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Abstract
For large-scale unconstrained optimization problems and nonlinear equations, we
propose a new three-term conjugate gradient algorithm under the Yuan–Wei–Lu line
search technique. It combines the steepest descent method with the famous
conjugate gradient algorithm, which utilizes both the relevant function trait and the
current point feature. It possesses the following properties: (i) the search direction has
a sufficient descent feature and a trust region trait, and (ii) the proposed algorithm
globally converges. Numerical results prove that the proposed algorithm is perfect
compared with other similar optimization algorithms.
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1 Introduction
It is well known that the model of small- and medium-scale smooth functions is simple
since it has many optimization algorithms, such as Newton, quasi-Newton, and bundle
algorithms. Note that three algorithms fail to effectively address large-scale optimization
problems because they need to store and calculate relevant matrices, whereas the conju-
gate gradient algorithm is successful because of its simplicity and efficiency.

The optimization model is an important mathematic problem since it has been applied
to various fields such as economics, engineering, and physics (see [1–12]). Fletcher and
Reeves [13] successfully address large-scale unconstrained optimization problems on the
basis of the conjugate gradient algorithm and obtained amazing achievements. The con-
jugate gradient algorithm is increasingly famous because of its simplicity and low require-
ment of calculation machine. In general, a good conjugate gradient algorithm optimiza-
tion algorithm includes a good conjugate gradient direction and an inexact line search
technique (see [14–18]). At present, the conjugate gradient algorithm is mostly applied to
smooth optimization problems, and thus, in this paper, we propose a modified LS con-
jugate gradient algorithm to solve large-scale nonlinear equations and smooth problems.
The common algorithms of addressing nonlinear equations include Newton and quasi-
Newton methods (see [19–21]), gradient-based, CG methods (see [22–24]), trust region
methods (see [25–27]), and derivative-free methods (see [28]), and all of them fail to
address large-scale problems. The famous optimization algorithms of spectral gradient
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approach, limited-memory quasi-Newton method and conjugate gradient algorithm, are
suitable to solve large-scale problems. Li and Li [29] proposed various algorithms on the
basis of modified PRP conjugate gradient, which successfully solve large-scale nonlinear
equations.

A famous mathematic model is given by

min
{

f (x) | x ∈ �n}, (1.1)

where f : �n → � and f ∈ C2. The relevant model is widely used in life and production.
However, it is a complex mathematic model since it needs to meet various conditions in the
field [30–33]. Experts and scholars have conducted numerous in-depth studies and have
made some significant achievements (see [14, 34, 35]). It is well known that the steepest
descent algorithm is perfect since it is simple and its computational and memory require-
ments are low. It is regrettable that the steepest descent method sometimes fails to solve
problems due to the “sawtooth phenomenon”. To overcome this flaw, experts and scholars
presented an efficient conjugate gradient method, which provides high performance with
a simple form. In general, the mathematical formula for (1.1) is

xk+1 = xk + αkdk , k ∈ {0, 1, 2, . . . }, (1.2)

where xk+1 is the next iteration point, αk is the step length, and dk is the search direction.
The famous weak Wolfe–Powell (WWP) line search technique is determined by

g(xk + αkdk)T dk ≥ ρgT
k dk (1.3)

and

f (xk + αkdk) ≤ fk + ϕαkgT
k dk , (1.4)

where ϕ ∈ (0, 1/2), αk > 0, and ρ ∈ (ϕ, 1). The direction dk+1 is often defined by the formula

dk+1 =

⎧
⎨

⎩
–gk+1 + βkdk if k ≥ 1,

–gk+1 if k = 0,
(1.5)

where βk ∈ �. An increasing number of efficient conjugate gradient algorithms have been
proposed by different expressions of βk and dk (see [13, 36–42] etc.). The well-known PRP
algorithm is given by

βPRP
k =

gT
k+1(gk+1 – gk)
‖gk‖‖gk‖ , (1.6)

where gk , gk+1, and fk denote g(xk), g(xk+1), and f (xk), respectively; gk+1 = g(xk+1) = ∇f (xk+1)
is the gradient function at the point xk+1. It is well known that the PRP algorithm is effi-
cient but has shortcomings, as it does not possess global convergence under the WWP
line search technique. To solve this complex problem, Yuan, Wei, and Lu [43] developed
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the following creative formula (YWL) for the normal WWP line search technique and
obtained many fruitful theories:

f (xk + αkdk) ≤ f (xk) + ιαkgT
k dk + αk min

[
–ι1gT

k dk , ιαk‖dk‖2/2
]

(1.7)

and

g(xk + αkdk)T dk ≥ τgT
k dk + min

[
–ι1gT

k dk , ιαk‖dk‖2], (1.8)

where ι ∈ (0, 1
2 ), αk > 0, ι1 ∈ (0, ι), and τ ∈ (ι, 1). Further work can be found in [24]. Based on

the innovation of YWL line search technique, Yuan pay much attention to normal Armijo
line search technique and make further study. They proposed an efficient modified Armijo
line search technique:

f (xk + αkdk) ≤ f (xk) + λαkgT
k dk + αk min

[
–λ1gT

k dk ,λ
αk

2
‖dk‖2

]
, (1.9)

where λ,γ ∈ (0, 1), λ1 ∈ (0,λ), and αk is the largest number of {γ k|k = 0, 1, 2, . . .}. In addi-
tion, experts and scholars pay much attention to the three-term conjugate gradient for-
mula. Zhang et al. [44] proposed the famous formula

dk+1 = –gk+1 +
gT

k+1ykdk – dT
k gk+1yk

gT
k gk

. (1.10)

Nazareth [45] proposed the new formula

dk+1 = –yk +
yT

k yk

yT
k dk

dk +
yT

k–1yk

yT
k–1dk–1

dk–1, (1.11)

where yk = gk+1 – gk and sk = xk+1 – xk . These two conjugate gradient methods have a suffi-
cient descent property but fail to have the trust region feature. To improve these methods,
Yuan et al. [46, 47] make a further study and get some good results. This inspires us to
continue the study and extend the conjugate gradient methods to get better results. In
this paper, motivated by in-depth discussions, we express a modified conjugate gradient
algorithm, which has the following properties:

• The search direction has a sufficient descent feature and a trust region trait.
• Under mild assumptions, the proposed algorithm possesses the global convergence.
• The new algorithm combines the steepest descent method with the conjugate

gradient algorithm.
• Numerical results prove that it is perfect compared to other similar algorithms.
The rest of the paper is organized as follows. The next section presents the necessary

properties of the proposed algorithm. The global convergence is stated in Sect. 3. In Sect. 4,
we report the corresponding numerical results. In Sect. 5, we introduce the large-scale
nonlinear equations and express the new algorithm. Some necessary properties are listed
in Sect. 6. The numerical results are reported in Sect. 7. Without loss of generality, f (xk)
and f (xk+1) are replaced by fk and fk+1, and ‖ · ‖ is the Euclidean norm.
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Algorithm 2.1 Modified three-term conjugate gradient algorithm for optimization model
Step 1: (Initiation) Choose an initial point x0, ι ∈ (0, 1

2 ), ι1 ∈ (0, ι), ηi > 0 (i = 1, 2, 3, 4, 5),
τ ∈ (ι, 1), and positive constants ε ∈ (0, 1). Let k = 0 and d0 = –g0.

Step 2: Stop if ‖gk‖ ≤ ε.
Step 3: Find the step length αk similar to (1.7) and (1.8).
Step 4: Set a new iteration point of xk+1 = xk + αkdk .
Step 5: Update the search direction by (2.1).
Step 6: If ‖gk+1‖ ≤ ε, then stop. Otherwise, go to the next step.
Step 7: Let k := k + 1, and return to Step 3.

2 New modified conjugate gradient algorithm
Experts and scholars have conducted thorough research on the conjugate gradient algo-
rithm and have obtained rich theoretical achievements. In light of the previous work by
experts on the conjugate gradient algorithm, a sufficient descent feature is necessary for
the global convergence. Thus, we express a new conjugate gradient algorithm under the
YWL line search technique as follows:

dk+1 =

⎧
⎨

⎩
–η1gk+1 + (1 – η1)(dT

k gk+1y∗
k – gT

k+1y∗
kdk)/δ if k ≥ 1,

–gk+1 if k = 0,
(2.1)

where δ = max(min(η5|sT
k y∗

k |, |dT
k y∗

k |),η2‖y∗
k‖‖dk‖,η3‖gk‖2)+η4 ∗‖dk‖2, y∗

k = gk+1 – ‖gk+1‖2

‖gk‖2 gk ,
and ηi > 0 (i = 1, 2, 3, 4, 5). The search direction is well defined, and its properties are stated
in the next section. Now, we introduce a new conjugate gradient algorithm called Algo-
rithm 2.1.

3 Important characteristics
This section lists some important properties of sufficient descent, the trust region, and
the global convergence of Algorithm 2.1. It expresses the necessary proof.

Lemma 3.1 If search direction dk meets condition of (2.1), then

gT
k dk = –η1‖gk‖2 (3.1)

and

‖dk‖ ≤ (
η1 + 2(1 – η1)/η2

)‖gk‖. (3.2)

Proof It is obvious that formulas of (3.1) and (3.2) are true for k = 0.
Now consider the condition k ≥ 1. Similarly to (2.1), we have

gT
k+1dk+1 = gT

k+1
[
–η1gk+1 + (1 – η1)

(
dT

k gk+1y∗
k – gT

k+1y∗
kdk

)
/δ

]

= –η1‖gk+1‖2 + (1 – η1)
(
gT

k+1dT
k gk+1y∗

k – gT
k+1gT

k+1y∗
kdk

)
/δ

= –η1‖gk+1‖2
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and

‖dk+1‖ =
∥∥–η1gk+1 + (1 – η1)

(
dT

k gk+1y∗
k – gT

k+1y∗
kdk

)
/δ

∥∥

≤ η1‖gk+1‖ + 2(1 – η1)‖gk+1‖
∥∥y∗

k
∥∥‖dk‖/δ

≤ η1‖gk+1‖ + 2(1 – η1)‖gk+1‖
∥∥y∗

k
∥∥‖dk‖/

(
η2

∥∥y∗
k
∥∥‖dk‖

)

=
(
η1 + 2(1 – η1)/η2

)‖gk+1‖.

Thus, the statement is proved. �

Similarly to (3.1) and (3.2), the algorithm has a sufficient descent feature and a trust
region trait. To obtain the global convergence, we propose the following necessary as-
sumptions.

Assumption 1
(i) The level set of π = {x|f (x) ≤ f (x0)} is bounded.

(ii) The objective function f ∈ C2 is bounded from below, and its gradient function g is
Lipschitz continuous, thats is, there exists a constant ζ such that

∥∥g(x) – g(y)
∥∥ ≤ ζ‖x – y‖, x, y ∈ Rn. (3.3)

The existence and necessity of the step length αk are established in [43]. In view of
the discussion and established technique, the global convergence of the proposed
algorithm is expressed as follows.

Theorem 3.1 If Assumptions (i)–(ii) are satisfied and the relative sequences of {xk}, {dk},
{gk}, and {αk} are generated by Algorithm 2.1, then

lim
k→∞

‖gk‖ = 0. (3.4)

Proof By (1.7), (3.1), and (3.3) we have

f (xk + αkdk) ≤ fk + ιαkgT
k dk + αk min

[
–ι1gT

k dk , ιαk‖dk‖2/2
]

≤ fk + ιαkgT
k dk – αkι1gT

k dk

≤ fk + αk(ι – ι1)gT
k dk

≤ fk – η1αk(ι – ι1)‖gk‖2.

Summing these inequalities from k = 0 to ∞, under Assumption (ii), we obtain

∞∑

k=0

η1αk(ι – ι1)‖gk‖2 ≤ f (x0) – f∞ < +∞. (3.5)

This means that

lim
k→∞

αk‖gk‖2 = 0. (3.6)
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Similarly to (1.8) and (3.1), we obtain

g(xk + αkdk)T dk ≥ τgT
k dk + min

[
–ι1gT

k dk , ιαk‖dk‖2]

≥ τgT
k dk .

Thus, we obtain the following inequality:

–η1(τ – 1)‖gk‖2 ≤ (τ – 1)gT
k dk

≤ [
g(xk + αkdk) – g(xk)

]T dk

≤ ∥∥g(xk + αkdk) – g(xk)
∥∥‖dk‖

≤ αkζ‖dk‖2,

where the last inequality is obtained since the gradient function is Lipschitz continuous.
Then, we have

αk ≥ (1 – τ )η1‖gk‖2

ζ‖dk‖2 ≥ (1 – τ )η1‖gk‖2

(ζ (η1 + 2(1 – η1)/η2)2‖gk‖2))
=

(1 – τ )η1

(ζ (η1 + 2(1 – η1)/η2)2)
.

By (3.6) we arrive at the conclusion

lim
k→∞

‖gk‖2 = 0,

as claimed. �

4 Numerical results
In this section, we list the numerical result in terms of the algorithm characteristics NI,
NFG, and CPU, where NI is the total iteration number, NFG is the sum of the calculation
frequency of the objective function and gradient function, and CPU is the calculation time
in seconds.

4.1 Problems and test experiments
The tested problems listed in Table 1 stem from [48]. At the same time, we introduce
two different algorithms into this section to measure the objective algorithm efficiency
through the tested problems. We denote the two algorithms as Algorithm 2 and Algo-
rithm 3. They are different from Algorithm 2.1 only at Step 5. One is determined by (1.10),
and the other is computed by (1.11).

Stopping rule: If the inequality |f (xk)| > e1 is correct, let stop1 = |f (xk )–f (xk+1)|
|f (xk )| or stop1 =

|f (xk) – f (xk+1)|. The algorithm stops when one of the following conditions is satisfied:
‖g(x)‖ < ε, the iteration number is greater than 2000, or stop1 < e2, where e1 = e2 = 10–5

and ε = 10–6. In Table 1, “No” and “problem” represent the index of the the tested problems
and the name of the problem, respectively.

Initiation: ι = 0.3, ι1 = 0.1, τ = 0.65, η1 = 0.65, η2 = 0.001, η3 = 0.001, η4 = 0.001, η5 = 0.1.
Dimension: 1200, 3000, 6000, 9000.
Calculation environment: The calculation environment is a computer with 2 GB of

memory, a Pentium(R) Dual-Core CPU E5800@3.20 GHz, and the 64-bit Windows 7 op-
eration system.
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Table 1 Test problems

No. Problem

1 Extended Freudenstein and Roth Function
2 Extended Trigonometric Function
3 Extended Rosenbrock Function
4 Extended White and Holst Function
5 Extended Beale Function
6 Extended Penalty Function
7 Perturbed Quadratic Function
8 Raydan 1 Function
9 Raydan 2 Function
10 Diagonal 1 Function
11 Diagonal 2 Function
12 Diagonal 3 Function
13 Hager Function
14 Generalized Tridiagonal 1 Function
15 Extended Tridiagonal 1 Function
16 Extended Three Exponential Terms Function
17 Generalized Tridiagonal 2 Function
18 Diagonal 4 Function
19 Diagonal 5 Function
20 Extended Himmelblau Function
21 Generalized PSC1 Function
22 Extended PSC1 Function
23 Extended Powell Function
24 Extended Block Diagonal BD1 Function
25 Extended Maratos Function
26 Extended Cliff Function
27 Quadratic Diagonal Perturbed Function
28 Extended Wood Function
29 Extended Hiebert Function
30 Quadratic Function QF1 Function
31 Extended Quadratic Penalty QP1 Function
32 Extended Quadratic Penalty QP2 Function
33 A Quadratic Function QF2 Function
34 Extended EP1 Function
35 Extended Tridiagonal-2 Function
36 BDQRTIC Function (CUTE)
37 TRIDIA Function (CUTE)

No. Problem

38 ARWHEAD Function (CUTE)
38 ARWHEAD Function (CUTE)
40 NONDQUAR Function (CUTE)
41 DQDRTIC Function (CUTE)
42 EG2 Function (CUTE)
43 DIXMAANA Function (CUTE)
44 DIXMAANB Function (CUTE)
45 DIXMAANC Function (CUTE)
46 DIXMAANE Function (CUTE)
47 Partial Perturbed Quadratic Function
48 Broyden Tridiagonal Function
49 Almost Perturbed Quadratic Function
50 Tridiagonal Perturbed Quadratic Function
51 EDENSCH Function (CUTE)
52 VARDIM Function (CUTE)
53 STAIRCASE S1 Function
54 LIARWHD Function (CUTE)
55 DIAGONAL 6 Function
56 DIXON3DQ Function (CUTE)
57 DIXMAANF Function (CUTE)
58 DIXMAANG Function (CUTE)
59 DIXMAANH Function (CUTE)
60 DIXMAANI Function (CUTE)
61 DIXMAANJ Function (CUTE)
62 DIXMAANK Function (CUTE)
63 DIXMAANL Function (CUTE)
64 DIXMAAND Function (CUTE)
65 ENGVAL1 Function (CUTE)
66 FLETCHCR Function (CUTE)
67 COSINE Function (CUTE)
68 Extended DENSCHNB Function (CUTE)
69 DENSCHNF Function (CUTE)
70 SINQUAD Function (CUTE)
71 BIGGSB1 Function (CUTE)
72 Partial Perturbed Quadratic PPQ2 Function
73 Scaled Quadratic SQ1 Function

A list of the numerical results with the corresponding problem index is listed in Table 2.
Then, based on the technique in [49], the plots of the corresponding figures are presented
for the three discussed algorithms.

Other case: To save the paper space, we only list the data of dimension of 9000, and the
remaining data are listed in the attachment.

4.2 Results and discussion
Obviously, the objective algorithm (Algorithm 2.1) is more effective than the other algo-
rithms since the point value on the algorithm curve is largest among the three curves. In
Fig. 1, the proposed algorithm curve is above the other curves. This means that the objec-
tive algorithm solves complex problems with fewer iterations, and Algorithm 3 is better
than Algorithm 2. In Fig. 2, we obtain that the proposed algorithm has a large initial point,
which means that it has high efficiency and its curve seems smoother than others. It is well
known that the most important metric of an algorithm is the calculation time (CPU time),
which is an essential aspect to measure the efficiency of an algorithm. Based on Fig. 3, the
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Table 2 Numerical results

NO Dim Algorithm 2.1 Algorithm 2 Algorithm 3

NI NFG CPU NI NFG CPU NI NFG CPU

1 9000 4 20 0.124801 14 48 0.405603 5 26 0.249602
2 9000 71 327 1.965613 27 89 0.670804 32 136 0.858005
3 9000 7 20 0.0312 37 160 0.249602 27 147 0.202801
4 9000 12 49 0.280802 34 161 0.717605 42 219 0.951606
5 9000 13 56 0.202801 20 63 0.249602 5 24 0.0624
6 9000 65 252 0.421203 43 143 0.280802 3 9 0.0312
7 9000 11 37 0.0624 478 979 2.215214 465 1479 2.558416
8 9000 5 20 0.0624 22 55 0.156001 14 54 0.156001
9 9000 6 16 0.0312 5 21 0.0624 3 8 0.0312
10 9000 2 13 0.0156 2 13 0.000001 2 13 0.000001
11 9000 3 17 0.0312 7 34 0.0624 17 87 0.218401
12 9000 3 10 0.0312 19 40 0.202801 14 50 0.202801
13 9000 3 24 0.0624 3 24 0.0312 3 24 0.0156
14 9000 4 12 4.305628 5 14 5.382034 5 14 5.226033
15 9000 19 77 9.984064 22 66 9.516061 21 71 10.296066
16 9000 3 11 0.0624 6 27 0.078 6 18 0.0624
17 9000 11 45 0.374402 27 69 0.780005 27 87 0.811205
18 9000 5 23 0.0312 3 10 0.000001 3 10 0.0312
19 9000 3 9 0.0624 3 9 0.0312 3 19 0.0312
20 9000 19 76 0.124801 15 36 0.0624 3 9 0.0312
21 9000 12 47 0.156001 13 61 0.187201 15 59 0.218401
22 9000 7 46 0.795605 8 70 0.577204 6 46 0.686404
23 9000 9 45 0.218401 101 357 2.090413 46 150 0.873606
24 9000 5 47 0.093601 14 88 0.156001 14 97 0.249602
25 9000 9 28 0.0312 40 214 0.249602 8 46 0.0624
26 9000 24 102 0.327602 24 100 0.249602 3 24 0.0312
27 9000 6 20 0.0312 34 109 0.187201 92 321 0.530403
28 9000 13 50 0.124801 20 83 0.109201 23 84 0.140401
29 9000 6 36 0.0468 4 21 0.0312 4 21 0.0312
30 9000 11 37 0.0624 454 931 1.450809 424 1346 1.747211
31 9000 18 63 0.124801 15 51 0.093601 3 10 0.0312
32 9000 18 70 0.218401 23 61 0.218401 3 18 0.0624
33 9000 2 5 0.000001 2 5 0.0312 2 5 0.000001
34 9000 8 16 0.0312 6 12 0.0312 3 6 0.0312
35 9000 4 13 0.0312 4 10 0.0312 3 8 0.000001
36 9000 7 23 4.602029 8 28 5.569236 10 47 8.673656
37 9000 7 23 0.0624 1412 2829 6.942044 2000 6021 11.356873
38 9000 4 18 0.0312 8 35 0.187201 4 11 0.0312
39 9000 5 19 0.0312 28 56 0.124801 3 8 0.0312
40 9000 13 43 0.561604 835 2936 36.223432 9 41 0.421203
41 9000 10 32 0.0624 17 41 0.093601 22 81 0.124801
42 9000 4 33 0.0624 13 35 0.124801 9 47 0.109201
43 9000 16 62 1.029607 16 38 0.951606 13 48 0.780005
44 9000 3 17 0.156001 9 50 0.624004 3 17 0.187201
45 9000 21 118 1.49761 12 81 0.858006 3 24 0.202801
46 9000 20 81 1.435209 209 443 11.247672 110 362 6.630042
47 9000 11 37 27.066173 30 97 68.64044 37 112 87.220159
48 9000 13 54 9.718862 31 92 18.610919 23 50 11.980877
49 9000 11 37 0.0624 478 979 1.51321 504 1592 1.887612
50 9000 11 37 7.971651 472 967 263.68849 444 1273 299.381519
51 9000 6 31 0.156001 7 25 0.218401 3 17 0.124801
52 9000 62 186 0.998406 63 195 0.842405 4 21 0.0624
53 9000 10 32 0.0312 2000 4059 7.72205 1865 5618 7.971651
54 9000 4 11 0.0312 21 79 0.156001 17 79 0.124801
55 9000 10 24 3.010819 7 25 3.213621 3 10 1.076407
56 9000 7 21 0.0156 2000 4003 6.489642 1390 4107 5.335234
57 9000 5 39 0.358802 67 220 4.024826 3 24 0.202801
58 9000 5 24 0.343202 114 282 6.411641 82 315 5.257234
59 9000 5 39 0.343202 68 310 4.72683 3 23 0.171601
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Table 2 (Continued)

NO Dim Algorithm 2.1 Algorithm 2 Algorithm 3

NI NFG CPU NI NFG CPU NI NFG CPU

60 9000 18 74 1.294808 206 437 11.107271 119 363 6.957645
61 9000 5 39 0.358802 85 247 4.929632 3 24 0.218401
62 9000 4 32 0.234001 4 32 0.249602 3 22 0.187201
63 9000 3 22 0.187201 3 22 0.187201 3 22 0.187201
64 9000 5 39 0.343202 23 147 1.747211 3 23 0.218401
65 9000 12 59 15.334898 14 51 14.944896 7 21 6.130839
66 9000 3 9 1.62241 2000 4022 1114.767546 529 2196 443.526443
67 9000 5 28 0.093601 15 58 0.280802 3 23 0.0312
68 9000 13 55 0.109201 11 27 0.0624 9 25 0.0624
69 9000 16 73 0.218401 24 55 0.187201 20 70 0.171601
70 9000 4 13 2.542816 41 203 36.332633 35 231 37.783442
71 9000 11 35 0.093601 2000 4014 6.708043 1491 4631 5.600436
72 9000 9 30 21.85574 1089 3897 2675.588751 287 1015 704.391315
73 9000 19 65 0.093601 607 1269 1.856412 669 2062 2.293215

Figure 1 Performance profiles of these methods (NI)

Figure 2 Performance profiles of these methods
(NFG)

objective algorithm successfully fully utilizes its outstanding characteristics. Therefore, it
saves time compared to the other algorithms in addressing complex problems.

5 Nonlinear equations
The model of nonlinear equations is given by

h(x) = 0, (5.1)
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Figure 3 Performance profiles of these methods
(CPU time)

where the function of h is continuously differentiable and monotonous, and x ∈ Rn, that
is,

(
h(x) – h(y)

)
(x – y) > 0, ∀x, y ∈ Rn.

Scholars and writers paid much attention to this model since it significantly influences
various fields such as physics and computer technology (see [1–3, 8–11]), and it has re-
sulted in many fruitful theories and good techniques (see [47, 50–54]). By mathematical
calculations we obtain that (5.1) is equivalent to the model

min F(x), (5.2)

where F(x) = ‖h(x)‖2

2 , and ‖ · ‖ is the Euclidean norm. Then, we pay much attention to
the mathematical model (5.2) since (5.1) and (5.2) have the same solution. In general, the
mathematical formula for (5.2) is xk+1 = xk +αkdk . Now, we introduce the following famous
line search technique into this paper [47, 55]:

–h(xk + αkdk)T dk ≥ σαk
∥∥h(xk + αkdk)

∥∥‖dk‖2, (5.3)

where αk = max{s, sρ, sρ2, . . .}, s,ρ > 0, ρ ∈ (0, 1), and σ > 0. Solodov [56] proposes a projec-
tion proximal point algorithm in a Hilbert space that finds the zeros of set-valued maximal
monotone operators. Ceng and Yao [57–60] paid much attention to the research in Hilbert
spaces and obtained successful achievements. Solodov and Svaiter [61] applied the projec-
tion technique to large-scale nonlinear equations and obtained some ideal achievements.
For the projection-based technique, the famous formula

h(wk)T (xk – wk) > 0

is flexible, where wk = xk + αkdk . The search direction is extremely important for the pro-
posed algorithm since it largely determines the efficiency. Likewise, the algorithm contains
the perfect line search technique. By the monotonicity of h(x) we obtain

h(wk)T(
x∗ – wk

) ≤ 0,
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Algorithm 5.1 Modified three-term conjugate gradient algorithm for large-scale nonlin-
ear equations

Step 1: Choose an initial point x1 ∈ Rn, σ > 0, s > 0, ρ ∈ (0, 1), ηi > 0 (i = 1, 2, 3, 4, 5), and
positive constants ε ∈ (0, 1). Let k = 1.

Step 2: Stop if ‖h(xk)‖ ≤ ε. Otherwise, calculate dk+1 similar to (5.6).
Step 3: Find the step length αk similar to (5.3).
Step 4: Reset the new iteration point of wk = xk + αkdk .
Step 5: If ‖h(wk)‖ ≤ ε, then stop and set xk+1 = wk . Otherwise, calculate xk+1 similar to

(5.5).
Step 6: Let k := k + 1 and return to Step 2.

where x∗ is the solution of h(x∗) = 0. We consider the hyperplane

� =
{

x ∈ Rn|h(wk)T (x – wk) = 0
}

. (5.4)

It is obvious that the hyperplane separates the current iteration point of xk from the zeros
of the mathematical model (5.1). Then, we need to calculate the next iteration point xk+1

through projection of current point xk . Therefore, we give the following formula for the
next point:

xk+1 = xk –
h(wk)T (xk – wk)h(wk)

‖h(wk)2‖ . (5.5)

In [55], it is proved that formula (5.5) is effective since it not only obtains perfect numerical
results but also has perfect theoretical characteristics. Thus, we introduce it here. The
formula of the search direction dk+1 is given by

dk+1 =

⎧
⎨

⎩
–η1hk+1 + (1 – η1)(dT

k hk+1y∗
k – hT

k+1y∗
kdk)/δ if k ≥ 1,

–hk+1 if k = 0,
(5.6)

where δ = max(min(η5|sT
k y∗

k |, |dT
k y∗

k |),η2‖y∗
k‖‖dk‖,η3‖gk‖2)+η4 ∗‖dk‖2, y∗

k = hk+1 – ‖hk+1‖2

‖hk‖2 hk ,
and ηi > 0 (i = 1, 2, 3). Now, we express the specific content of the proposed algorithm.

6 The global convergence of Algorithm 5.1
First, we make the following necessary assumptions.

Assumption 2
(i) The objective model of (5.1) has a nonempty solution set.

(ii) The function h is Lipschitz continuous on Rn, which means that there is a positive
constant L such that

∥∥h(x) – h(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ Rn. (6.1)

By Assumption 2(ii) it is obvious that

‖hk‖ ≤ θ , (6.2)
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where θ is a positive constant. Then, the necessary properties of the search direction are
the following (we omit the proof ):

hT
k dk = –η1‖hk‖‖hk‖ (6.3)

and

‖dk‖ ≤ (
η1 + 2(1 – η1)/η2

)‖hk‖. (6.4)

Now, we give some lemmas, which we utilize to obtain the global convergence of the pro-
posed algorithm.

Lemma 6.1 If Assumption 2 holds, the relevant sequence {xk} is produced by Algorithm 5.1,
and the point x∗ is the solution of the objective model (5.1). We obtain that the formula

∥∥xk+1 – x∗∥∥2 ≤ ∥∥xk – x∗∥∥2 – ‖xk+1 – xk‖2

is correct and the sequence {xk} is bounded. Furthermore, either the last iteration point is
the solution of the objective model and the sequence of {xk} is bounded, or the sequence of
{xk} is infinite and satisfies the condition

∞∑

k=0

‖xk+1 – xk‖2 < ∞.

This paper merely proposes, but omits, the relevant proof since it is similar to the proof
in [61].

Lemma 6.2 Algorithm 5.1 generates an iteration point in a finite number of iteration steps,
which satisfies the formula of xk+1 = xk + αkdk if Assumption 2 holds.

Proof We denote � = N ∪ {0}. We suppose that Algorithm 5.1 has terminated or the for-
mula ‖hk‖ → 0 is erroneous. This means that there exists a constant ε∗ such that

‖hk‖ ≥ ε∗, k ∈ � . (6.5)

We prove this conclusion by contradiction. Suppose that certain iteration indexes k∗ fail
to meet the condition (5.3) of the line search technique. Without loss of generality, we
denote the corresponding step length as α

(l)
k∗ , where α

(l)
k∗ = ρ ls. This means that

–h
(
xk∗ + α

(l)
k∗dk∗

)T dk∗ < σα
(l)
k∗

∥∥h
(
xk∗ + α

(l)
k∗dk∗

)∥∥‖dk∗‖2.

By (6.3) and Assumption 2(ii) we obtain

‖hk∗‖2 = –η1hT
k∗dk∗

= η1
[(

h
(
xk∗ + α

(l)
k∗dk∗

)
– h(xk∗ )

)T dk∗ –
(
h
(
xk∗ + α

(l)
k∗dk∗

)T dk∗
)]

< η1
[
L + σ

∥∥h
(
xk∗ + α

(l)
k∗dk∗

)∥∥]
α

(l)
k∗‖dk∗‖2, ∀l ∈ � .
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By (6.3) and (6.4) we have

∥∥h
(
xk∗ + α

(l)
k∗dk∗

)∥∥ ≤ ∥∥h
(
xk∗ + α

(l)
k∗dk∗

)
– h(xk∗ )

∥∥ +
∥∥h(xk∗ )

∥∥

≤ Lα
(l)
k∗‖dk∗‖ + θ

≤ Lsθ
(
η1 + 2(1 – η1)/η2

)
+ θ .

By (6.6) we obtain

α
(l)
k∗ >

‖hk∗‖2

η1[L + σ‖h(xk∗ + α
(l)
k∗dk∗ )‖]‖dk∗‖2

>
‖hk∗‖2

η1[L + σ (Lsθ (η1 + 2(1 – η1)/η2) + θ )]‖dk∗‖2

>
η2

2
η1[L + σ (Lsθ (η1 + 2/η3) + θ )](2(1 – η1) + η2η1)2 , ∀l ∈ � .

It is obvious that this formula fails to meet the definition of the step length α
(l)
k∗ . Thus,

we conclude that the proposed line search technique is reasonable and necessary. In other
words, the line search technique generates a positive constant αk in a finite frequency of
backtracking repetitions. By the established conclusion we propose the following theorem
on the global convergence of the proposed algorithm. �

Theorem 6.1 If Assumption 2 holds and the relevant sequences {dk ,αk , xk+1, hk+1} are cal-
culated using Algorithm 5.1, then

lim inf
k→∞

‖hk‖ = 0. (6.6)

Proof We prove this by contradiction. This means that there exist a constant ε0 > 0 and
an index k0 such that

‖hk‖ ≥ ε0, ∀k ≥ k0.

On the one hand, by (6.2) and (6.4) we obtain

‖dk‖ ≤ (
η1 + 2(1 – η1)/η2

)‖hk‖ ≤ (
η1 + 2(1 – η1)/η2

)
θ , ∀k ∈ � . (6.7)

On the other hand, from (6.3) we have

‖dk‖ ≥ η1‖hk‖ ≥ η1θ . (6.8)

These inequalities indicate that the sequence of {dk} is bounded. This means that there
exist an accumulation point d∗ and the corresponding infinite set N1 such that

lim
k→∞

dk = d∗, k ∈ N1.
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By Lemma 6.1 we obtain that the sequence of {xk} is bounded. Thus, there exist an infinite
index set N2 ⊂ N1 and an accumulation point x∗ that meet the formula

lim
k→∞

xk = x∗, ∀k ∈ N2.

By Lemmas 6.1 and 6.2 we obtain

αk‖dk‖ → 0, k → ∞.

Since {dk} is bounded, we obtain

lim
k→∞

αk = 0. (6.9)

By the definition of αk we obtain the following inequality:

–h
(
xk + α∗

k dk
)T dk ≤ σα∗

k
∥∥h

(
xk + α∗

k dk
)∥∥‖dk‖2, (6.10)

where α∗
k = αk/ρ . Now, we take the limit on both sides of (6.10) and (6.3) and obtain

h
(
x∗)T d∗ > 0

and

h
(
x∗)T d∗ ≤ 0.

The obtained contradiction completes the proof. �

7 The results of nonlinear equations
In this section, we list the relevant numerical results of nonlinear equations and present
the objective function h(x) = (f1(x), f2(x), . . . , fn(x)), where the relevant functions’ informa-
tion is listed in Table 1.

7.1 Problems and test experiments
To measure the efficiency of the proposed algorithm, in this section, we compare this
method with (1.10) (as Algorithm 6) using three characteristics “NI”, “NG”, and “CPU”
and the remind that Algorithm 6 is identical to Algorithm 5.1. “NI” presents the number
of iterations, “NG” is the calculation frequency of the function, and “CPU” is the time of
the process in addressing the tested problems. In Table 1, “No” and “problem” express the
indices and the names of the test problems.

Stopping rule: If ‖gk‖ ≤ ε or the whole iteration number is greater than 2000, the algo-
rithm stops.

Initiation: ε = 1e–5, σ = 0.8, s = 1, ρ = 0.9, η1 = 0.85, η2 = η3 = 0.001, η4 = η5 = 0.1.
Dimension: 3000, 6000, 9000.
Calculation environment: The calculation environment is a computer with 2 GB of

memory, a Pentium(R) Dual-Core CPU E5800@3.20 GHz, and the 64-bit Windows 7 op-
eration system.
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Table 3 Test problems

No. Problem

1 Exponential function 1
2 Exponential function 2
3 Trigonometric function
4 Singular function
5 Logarithmic function
6 Broyden tridiagonal function
7 Trigexp function
8 Strictly convex function 1
9 Strictly convex function 2
10 Zero Jacobian function

No. Problem

11 Linear function-full rank
12 Penalty function
13 Variable dimensioned function
14 Extended Powel singular function
15 Tridiagonal system
16 Five-diagonal system
17 Extended Freudentein and Roth function
18 Extended Wood problem
19 Discrete boundary value problem

Figure 4 Performance profiles of these methods (NI)

The numerical results with the corresponding problem index are listed in Table 4. Then,
by the technique in [49], the plots of the corresponding figures are presented for two dis-
cussed algorithms.

7.2 Results and discussion
From the above figures, we safely arrive at the conclusion that the proposed algorithm is
perfect compared to similar optimization methods since the algorithm (1.10) is perfect to
a large extent. In Fig. 4 we see that the proposed algorithm quickly arrives at a value of 1.0,
whereas the left one slowly approaches 1.0. This means that the objective method is suc-
cessful and efficient for addressing complex problems in our life and work. It is well known
that the calculation time is one of the most essential characteristics in an evaluation index
of the efficiency of an algorithm. From Figs. 5 and 6, it is obvious that the two algorithms
are good since their corresponding point values arrive at 1.0. This result expresses that the
above two algorithms solve all of the tested problems and that the proposed algorithm is
efficient.

8 Conclusion
This paper focuses on the three-term conjugate gradient algorithms and use them to solve
the optimization problems and the nonlinear equations. The given method has some good
properties.

(i) The proposed three-term conjugate gradient formula possesses the sufficient
descent property and the trust region feature without any conditions. The sufficient
descent property can make the objective function value be descent, and then the
iteration sequence {xk} converges to the global limit point. Moreover, the trust
region is good for the proof of the presented algorithm to be easily turned out.
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Table 4 Numerical results

NO Dim Algorithm 5.1 Algorithm 6

NI NFG CPU NI NFG CPU

1 3000 161 162 3.931225 146 147 4.149627
1 6000 126 127 12.760882 115 116 11.122871
1 9000 111 112 22.464144 99 100 19.515725
2 3000 5 76 1.185608 5 76 1.060807
2 6000 6 91 4.758031 5 76 4.009226
2 9000 5 62 6.926444 5 62 6.754843
3 3000 33 228 3.276021 18 106 1.778411
3 6000 40 275 15.490899 18 106 6.084039
3 9000 40 285 33.243813 18 106 12.54248
4 3000 4 61 0.842405 4 61 0.936006
4 6000 4 47 2.698817 4 61 3.322821
4 9000 4 47 5.226033 4 61 6.817244
5 3000 23 237 3.244821 23 237 3.354022
5 6000 25 263 14.133691 25 263 13.930889
5 9000 26 278 30.186193 26 278 30.092593
6 3000 1999 29986 382.951255 1999 29986 365.369942
6 6000 88 1307 68.141237 1999 29986 1484.240314
6 9000 65 962 101.806253 1999 29986 3113.998361
7 3000 4 47 0.748805 3 46 0.624004
7 6000 4 47 2.589617 3 46 2.386815
7 9000 4 47 5.257234 3 46 5.054432
8 3000 25 156 2.854818 17 142 1.872012
8 6000 32 189 10.826469 18 162 8.377254
8 9000 28 192 21.512538 19 174 18.938521
9 3000 10 151 1.934412 5 76 1.014007
9 6000 4 61 3.510023 5 76 3.884425
9 9000 4 61 6.614442 6 91 9.609662
10 3000 1999 29986 386.804479 1999 29986 359.816306
10 6000 1999 29986 1523.068963 1999 29986 1469.59182
10 9000 1999 29986 3164.339884 1999 29986 3087.712193
11 3000 498 7457 98.32743 499 7472 93.101397
11 6000 498 7457 385.026068 499 7472 367.787958
11 9000 498 7457 794.07629 498 7457 774.825767
12 3000 1999 2000 51.059127 1999 2000 46.238696
12 6000 1999 2000 199.322478 1999 2000 185.71919
12 9000 1999 2000 405.680601 1999 2000 391.234908
13 3000 1 2 0.0312 1 2 0.0624
13 6000 1 2 0.156001 1 2 0.187201
13 9000 1 2 0.140401 1 2 0.249602
14 3000 1999 29972 400.220565 1999 29973 362.671125
14 6000 1999 29972 1544.316299 1999 29973 1460.294161
14 9000 1999 29972 3197.287295 1999 29973 3105.168705
15 3000 4 61 0.733205 4 61 0.733205
15 6000 4 61 3.790824 4 61 3.026419
15 9000 4 61 6.552042 4 61 6.146439
16 3000 5 62 1.060807 5 62 0.858006
16 6000 5 62 3.400822 5 62 3.291621
16 9000 5 62 6.942044 5 62 6.25564
17 3000 6 77 1.326009 6 91 1.216808
17 6000 6 77 4.243227 6 91 4.570829
17 9000 6 77 8.548855 6 91 9.40686
18 3000 5 76 0.936006 5 76 0.920406
18 6000 5 76 3.900025 5 76 3.775224
18 9000 5 76 8.533255 5 76 7.86245
19 3000 108 1060 15.5689 141 1272 17.565713
19 6000 81 788 44.429085 114 1029 53.820345
19 9000 63 628 70.512452 100 903 99.715839
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Figure 5 Performance profiles of these methods
(NG)

Figure 6 Performance profiles of these methods
(CPU time)

(ii) The given algorithm can be used for not only the normal unstrained optimization
problems but also for the nonlinear equations. Both algorithms for these two
problems have the global convergence under general conditions.

(iii) Large-scale problems are done by the given problems, which shows that the new
algorithms are very effective.
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