998361
7 6000 4 47 2.589617 3 46 2.386815 7 9000 4 47 5.257234 3 46 5.05432 8 3000 25 156 2.854818 17 142 1.872012 8 9000 28 192 2.1512538 19 1.74 1.8338521 9 3000 10 151 1.934412 5 76 1.014007 9 6000 4 61 6.614442 6 91 9.609662 10 3000 1999 29986 3164.339884 1999 29986 1469.59182 10 9000 1999 29986 3164.339884 1999 29986 3087.712193 11 6000 498 7457 385.026068 499 7472 33.0137 12 3000 1999 2000 15.059127 1999 2000 46.238666 12 6000 1999	7	3000	4	47	0.748805	3	46	0.624004
7 9000 4 47 5.257.234 3 46 5.054432 8 3000 25 156 2.854818 17 142 1.872012 8 9000 28 192 2.1.512538 19 1.74 1.8938521 9 3000 10 151 1.934412 5 76 1.014007 9 6000 4 61 3.510023 5 76 3.884425 9 9000 4 61 6.614442 6 91 9.609662 10 3000 1999 29986 31523.068963 1999 29986 3087.712193 11 3000 498 7457 98.32743 499 7472 93.10137 11 6000 498 7457 794.07629 498 7457 774.825767 12 3000 1 2 0.0312 1 2 0.0624 13 3000 1 2	7	6000	4	47	2.589617	3	46	2.386815
8 3000 25 156 2.854818 17 142 1.872012 8 6000 32 189 10.826469 18 162 8.377254 9 3000 10 151 1.934412 5 76 1.014007 9 6000 4 61 3.510023 5 76 3.884425 9 9000 4 61 6.614442 6 91 9.60662 10 3000 1999 29986 3164339884 1999 29986 3087.712193 11 3000 498 7457 784.07629 498 7457 748.25767 12 3000 1999 2000 510.59127 1999 2000 46.238696 12 9000 1999 2000 510.59127 1999 2000 185.71919 12 9000 1 2 0.1340401 1 2 0.249602 13 9000 1 <	7	9000	4	47	5.257234	3	46	5.054432
8 6000 32 189 10.826469 18 162 8.377254 8 9000 28 192 21.512538 19 174 18.938521 9 3000 10 151 1.934412 5 76 1.014007 9 6000 4 61 6.614442 6 91 9.609662 10 3000 1999 29986 336.804479 1999 29986 146959182 10 9000 1999 29986 3164.339884 1999 29986 146959182 10 9000 498 7457 78.32743 499 7472 93.01397 11 6000 498 7457 784.07629 498 7457 774.825767 12 3000 1 2 0.0312 1 2 0.0624 13 3000 1 2 0.16001 1 2 0.024460 14 9000 1999 <td< td=""><td>8</td><td>3000</td><td>25</td><td>156</td><td>2.854818</td><td>17</td><td>142</td><td>1.872012</td></td<>	8	3000	25	156	2.854818	17	142	1.872012
8 9000 28 192 21.512538 19 174 18.938521 9 3000 10 151 1.934412 5 76 1.014007 9 6000 4 61 3.510023 5 76 3.884425 9 9000 4 61 6.614442 6 91 9.609662 10 3000 1999 29986 336.804479 1999 29986 3359.816306 10 9000 1999 29986 3164.339844 1999 29986 308.7712193 11 3000 498 7457 98.32743 499 7472 93.101397 11 9000 498 7457 794.07629 498 7457 774.825767 12 3000 1 2 0.00 185.71919 2000 46.238696 12 6000 1999 2000 405.680601 1999 2000 185.71919 12 0.000	8	6000	32	189	10.826469	18	162	8.377254
9 3000 10 151 1.934412 5 76 1.014007 9 6000 4 61 3.510023 5 76 3.884425 9 9000 4 61 6.614442 6 91 9.60962 10 6000 1999 29986 1523.068963 1999 29986 3459.816306 10 9000 1999 29986 3164.33984 1999 29986 3087.712193 11 3000 498 7457 98.32743 499 7472 93.101397 11 9000 498 7457 794.07629 498 7457 774.825767 12 3000 1999 2000 51.059127 1999 2000 46.238696 12 9000 1999 2000 405.68061 1999 2000 185.71919 12 9000 1 2 0.140401 1 2 0.847201 13 3000	8	9000	28	192	21.512538	19	174	18.938521
9 6000 4 61 3.510023 5 76 3.884425 9 9000 4 61 6.614442 6 91 9.609662 10 3000 1999 29986 1523.068963 1999 29986 359.816306 10 9000 1999 29986 3164.339884 1999 29986 308.7.712193 11 3000 498 7457 98.32743 499 7472 93.101397 11 6000 498 7457 784.07629 498 7457 774.825767 12 3000 1999 2000 51.059127 1999 2000 46.238696 12 6000 1999 2000 405.680601 1999 2000 391.234908 13 3000 1 2 0.156001 1 2 0.424062 14 6000 1999 29972 400.220565 1999 29973 3162.671125 14 <t< td=""><td>9</td><td>3000</td><td>10</td><td>151</td><td>1.934412</td><td>5</td><td>76</td><td>1.014007</td></t<>	9	3000	10	151	1.934412	5	76	1.014007
9 9000 4 61 6.614442 6 91 9.609662 10 3000 1999 29986 336.804479 1999 29986 346.95182 10 6000 1999 29986 1523.068963 1999 29986 3087.712193 11 3000 498 7457 98.32743 499 7472 93.101397 11 6000 498 7457 794.07629 498 7457 774.825767 12 3000 1999 2000 51.059127 1999 2000 46.338696 12 6000 1999 2000 405.680601 1999 2000 391.234908 13 3000 1 2 0.166001 1 2 0.187.719 13 9000 1 2 0.0312 1 2 0.0624 13 3000 1 2 0.16001 1 2 0.249602 14 3000 199	9	6000	4	61	3.510023	5	76	3.884425
10 3000 1999 29986 336.8044.9 1999 29986 359.816306 10 6000 1999 29986 1523.068963 1999 29986 1469.59182 10 9000 1999 29986 3164.33984 1999 29986 3087.712193 11 6000 498 7457 98.32743 499 7472 93.101397 11 6000 498 7457 794.07629 498 7457 774.825767 12 3000 1999 2000 51.059127 1999 2000 485.71919 12 6000 1999 2000 19.322478 1999 2000 391.234908 13 3000 1 2 0.0312 1 2 0.0624 13 6000 1 2 0.14001 1 2 0.249602 14 3000 1999 29972 1544.316299 1999 29973 3165.168705 15	9	9000	4	61	6.614442	6	91	9.609662
10 6000 1999 29986 1523.088963 1999 29986 1469.59182 109000 1999 29986 3164.339884 1999 29986 3087.712193 11 6000 498 7457 98.2743 499 7472 93.101397 11 6000 498 7457 794.07629 498 7457 774.825767 12 3000 1999 2000 51.059127 1999 2000 46.238696 12 6000 1999 2000 405.680601 1999 2000 391.234908 13 3000 12 0.0312 12 0.187201 13 9000 12 0.140401 12 0.249602 14 3000 1999 29972 400.220565 1999 29973 3105.168705 15 3000 4 61 0.733205 4 61 0.733205 16 6000 5 62 3.400822 5 62 0.88006 16 6000 5 62 3.400822 5 62 0.82066 16 6000 5 62 3.400822 5 62 0.82066 16 6000 5 62 0.996006 5 76 0.920406 16 3000 5 62 0.996006 5 76 0.920406 17 3000 6 77 1.326009 6 91 1.216808 <tr< td=""><td>10</td><td>3000</td><td>1999</td><td>29986</td><td>386.804479</td><td>1999</td><td>29986</td><td>359.816306</td></tr<>	10	3000	1999	29986	386.804479	1999	29986	359.816306
10 9000 1999 29986 3164.339844 1999 29986 3087./12193 11 3000 498 7457 98.32743 499 7472 93.101397 11 6000 498 7457 385.026068 499 7472 367.78758 11 9000 498 7457 794.07629 498 7457 774.825767 12 3000 1999 2000 51.059127 1999 2000 46.238696 12 6000 1999 2000 405.680601 1999 2000 391.234908 13 3000 1 2 0.135001 1 2 0.187201 13 9000 1 2 0.140401 1 2 0.249602 14 3000 1999 29972 400.220565 1999 29973 3165.168705 14 9000 1999 29972 3197.287295 1999 29973 3105.168705 15	10	6000	1999	29986	1523.068963	1999	29986	1469.59182
11 5000 498 7457 96.52743 499 7472 95.101397 11 6000 498 7457 385.026068 499 7472 367.787958 12 3000 1999 2000 51.059127 1999 2000 46.238696 12 6000 1999 2000 199.322478 1999 2000 391.234908 13 3000 1 2 0.0312 1 2 0.0624 13 6000 1 2 0.140401 1 2 0.249602 14 3000 1999 29972 400.220565 1999 29973 362.671125 14 6000 1999 29972 3197.287295 1999 29973 3105.168705 15 3000 4 61 0.733205 4 61 0.733205 15 6000 4 61 6.552042 4 61 6.146439 16 3000 5 62 1.060807 5 62 0.858006 16 <td< td=""><td>10</td><td>9000</td><td>1999</td><td>29986</td><td>3164.339884</td><td>1999</td><td>29986</td><td>3087.712193</td></td<>	10	9000	1999	29986	3164.339884	1999	29986	3087.712193
11 0000 498 7457 363.02006 499 7472 367.767936 11 9000 498 7457 794.07629 498 7457 774.825767 12 3000 1999 2000 51.059127 1999 2000 462.38696 12 9000 1999 2000 405.680601 1999 2000 391.234908 13 3000 1 2 0.0312 1 2 0.0624 13 6000 1 2 0.140401 1 2 0.249602 14 3000 1999 29972 400.220565 1999 29973 362.671125 14 6000 1999 29972 3197.287295 1999 29973 3105.168705 15 3000 4 61 0.733205 4 61 0.733205 15 6000 4 61 3.790824 4 61 6.146439 15 9000 <	11	5000	498	7457	98.32743	499	7472	93.101397
11 5000 1990 1437 194.025 1990 1437 194.025 12 3000 1999 2000 51.059127 1999 2000 185.71919 12 9000 1999 2000 405.680601 1999 2000 331.234908 13 3000 1 2 0.0312 1 2 0.0624 13 6000 1 2 0.156001 1 2 0.187201 13 9000 1 2 0.140401 1 2 0.249602 14 3000 1999 29972 400.220565 1999 29973 362.671125 14 6000 1999 29972 3197.287295 1999 29973 3105.168705 15 3000 4 61 0.733205 4 61 0.733205 15 9000 4 61 3.790824 4 61 6.146439 15 9000 4 61 6.52042 4 61 6.146439 16 3000	11	0000	490	7457	565.020006 704.07620	499	7472	207.707920 774.925767
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	3000	1000	2000	51 050127	1000	2000	16 238606
12 3000 1999 2000 $405,680601$ 1999 2000 $391,234908$ 13 3000 1 2 0.0312 1 2 0.0624 13 6000 1 2 0.156001 1 2 0.187201 13 9000 1 2 0.140401 1 2 0.249602 14 3000 1999 29972 400.220565 1999 29973 $362,671125$ 14 6000 1999 29972 $1544,316299$ 1999 29973 $3105,168705$ 15 3000 4 61 0.733205 4 61 0.733205 15 6000 4 61 3.790824 4 61 0.733205 15 6000 4 61 6.552042 4 61 6.146439 16 3000 5 62 1.060807 5 62 0.888006 16 6000 5 62 3.400822 5 62 3.291621 16 9000 5 62 6.942044 5 62 6.25564 17 3000 6 77 4.243227 6 91 4.570829 17 9000 6 77 8.548855 6 91 9.40686 18 3000 5 76 0.9360065 5 76 0.920406 18 6000 5 76 8.533255 5 76 7.8224 <t< td=""><td>12</td><td>6000</td><td>1999</td><td>2000</td><td>199 322478</td><td>1999</td><td>2000</td><td>185 71919</td></t<>	12	6000	1999	2000	199 322478	1999	2000	185 71919
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	9000	1999	2000	405 680601	1999	2000	391 234908
136000120.156001120.187201139000120.140401120.249602143000199929972400.220565199929973362.6711251460001999299723197.2872951999299733105.1687051530004610.7332054610.7332051560004613.7908244613.0264191590004616.5520424616.1464391630005621.0608075620.8580061660005623.4008225623.2916211690006771.3260096911.2168081730006774.2432276914.5708291790006760.9360065760.9204061860005763.900255763.7752241890005768.5332555767.86245193000108106015.5689141127217.5657131960008178844.429085114102953.8203451990006362870.51245210090399.715839	13	3000	1	2	0.0312	1	2	0.0624
139000120.140401120.249602143000199929972400.220565199929973362.6711251460001999299721544.3162991999299733105.1687051530004610.7332054610.7332051560004613.7908244613.0264191590004616.5520424616.1464391630005621.0608075620.8580061660005623.4008225623.2916211690006771.3260096911.2168081730006774.2432276914.5708291790006760.9360065760.9204061830005763.900255763.7752241890005768.5332555767.86245193000108106015.5689141127217.5657131960008178844.429085114102953.8203451990006362870.51245210090399.715839	13	6000	1	2	0.156001	1	2	0.187201
143000199929972400.220565199929973362.6711251460001999299721544.3162991999299731460.2941611490001999299723197.2872951999299733105.1687051530004610.7332054610.7332051560004613.7908244613.0264191590004616.5520424616.1464391630005621.0608075620.8580061660005623.4008225623.2916211690006771.3260096911.2168081730006774.2432276914.5708291790006778.5488556919.406861830005760.9360065760.9204061860005768.5332555767.86245193000108106015.5689141127217.5657131960008178844.429085114102953.8203451990006362870.51245210090399.715839	13	9000	1	2	0.140401	1	2	0.249602
1460001999299721544.3162991999299731460.2941611490001999299723197.2872951999299733105.1687051530004610.7332054610.7332051560004613.7908244613.0264191590004616.5520424616.1464391630005621.0608075620.8580061660005623.4008225623.2916211690005626.9420445626.255641730006771.3260096911.2168081760006778.5488556919.406861830005760.9360065760.9204061860005763.900255767.86245193000108106015.5689141127217.5657131960008178844.429085114102953.8203451990006362870.51245210090399.715839	14	3000	1999	29972	400.220565	1999	29973	362.671125
1490001999299723197.2872951999299733105.1687051530004610.7332054610.7332051560004613.7908244613.0264191590004616.5520424616.1464391630005621.0608075620.8580061660005623.4008225623.2916211690005626.9420445626.255641730006771.3260096911.2168081760006778.5488556919.406861830005760.9360065760.9204061860005763.900255763.7752241890005768.5332555767.86245193000108106015.5689141127217.5657131960008178844.429085114102953.8203451990006362870.51245210090399.715839	14	6000	1999	29972	1544.316299	1999	29973	1460.294161
1530004610.7332054610.7332051560004613.7908244613.0264191590004616.5520424616.1464391630005621.0608075620.8580061660005623.4008225623.2916211690005626.9420445626.255641730006771.3260096911.2168081760006774.2432276914.5708291790006778.5488556919.406861830005760.9360065760.9204061860005763.900255763.7752241890005768.5332555767.86245193000108106015.5689141127217.5657131990006362870.51245210090399.715839	14	9000	1999	29972	3197.287295	1999	29973	3105.168705
1560004613.7908244613.0264191590004616.5520424616.1464391630005621.0608075620.8580061660005623.4008225623.2916211690005626.9420445626.255641730006771.3260096911.2168081760006774.2432276914.5708291790006778.5488556919.406861830005760.9360065760.9204061860005763.900255763.7752241890005768.5332555767.86245193000108106015.5689141127217.5657131960008178844.429085114102953.8203451990006362870.51245210090399.715839	15	3000	4	61	0.733205	4	61	0.733205
15 9000 4 61 6.52042 4 61 6.146439 16 3000 5 62 1.060807 5 62 0.858006 16 6000 5 62 3.400822 5 62 3.291621 16 9000 5 62 6.942044 5 62 6.25564 17 3000 6 77 1.326009 6 91 1.216808 17 6000 6 77 4.243227 6 91 4.570829 17 9000 6 77 8.548855 6 91 9.40686 18 3000 5 76 0.936006 5 76 0.920406 18 6000 5 76 3.900025 5 76 3.775224 18 9000 5 76 8.533255 5 76 7.86245 19 3000 108 1060 15.5689 141 <td>15</td> <td>6000</td> <td>4</td> <td>61</td> <td>3.790824</td> <td>4</td> <td>61</td> <td>3.026419</td>	15	6000	4	61	3.790824	4	61	3.026419
16 3000 5 62 1.060807 5 62 0.858006 16 6000 5 62 3.400822 5 62 3.291621 16 9000 5 62 6.942044 5 62 6.25564 17 3000 6 77 1.326009 6 91 1.216808 17 6000 6 77 4.243227 6 91 4.570829 17 9000 6 77 8.548855 6 91 9.40686 18 3000 5 76 0.936006 5 76 0.920406 18 6000 5 76 3.900025 5 76 3.775224 18 9000 5 76 8.533255 5 76 7.86245 19 3000 108 1060 15.5689 141 1272 17.565713 19 9000 63 628 70.512452 <t< td=""><td>15</td><td>9000</td><td>4</td><td>61</td><td>6.552042</td><td>4</td><td>61</td><td>6.146439</td></t<>	15	9000	4	61	6.552042	4	61	6.146439
16 6000 5 62 3.400822 5 62 3.291621 16 9000 5 62 6.942044 5 62 6.25564 17 3000 6 77 1.326009 6 91 1.216808 17 6000 6 77 4.243227 6 91 4.570829 17 9000 6 77 8.548855 6 91 9.40686 18 3000 5 76 0.936006 5 76 0.920406 18 6000 5 76 3.900025 5 76 3.775224 18 9000 5 76 8.533255 5 76 7.86245 19 3000 108 1060 15.5689 141 1272 17.565713 19 9000 63 628 70.512452 100 903 99.715839	16	3000	5	62	1.060807	5	62	0.858006
16 9000 5 62 6.942044 5 62 6.25564 17 3000 6 77 1.326009 6 91 1.216808 17 6000 6 77 4.243227 6 91 4.570829 17 9000 6 77 8.548855 6 91 9.40686 18 3000 5 76 0.936006 5 76 0.920406 18 6000 5 76 3.900025 5 76 3.775224 18 9000 5 76 8.533255 5 76 7.86245 19 3000 108 1060 15.5689 141 1272 17.565713 19 6000 81 788 44.429085 114 1029 53.820345 19 9000 63 628 70.512452 100 903 99.715839	16	6000	5	62	3.400822	5	62	3.291621
17 3000 6 77 1.326009 6 91 1.216808 17 6000 6 77 4.243227 6 91 4.570829 17 9000 6 77 8.548855 6 91 9.40686 18 3000 5 76 0.936006 5 76 0.920406 18 6000 5 76 3.900025 5 76 3.775224 18 9000 5 76 8.533255 5 76 7.86245 19 3000 108 1060 15.5689 141 1272 17.565713 19 6000 81 788 44.429085 114 1029 53.820345 19 9000 63 628 70.512452 100 903 99.715839	16	9000	5	62	6.942044	5	62	6.25564
17 6000 6 77 4.243227 6 91 4.570829 17 9000 6 77 8.548855 6 91 9.40686 18 3000 5 76 0.936006 5 76 0.920406 18 6000 5 76 3.900025 5 76 3.775224 18 9000 5 76 8.533255 5 76 7.86245 19 3000 108 1060 15.5689 141 1272 17.565713 19 6000 81 788 44.429085 114 1029 53.820345 19 9000 63 628 70.512452 100 903 99.715839	17	3000	6	//	1.326009	6	91	1.216808
17 9000 0 77 6.548855 0 91 9.4088 18 3000 5 76 0.936006 5 76 0.920406 18 6000 5 76 3.900025 5 76 3.775224 18 9000 5 76 8.533255 5 76 7.86245 19 3000 108 1060 15.5689 141 1272 17.565713 19 6000 81 788 44.429085 114 1029 53.820345 19 9000 63 628 70.512452 100 903 99.715839	1/ 17	0000	0	// רד	4.243227	6	91	4.5/0829
10 3000 5 76 0.930000 5 76 0.920400 18 6000 5 76 3.900025 5 76 3.775224 18 9000 5 76 8.533255 5 76 7.86245 19 3000 108 1060 15.5689 141 1272 17.565713 19 6000 81 788 44.429085 114 1029 53.820345 19 9000 63 628 70.512452 100 903 99.715839	1/ 10	3000	С С	//	0.026006	۵ ۲	91 76	9.40686
10 0000 5 76 5,500025 5 76 5,75224 18 9000 5 76 8.533255 5 76 7.86245 19 3000 108 1060 15.5689 141 1272 17.565713 19 6000 81 788 44.429085 114 1029 53.820345 19 9000 63 628 70.512452 100 903 99.715839	10 18	5000	5 E	/0 76	3 000025	5	70	0.920400 2.775004
19 3000 108 1060 15.5689 141 1272 17.565713 19 6000 81 788 44.429085 114 1029 53.820345 19 9000 63 628 70.512452 100 903 99.715839	18	9000	ר ב	70	2.200023 8.533255	ר ב	76	7.86745
19 6000 81 788 44.429085 114 1029 53.820345 19 9000 63 628 70.512452 100 903 99.715839	19	3000	108	1060	15 5689	141	1272	17 565713
19 9000 63 628 70.512452 100 903 99.715839	19	6000	81	788	44,429085	114	1029	53 820345
	19	9000	63	628	70.512452	100	903	99.715839

- (ii) The given algorithm can be used for not only the normal unstrained optimization problems but also for the nonlinear equations. Both algorithms for these two problems have the global convergence under general conditions.
- (iii) Large-scale problems are done by the given problems, which shows that the new algorithms are very effective.

Acknowledgements

The authors would like to thank the editor and the referees for their interesting comments, which greatly improved our paper. This work is supported by the National Natural Science Foundation of China (Grant No. 11661009), the Guangxi Science Fund for Distinguished Young Scholars (No. 2015GXNSFGA139001), and the Guangxi Natural Science Key Fund (No. 2017GXNSFDA198046). Innovation Project of Guangxi Graduate Education (No. YCSW2018046)

Competing interests

The authors declare to have no competing interests.

Authors' contributions

The work of Dr. GY is organizing and checking this paper, and Dr. WH mainly has done the experiments of the algorithms and written the codes. All authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 January 2018 Accepted: 26 April 2018 Published online: 11 May 2018

References

- 1. Birindelli, I., Leoni, F., Pacella, F.: Symmetry and spectral properties for viscosity solutions of fully nonlinear equations. J. Math. Pures Appl. **107**(4), 409–428 (2017)
- 2. Ganji, D.D., Fakour, M., Vahabzadeh, A., et al.: Accuracy of VIM, HPM and ADM in solving nonlinear equations for the steady three-dimensional flow of a Walter's B fluid in vertical channel. Walailak J. Sci. Technol. 11(7), 203–204 (2014)
- 3. Georgiades, F.: Nonlinear equations of motion of L-shaped beam structures. Eur. J. Mech. A, Solids 65, 91–122 (2017)

- Dai, Z., Wen, F.: Some improved sparse and stable portfolio optimization problems. Finance Res. Lett. (2018). https://doi.org/10.1016/j.frl.2018.02.026
- Dai, Z., Li, D., Wen, F.: Worse-case conditional value-at-risk for asymmetrically distributed asset scenarios returns. J. Comput. Anal. Appl. 20, 237–251 (2016)
- Dong, X., Liu, H., He, Y.: A self-adjusting conjugate gradient method with sufficient descent condition and conjugacy condition. J. Optim. Theory Appl. 165(1), 225–241 (2015)
- Dong, X., Liu, H., He, Y., Yang, X.: A modified Hestenes–Stiefel conjugate gradient method with sufficient descent condition and conjugacy condition. J. Comput. Appl. Math. 281, 239–249 (2015)
- Liu, Y.: Approximate solutions of fractional nonlinear equations using homotopy perturbation transformation method. Abstr. Appl. Anal. 2012(2), 374 (2014)
- 9. Chen, P.: Christoph Schwab, sparse-grid, reduced-basis Bayesian inversion, nonaffine-parametric nonlinear equations. J. Comput. Phys. **316**(C), 470–503 (2016)
- Shah, F.A., Noor, M.A.: Some numerical methods for solving nonlinear equations by using decomposition technique. Appl. Math. Comput. 251(C), 378–386 (2015)
- Waziri, M., Aisha, H.A., Mamat, M.: A structured Broyden's-like method for solving systems of nonlinear equations. World Appl. Sci. J. 8(141), 7039–7046 (2014)
- 12. Wen, F., He, Z., Dai, Z., et al.: Characteristics of investors risk preference for stock markets. Econ. Comput. Econ. Cybern. Stud. Res. 48, 235–254 (2014)
- 13. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964)
- 14. Al-Baali, M., Narushima, Y., Yabe, H.: A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization. Comput. Optim. Appl. **60**(1), 89–110 (2015)
- Egido, J.L., Lessing, J., Martin, V., et al.: On the solution of the Hartree–Fock–Bogoliubov equations by the conjugate gradient method. Nucl. Phys. A 594(1), 70–86 (2016)
- Huang, C., Chen, C.: A boundary element-based inverse-problem in estimating transient boundary conditions with conjugate gradient method. Int. J. Numer. Methods Eng. 42(5), 943–965 (2015)
- Huang, N., Ma, C.: The modified conjugate gradient methods for solving a class of generalized coupled Sylvester-transpose matrix equations. Comput. Math. Appl. 67(8), 1545–1558 (2014)
- Mostafa, E.S.M.E.: A nonlinear conjugate gradient method for a special class of matrix optimization problems. J. Ind. Manag. Optim. 10(3), 883–903 (2014)
- Albaali, M., Spedicato, E., Maggioni, F.: Broyden's quasi-Newton methods for a nonlinear system of equations and unconstrained optimization, a review and open problems. Optim. Methods Softw. 29(5), 937–954 (2014)
- Fang, X., Ni, Q., Zeng, M.: A modified quasi-Newton method for nonlinear equations. J. Comput. Appl. Math. 328, 44–58 (2018)
- Luo, Y.Z., Tang, G.J., Zhou, L.N.: Hybrid approach for solving systems of nonlinear equations using chaos optimization and quasi-Newton method. Appl. Soft Comput. 8(2), 1068–1073 (2008)
- 22. Tarzanagh, D.A., Nazari, P., Peyghami, M.R.: A nonmonotone PRP conjugate gradient method for solving square and under-determined systems of equations. Comput. Math. Appl. **73**(2), 339–354 (2017)
- Wan, Z., Hu, C., Yang, Z.: A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete Contin. Dyn. Syst., Ser. B 16(4), 1157–1169 (2017)
- Yuan, G., Sheng, Z., Wang, B., et al.: The global convergence of a modified BFGS method for nonconvex functions. J. Comput. Appl. Math. 327, 274–294 (2018)
- Amini, K., Shiker, M.A.K., Kimiaei, M.: A line search trust-region algorithm with nonmonotone adaptive radius for a system of nonlinear equations. 4OR 14, 133–152 (2016)
- Qi, L., Tong, X.J., Li, D.H.: Active-set projected trust-region algorithm for box-constrained nonsmooth equations. J. Optim. Theory Appl. 120(3), 601–625 (2004)
- Yang, Z., Sun, W., Qi, L.: Global convergence of a filter-trust-region algorithm for solving nonsmooth equations. Int. J. Comput. Math. 87(4), 788–796 (2010)
- Yu, G.: A derivative-free method for solving large-scale nonlinear systems of equations. J. Ind. Manag. Optim. 6(1), 149–160 (2017)
- Li, Q., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31(4), 1625–1635 (2011)
- Sheng, Z., Yuan, G., Cui, Z.: A new adaptive trust region algorithm for optimization problems. Acta Math. Sci. 38B(2), 479–496 (2018)
- Sheng, Z., Yuan, G., Cui, Z., et al.: An adaptive trust region algorithm for large-residual nonsmooth least squares problems. J. Ind. Manag. Optim. 34, 707–718 (2018)
- 32. Yuan, G., Sheng, Z., Liu, W.: The modified HZ conjugate gradient algorithm for large-scale nonsmooth optimization. PLoS ONE **11**, 1–15 (2016)
- 33. Yuan, G., Sheng, Z.: Nonsmooth Optimization Algorithms. Press of Science, Beijing (2017)
- Narushima, Y., Yabe, H., Ford, J.A.: A three-term conjugate gradient method with sufficient descent property for unconstrained optimization. SIAM J. Optim. 21(1), 212–230 (2016)
- Zhou, W.: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22(4), 697–711 (2007)
- Cardenas, S.: Efficient generalized conjugate gradient algorithms. I. Theory. J. Optim. Theory Appl. 69(1), 129–137 (1991)
- Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)
- Hestenes, M.R., Steifel, E.: Cassettari, D., et al.: Method of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952)
- Wei, Z., Yao, S., Liu, L.: The convergence properties of some new conjugate gradient methods. Appl. Math. Comput. 183(2), 1341–1350 (2006)
- 40. Yuan, G., Lu, X.: A modified PRP conjugate gradient method. Ann. Oper. Res. 166(1), 73–90 (2009)
- Yuan, G., Lu, X., Wei, Z.: A conjugate gradient method with descent direction for unconstrained optimization. J. Comput. Appl. Math. 233(2), 519–530 (2009)

- 42. Yuan, G., Meng, Z., Li, Y.: A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J. Optim. Theory Appl. **168**(1), 129–152 (2016)
- Yuan, G., Wei, Z., Lu, X.: Global convergence of BFGS and PRP methods under a modified weak Wolfe–Powell line search. Appl. Math. Model. 47, 811–825 (2017)
- 44. Zhang, L., Zhou, W., Li, D.H.: A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26(4), 629–640 (2006)
- 45. Nazareth, L.: A conjugate direction algorithm without line searches. J. Optim. Theory Appl. 23(3), 373–387 (1977)
- Yuan, G., Wei, Z., Li, G.: A modified Polak–Ribière–Polyak conjugate gradient algorithm for nonsmooth convex programs. J. Comput. Appl. Math. 255, 86–96 (2014)
- Yuan, G., Zhang, M.: A three-terms Polak–Ribière–Polyak conjugate gradient algorithm for large-scale nonlinear equations. J. Comput. Appl. Math. 286, 186–195 (2015)
- 48. Andrei, N.: An unconstrained optimization test functions collection. Environ. Sci. Technol. 10(1), 6552–6558 (2008)
- Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2001)
- Ahmad, F., Tohidi, E., Ullah, M.Z., et al.: Higher order multi-step Jarratt-like method for solving systems of nonlinear equations, application to PDEs and ODEs. Comput. Math. Appl. 70(4), 624–636 (2015)
- Kang, S.M., Nazeer, W., Tanveer, M., et al.: Improvements in Newton–Raphson method for nonlinear equations using modified Adomian decomposition method. Int. J. Math. Anal. 9(39), 1910–1928 (2015)
- Matinfar, M., Aminzadeh, M.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 225(1), 105–112 (2016)
- Papp, Z., Rapajić, S.: FR type methods for systems of large-scale nonlinear monotone equations. Appl. Math. Comput. 269(C), 816–823 (2015)
- 54. Yuan, G., Wei, Z., Lu, X.: A new backtracking inexact BFGS method for symmetric nonlinear equations. Comput. Math. Appl. 55(1), 116–129 (2008)
- Li, Q., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31(4), 1625–1635 (2011)
- 56. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6, 59–70 (1999)
- 57. Ceng, L.C., Wen, C.F., Yao, Y.: Relaxed extragradient-like methods for systems of generalized equilibria with constraints of mixed equilibria, minimization and fixed point problems. J. Nonlinear Var. Anal. **1**, 367–390 (2017)
- Cho, S.Y.: Generalized mixed equilibrium and fixed point problems in a Banach space. J. Nonlinear Sci. Appl. 9, 1083–1092 (2016)
- Cho, S.Y.: Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space. J. Appl. Anal. Comput. 8, 19–31 (2018)
- 60. Liu, Y.: A modified hybrid method for solving variational inequality problems in Banach spaces. J. Nonlinear Funct. Anal. 2017, Article ID 31 (2017)
- Solodov, M.V., Svaiter, B.F.: A Globally Convergent Inexact Newton Method for Systems of Monotone Equations, Reformulation, Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 1411–1414. Springer, Berlin (1998)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com