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Abstract
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1 Introduction
Ko et al. [1] introduced the concept of negative association (NA) for Rd-valued random
vectors.

Definition 1.1 (Ko et al. [1]) A finite sequence {X1, . . . , Xm} of Rd-valued random vec-
tors is said to be negatively associated (NA) if for any disjoint nonempty subsets A, B ⊂
{1, . . . , m} and any nondecreasing functions f on R

|A|d and g on R
|B|d ,

Cov
(
f (Xi, i ∈ A), g(Xj, j ∈ B)

) ≤ 0 (1.1)

whenever the covariance exists. Let |A| denote the cardinality of a set A. An infinite se-
quence {Xi, i ≥ 1} of Rd-valued random vectors is negatively associated if every finite sub-
sequence is negatively associated.

In the case of d = 1, the concept of negative association had already been introduced
by Joag-Dev and Proschan [2]. A number of well-known multivariate distributions pos-
sess the NA property, such as the multinomial distribution, multivariate hypergeometric
distribution, negatively correlated normal distribution, and joint distribution of ranks.
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In addition to Definition 1.1, for random vectors in R
d , we can define asymptotically

negative association (ANA).

Definition 1.2 A sequence {X1, . . . , Xm} of Rd-valued random vectors is said to be asymp-
totically negatively associated (ANA) if

ρ–(r) = sup
S,T

{
ρ–(S, T) : S, T ⊂ N, dist(S, T) ≥ r

} → 0 as r → ∞, (1.2)

where dist(S, T) = min{|x – y|; x ∈ S, y ∈ T},

ρ–(S, T) = 0 ∨
{

Cov(f (Xi, i ∈ S), g(Xj, j ∈ T))

(Var f (Xi, i ∈ S)) 1
2 (Var g(Xj, j ∈ T)) 1

2

}
,

and f on R
|S|d and g on R

|T |d are any real coordinatewise nondecreasing functions.

In the case of d = 1, the concept of asymptotically negative association was proposed by
Zhang [3, 4] and studied by Yuan and Wu [5].

It is obvious that a sequence of asymptotically negatively associated random variables is
negatively associated if and only if ρ–(1) = 0. Compared to negative association, asymptot-
ically negative association defines a strictly larger class of random variables (for detailed
examples, see Zhang [3, 4]). Consequently, the study of the limit theorems for asymptoti-
cally negatively associated random variables is of much interest.

We refer to Zhang [4] for the central limit theorem, Wang and Lu [6] for some inequal-
ities of maximums of partial sums and weak convergence, Wang and Zhang [7] for the
Berry–Esseen theorem and the law of the iterated logarithm, Yuan and Wu [5] for the
Lp-convergence and complete convergence of the maximums of the partial sums, among
others.

The concept of coordinatewise negative association (CNA) for random vectors with val-
ues in R

d was introduced as follows. Let 〈·, ·〉 denote the inner product, and let {ej, j ≥ 1}
be an orthonormal basis. A sequence {Xn, n ≥ 1} of Rd-valued random vectors is said
to be coordinatewise negatively associated (CNA) if for each j (1 ≤ j ≤ d), the sequence
{X(j)

n , n ≥ 1, 1 ≤ j ≤ d} of random variables is NA, where X(j)
n = 〈Xn, ej〉.

As in the definition of CNA, we can define coordinatewise asymptotically negative as-
sociation for random vectors with values in R

d .

Definition 1.3 A sequence {Xn, n ≥ 1} of Rd-valued random vectors is said to be coor-
dinatewise asymptotically negatively associated (CANA) if for each j (1 ≤ j ≤ d), the se-
quence {X(j)

n , n ≥ 1, 1 ≤ j ≤ d} of random variables is asymptotically negatively associated,
where X(j)

n = 〈Xn, ej〉 for n ≥ 1 and 1 ≤ j ≤ d.

It is clear that if a sequence of Rd-valued random vectors is ANA, then it is CANA.
However, in general, the converse is not true.

Let {X, Xn, n ≥ 1} be a sequence ofRd-valued random vectors. We consider the following
inequalities for 1 ≤ j ≤ d:

C1P
(∣∣X(j)∣∣ > t

) ≤ 1
n

n∑

k=1

P
(∣∣X(j)

k
∣∣ > t

) ≤ C2P
(∣∣X(j)∣∣ > t

)
. (1.3)
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If there exists a positive constant C1, (C2) such that the left-hand (right-hand) side of (1.3)
is satisfied for all 1 ≤ j ≤ d, n ≥ 1, and t ≥ 0, then the sequence {Xn, n ≥ 1} is said to
be coordinatewise weakly lower (upper) bounded by X. The sequence {Xn, n ≥ 1} is said
to be coordinatewise weakly bounded by X if it is both coordinatewise lower and upper
bounded by X (see Huan et al. [8]).

In Sect. 2, we give some lemmas, which will be used to prove the main results, and in
Sect. 3, we prove the Lp-convergence and complete convergence results for the maximums
of the partial sums of the sequence of ANA random vectors with values in R

d . In addition,
in Sect. 4, we establish a weak law of large numbers for CANA random vectors with values
in R

d .
Throughout the paper, the symbol C denotes a generic constant (0 < C < ∞), which is

not necessarily the same in each occurrence, Sn =
∑n

i=1 Xi for a sequence {Xn, n ≥ 1} of
random vectors, and ‖ · ‖p denotes the Lp-norm. Moreover, � represents the Vinogradov
symbol O, and I(·) is the indicator function.

2 Some lemmas
From the definition of a sequence of ANA random vectors, we have the following:

Lemma 2.1 (Yuan and Wu [5]) Nondecreasing (or nonincreasing) functions defined on
disjoint subsets of a sequence {Xn, n ≥ 1} of ANA random vectors with mixing coefficients
ρ–(s) is also ANA with mixing coefficients not greater than ρ–(s).

Wang and Lu [6] proved the following Rosenthal-type inequality for a sequence of ANA
random variables in R

1.

Lemma 2.2 For a positive integer N ≥ 1, positive real numbers p ≥ 2, and 0 ≤ r < ( 1
6p )p/2,

if {Xi, i ≥ 1} is a sequence of ANA random variables with ρ–(N) ≤ r, EXi = 0, and
E|Xi|p < ∞ for every i ≥ 1, then there is a positive constant D = D(p, N , r) such that, for all
n ≥ 1,

E max
1≤k≤n

∣∣∣
∣∣

k∑

i=1

Xi

∣∣∣
∣∣

p

≤ D

( n∑

i=1

E|Xi|p +

( n∑

i=1

E|Xi|2
)p/2)

. (2.1)

Inspired by the proof of Lemma 2.3 in Li-Xin Zhang [9], we extend Lemma 2.2 to R
d-

valued ANA random vectors as follows.

Lemma 2.3 For a positive integer N ≥ 1, positive real numbers p ≥ 2, and 0 ≤ r < ( 1
6p )p/2,

if {Xi, i ≥ 1} is a sequence of Rd-valued ANA random vectors with ρ–(N) ≤ r, EXi = 0, and
E‖Xi‖p < ∞ for every i ≥ 1, then there is a positive constant D′ = D′(p, N , r) such that, for
all n ≥ 1,

E max
1≤k≤n

∥
∥∥
∥∥

k∑

i=1

Xi

∥
∥∥
∥∥

p

≤ D′
( n∑

i=1

E‖Xi‖p +

( n∑

i=1

E‖Xi‖2

)p/2)

. (2.2)
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Proof Note that

max
1≤k≤n

∥∥∥
∥∥

k∑

i=1

Xi

∥∥∥
∥∥

= max
1≤k≤n

d∑

j=1

∣∣∣
∣∣

k∑

i=1

X(j)
i

∣∣∣
∣∣
≤

d∑

j=1

max
1≤k≤n

∣∣∣
∣∣

k∑

i=1

X(j)
i

∣∣∣
∣∣

and by Lemma 2.2

E

(

max
1≤k≤n

∣
∣∣∣
∣

k∑

i=1

Xi

∣
∣∣∣
∣

p)

≤ D

(( n∑

i=1

E
∣
∣X(j)

i
∣
∣2

) p
2

+
n∑

i=1

E
∣
∣X(j)

i
∣
∣p

)

≤ D

(( n∑

i=1

E‖Xi‖2

) p
2

+
n∑

i=1

E‖Xi‖p

)

.

Hence (2.2) follows. �

From Lemma 1.2 of Kuczmaszewska [10] we obtain the following lemma.

Lemma 2.4 Let {Xn, n ≥ 1} be a sequence of Rd-valued random vectors weakly upper
bounded by a random vector X, and let r > 0. Then, for some constant C > 0, E‖X‖r < ∞
implies n–1 ∑n

k=1 E‖Xk‖r ≤ CE‖X‖r .

The following lemma supplies us with the analytical part in the proofs of the theorems
in the subsequent sections.

Lemma 2.5 (Yuan and Wu [5]) Let {an, n ≥ 1} and {bn, n ≥ 1} be sequences of nonnegative
numbers. If

sup
n≥1

n–1
n∑

i=1

ai < ∞ and
∞∑

n=1

bn < ∞,

then

n∑

i=1

aibi ≤
(

sup
m≥1

m–1
m∑

i=1

ai

) n∑

i=1

bi (2.3)

for every n ≥ 1.

Next, we will extend some Lp-convergence and complete convergence results for the
maximums of the partial sum of R1-valued ANA random variables in Yuan and Wu [5] to
R

d-valued random vectors.

3 Lp-convergence and complete convergence for ANA random vectors with
values in R

d

The following theorem is an extension of Theorem 3.2 in Yuan and Wu [5] to random
vectors with values in R

d .
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Theorem 3.1 Let p ≥ 2 be positive real numbers, and let N ≥ 1 be a positive integer. Sup-
pose that {Xn, n ≥ 1} is a sequence of Rd-valued ANA random vectors with mixing coeffi-
cients ρ–(s) such that ρ–(N) < ( 1

6p )p/2. If {Xn, n ≥ 1} are Rd-valued random vectors satisfy-
ing

sup
n≥1

1
n

n∑

k=1

E‖Xk‖p < ∞, (3.1)

then, for any δ > 1
2 ,

n–δ max
1≤i≤n

‖Si – ESi‖ → 0 in Lp. (3.2)

Proof By Lemma 2.3, the Hölder inequality, and (3.1) we obtain

E
(

n–δ max
1≤i≤n

‖Si – ESi‖
)p

= n–pδE max
1≤i≤n

∥
∥∥∥
∥

i∑

j=1

(Xj – EXj)

∥
∥∥∥
∥

p

� n–pδ

n∑

i=1

E‖Xi – EXi‖p + n–pδ

( n∑

i=1

E‖Xi – EXi‖2

)p/2
(
by (2.2)

)

� n–pδ–1+ p
2

n∑

i=1

E‖Xi‖p

� n–pδ+ p
2 sup

n≥1

1
n

n∑

i=1

E‖Xi‖p, (3.3)

which by Lemma 2.5 yields (3.2) for any δ > 1
2 . �

As applications of Theorem 3.1, we introduce two results that are not present in Yuan
and Wu [5].

Theorem 3.2 Let p ≥ 2 be positive real numbers, and let N ≥ 1 be a positive integer. Sup-
pose that {Xn, n ≥ 1} is a sequence of Rd-valued ANA random vectors with mixing coeffi-
cients ρ–(s) such that ρ–(N) < ( 1

6p )p/2. If {Xn, n ≥ 1} is weakly upper bounded by a random
vector X with E‖X‖p < ∞, then, for any δ > 1

2 , (3.2) holds.

Proof By Lemma 2.3, Lemma 2.4(i), Hölder’s inequality, and the proof of Theorem 3.1 we
obtain

E
(

n–pδ max
1≤i≤n

‖Si – ESi‖
)p

≤ n–pδ–1+ p
2

n∑

i=1

E‖Xi‖p (
see (3.3)

)

≤ n–pδ+ p
2 E‖X‖p → 0 as n → ∞ by Lemma 2.4. �
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Corollary 3.3 Let p ≥ 2 be positive real numbers, and let N ≥ 1 be a positive integer. Sup-
pose that {Xn, n ≥ 1} is a sequence of Rd-valued ANA random vectors with mixing coef-
ficients ρ–(s) such that ρ–(N) < ( 1

6p )p/2. If {Xn, n ≥ 1} are identically distributed random
vectors with E‖X1‖p < ∞, then, for any δ > 1

2 , (3.2) holds.

A sequence of random vectors {Xn, n ≥ 1} is said to converge completely to a constant a
if for any ε > 0,

∞∑

n=1

P
(‖Xn – a‖ > ε

)
< ∞.

In this case, we write Xn → a completely. This notion was given by Hsu and Robbins [11].
Note that the complete convergence implies the almost sure convergence in view of the
Borel–Cantelli lemma.

The following theorem provides an extension of Theorem 4.2 of Yuan and Wu [5] for
ANA random variables in R

1 to random vectors in R
d .

Theorem 3.4 Let p ≥ 2 be positive real numbers, and let N ≥ 1 be a positive integer. Sup-
pose that {Xn, n ≥ 1} is a sequence of Rd-valued ANA random vectors with mixing coeffi-
cients ρ–(s) such that ρ–(N) < ( 1

6p )p/2. If {Xn, n ≥ 1} satisfies (3.1), then, for any δ > 1
2 ,

n–δ max
1≤i≤n

‖Si – ESi‖ → 0 completely. (3.4)

Proof By Lemma 2.3, Lemma 2.5, Hölder’s inequality, and the proof of Theorem 3.1 we
obtain

∞∑

n=1

E
(

n–δ max
1≤i≤n

‖Si – ESi‖
)p

�
∞∑

n=1

n–pδ–1+p/2
n∑

k=1

E‖Xk‖p (
see (3.3)

)

�
∞∑

k=1

E‖Xk‖p
∞∑

n=k

n–pδ–1+p/2

≤
∞∑

k=1

k–pδ–1+p/2E‖Xk‖p

≤ sup
n≥1

1
n

n∑

k=1

E‖Xk‖p
∞∑

n=1

n–pδ–1+p/2 (
by Lemma 2.5

)

< ∞
(

since –pδ – 1 +
p
2

< –1
)

. (3.5)

Hence (3.4) holds. �

Remark Note that the proof of Theorem 3.4 is a little different from that of Theorem 4.2
in Yuan and Wu [5].

As applications of Theorem 3.4, we introduce two results that are not present in Yuan
and Wu [5].
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Theorem 3.5 Let p ≥ 2 be positive real numbers, and let N ≥ 1 be a positive integer. Sup-
pose that {Xn, n ≥ 1} is a sequence of Rd-valued ANA random vectors with mixing coeffi-
cients ρ–(s) such that ρ–(N) < ( 1

6p )p/2. If {Xn, n ≥ 1} is weakly upper bounded by a random
vector X with E‖X‖p < ∞, then, for any δ > 1

2 , (3.4) holds.

Proof As in the proof of Theorem 3.4, we obtain

∞∑

n=1

E
(

n–δ max
1≤i≤n

‖Si – ESi‖
)p

≤ sup
n≥1

1
n

n∑

k=1

E‖Xk‖p
∞∑

n=1

n–pδ–1+p/2 (
see (3.5)

)

≤ E‖X‖p
∞∑

n=1

n–pδ–1+p/2 (by Lemma 2.4)

< ∞
(

since –pδ – 1 +
p
2

< –1 and E‖X‖p < ∞
)

. �

Corollary 3.6 Let p ≥ 2 be positive real numbers, and let N ≥ 1 be a positive integer. Sup-
pose that {Xn, n ≥ 1} is a sequence of Rd-valued ANA random vectors with mixing coef-
ficients ρ–(s) such that ρ–(N) < ( 1

6p )p/2. If {Xn, n ≥ 1} are identically distributed random
vectors with E‖X1‖p < ∞, then, for any δ > 1

2 , (3.4) holds.

4 Weak law of large numbers for ANA random vectors with values in R
d

In this section, we establish the weak laws of large numbers for Rd-valued ANA random
vectors when p ≥ 2.

We assume that {Xn, n ≥ 1} is a sequence of ANA random vectors with values in R
d . For

n, i ≥ 1 and 1 ≤ j ≤ d, we set

X(j)
i = 〈Xi, ej〉,

Y (j)
ni = –nI

(
X(j)

i < –n
)

+ X(j)
i I

(∣∣X(j)
i

∣
∣ ≤ n

)
+ nI

(
X(j)

i > n
)
, and

Yni =
d∑

j=1

Y (j)
ni ej.

Theorem 4.1 Let p ≥ 2 be positive real numbers, and let N ≥ 1 be a positive integer. Sup-
pose that {Xn, n ≥ 1} is a sequence of Rd-valued ANA random vectors with mixing coeffi-
cients ρ–(s) such that ρ–(N) ≤ r and 0 ≤ r < ( 1

6p )p/2. If

lim
n→∞

n∑

i=1

d∑

j=1

P
(∣∣X(j)

i
∣∣ > n

)
= 0 (4.1)

and

lim
n→∞

∑n
i=1

∑d
j=1 E(|X(j)

i |pI(|X(j)
i | ≤ n))

np = 0, (4.2)
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then we obtain the weak law of large numbers

1
n

n∑

i=1

(Xi – EYni) →p 0 as n → ∞. (4.3)

Proof By the standard method we obtain

P

(
1
n

∥
∥∥∥
∥

n∑

i=1

(Xi – Yni)

∥
∥∥∥
∥

> ε

)

≤ P

( n⋃

i=1

(Xi �= Yni)

)

≤
n∑

i=1

P(Xi �= Yni) =
n∑

i=1

d∑

j=1

P
(
X(j)

i �= Y (j)
ni

)

=
n∑

i=1

d∑

j=1

P
(∣∣X(j)

i
∣∣ > n

) → 0 as n → ∞ (
by (4.1)

)
. (4.4)

Thus

1
n

n∑

i=1

(Xi – Yni) →p 0 as n → ∞. (4.5)

Next, we will show that

1
n

n∑

i=1

(Yni – EYni) →p 0 as n → ∞. (4.6)

It is well known that, for all n ≥ 1, {Yni – EYni, i ≥ 1} is a sequence of Rd-valued ANA
random vectors by Lemma 2.1. Then, by the Markov inequality, Hölder’s inequality, and
Lemma 2.3 we have

P

(
1
n

∥
∥∥∥
∥

n∑

i=1

(Yni – EYni)

∥
∥∥∥
∥

> ε

)

≤ 1
εpnp E

∥∥
∥∥∥

n∑

i=1

(Yni – EYni)

∥∥
∥∥∥

p

≤ C
np

n∑

i=1

d∑

j=1

E
∣∣Y (j)

ni
∣∣p

≤ C
np

n∑

i=1

d∑

j=1

npP
(∣∣X(j)

i
∣
∣ > n

)
+

C
np

n∑

i=1

d∑

j=1

E
(∣∣X(j)

i
∣
∣pI

(∣∣X(j)
i

∣
∣ ≤ n

))

≤ C
n∑

i=1

d∑

j=1

P
(∣∣X(j)

i
∣∣ > n

)
+

C
np

n∑

i=1

d∑

j=1

E
(∣∣X(j)

i
∣∣pI

(∣∣X(j)
i

∣∣ ≤ n
))

→ 0 as n → ∞ (
by (4.1) and (4.2)

)
, (4.7)

which yields (4.6). Combining (4.5) and (4.6), the WLLN (4.3) follows. The proof is com-
plete. �
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Theorem 4.2 Let p ≥ 2 be positive real numbers, and let N ≥ 1 be a positive integer. Sup-
pose that {Xn, n ≥ 1} is a sequence of Rd-valued CANA random vectors with mixing coeffi-
cients ρ–(s) such that ρ–(N) ≤ r and 0 ≤ r < ( 1

6p )
p
2 . If {Xn, n ≥ 1} is coordinatewise weakly

upper bounded by a random vector X with

lim
n→∞

d∑

j=1

np–1P
(∣∣X(j)∣∣ > n

)
= 0, (4.8)

then the WLLN (4.3) holds.

Proof We first show that (4.5) holds. By (1.3) and (4.4) we obtain

P

(
1
n

∥
∥∥
∥∥

n∑

i=1

(Xi – Yni)

∥
∥∥
∥∥

> ε

)

≤ P

( n⋃

i=1

(Xi �= Yni)

)

≤
n∑

i=1

d∑

j=1

P
(∣∣X(j)

i
∣
∣ > n

)

≤ C
d∑

j=1

nP
(∣∣X(j)∣∣ > n

) (
by (1.3)

)

≤ C
d∑

j=1

np–1P
(∣∣X(j)∣∣ > n

)

= o(1) by (4.8), (4.9)

which yields (4.5). It remains to show that (4.6) holds.
Since for all n ≥ 1, {Yni – EYni, i ≥ 1} is a sequence of Rd-valued ANA random vectors,

by Lemma 2.1, Lemma 2.3, and (1.3) we have

P

(

max
1≤k≤n

1
n

∥∥
∥∥∥

k∑

i=1

(Yni – EYni)

∥∥
∥∥∥

> ε

)

≤ n–pE

(

max
1≤k≤n

∥∥
∥∥
∥

k∑

i=1

(Yni – EYni)

∥∥
∥∥
∥

)p

(by the Markov inequality)

≤ C
np

n∑

i=1

d∑

j=1

E
∣∣Y (j)

ni
∣∣p (

see (4.7)
)

≤ C
np

n∑

i=1

d∑

j=1

npP
(∣∣X(j)

i
∣∣ > n

)
+

C
np

n∑

i=1

d∑

j=1

E
(∣∣X(j)

i
∣∣pI

(∣∣X(j)
i

∣∣ ≤ n
))

=
C

np–1

d∑

j=1

npP
(∣∣X(j)∣∣ > n

)
+

C
np–1

d∑

j=1

E
(∣∣X(j)∣∣pI

(∣∣X(j)∣∣ ≤ n
))
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=
C

np–1

d∑

j=1

∫ n

0
xp–1P

(∣∣X(j)∣∣ > x
)

dx (by integration by parts)

≤ C
np–1

d∑

j=1

n–1∑

k=0

∫ k+1

k
xp–1P

(∣∣X(j)∣∣ > x
)

dx

≤ C
np–1

d∑

j=1

n∑

k=1

(
(k + 1)p – kp)P

(∣∣X(j)∣∣ > k
)

≤ C
np–1

n∑

k=1

d∑

j=1

(
kp–1P

(∣∣X(j)∣∣ > k
)) →p 0 as n → ∞ by (4.8),

which yields (4.6). Combining (4.5) and (4.6), we obtain the WLLN (4.3). Hence the proof
is complete. �

Remark Suppose that {Xn, n ≥ 1} is a sequence of R
d-valued CNA random vectors.

If {Xn, n ≥ 1} is coordinatewise weakly upper bounded by a random vector X with
limn→∞

∑d
j=1 nP(|X(j)| > n) = 0, then the WLLN (4.3) holds.

Corollary 4.3 Let N ≥ 1 be a positive integer, and let p ≥ 2. Suppose that {Xn, n ≥ 1} is a se-
quence ofRd-valued ANA random vectors with mixing coefficient ρ–(s) such that ρ–(N) ≤ r
and 0 ≤ r < ( 1

6p )
p
2 . If {Xn, n ≥ 1} is a sequence of identically distributed random vectors with

lim
n→∞

d∑

j=1

np–1P
(∣∣X(j)

1
∣
∣ > n

)
= 0, (4.8′)

then (4.3) holds.

Theorem 4.4 Let p ≥ 2, and let N ≥ 1 be an integer. Suppose that {Xn, n ≥ 1} is a se-
quence of mean zero R

d-valued ANA random vectors with mixing coefficients ρ–(s) such
that ρ–(N) < r and 0 ≤ r < ( 1

6p )
p
2 . If {Xn, n ≥ 1} is coordinatewise weakly upper bounded by

a random vector X with

d∑

j=1

E
(∣∣X(j)∣∣p–1) < ∞, (4.10)

then

1
n

n∑

i=1

Xi →p 0 as n → ∞. (4.11)

Proof It follows from (4.10) that

lim
n→∞

d∑

j=1

E
(∣∣X(j)∣∣p–1I

(∣∣X(j)∣∣ > n
))

= 0, (4.12)
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which yields

∥∥
∥∥
∥

1
n

n∑

i=1

EYni

∥∥
∥∥
∥

≤ 1
n

n∑

i=1

‖EYni‖

≤ 1
n

d∑

j=1

n∑

i=1

∣
∣EY (j)

ni
∣
∣

≤ 1
n

d∑

j=1

n∑

i=1

∣∣E
(
X(j)

i I
(∣∣X(j)

i
∣∣ ≤ n

))∣∣ +
1
n

d∑

j=1

n∑

i=1

nP
(∣∣X(j)

i
∣∣ > n

)

=
1
n

d∑

j=1

n∑

i=1

∣∣E
(
X(j)

i I
(∣∣X(j)

i
∣∣ > n

))∣∣

+
1
n

d∑

j=1

n∑

i=1

nP
(∣∣X(j)

i
∣
∣ > n

)
(by EXi = 0)

≤
d∑

j=1

E
(∣∣X(j)∣∣I

(∣∣X(j)∣∣ > n
))

+
d∑

j=1

nP
(∣∣X(j)∣∣ > n

) (
by (1.3)

)

≤ C
d∑

j=1

E
(∣∣X(j)∣∣p–1I

(∣∣X(j)∣∣ > n
))

+ C
d∑

j=1

np–1P
(∣∣X(j)∣∣ > n

)

≤ 2C
d∑

j=1

E
(∣∣X(j)∣∣p–1I

(∣∣X(j)∣∣ > n
)) →p 0 as n → ∞ (

by (4.12)
)
. (4.13)

It remains to prove (4.3).
Since (4.12) implies (4.8), (4.3) follows from Theorem 4.2. Thus the proof is complete. �

Remark Suppose that {Xn, n ≥ 1} is a zero-mean sequence of Rd-valued NA random vec-
tors. If {Xn, n ≥ 1} is coordinatewise weakly upper bounded by a random vector X with
∑d

j=1 E|X(j)| < ∞, then (4.11) holds.

Corollary 4.5 Let N ≥ 1 be an integer, and let p ≥ 2. Suppose that {Xn, n ≥ 1} is a sequence
of Rd-valued ANA random vectors with mixing coefficient ρ–(s) such that ρ–(N) ≤ r and
0 ≤ r < ( 1

6p )
p
2 . If {Xn, n ≥ 1} is a sequence of identically distributed random vectors with

EX1 = 0 and

d∑

j=1

E
(∣∣X(j)

1
∣
∣p–1) < ∞, (4.10′)

then we obtain the WLLN (4.11).

Proof The proof follows by substituting X(j) by X(j)
1 in the proof of Theorem 4.4. �
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5 Conclusions
We generalized the Lp-convergence and complete convergence results of Yuan and Wu
[5] from R

1-valued ANA random variables to R
d-valued random vectors by using a

Rosenthal-type inequality. We also established weak laws of large numbers for CANA ran-
dom vectors under p ≥ 2. As applications, we obtained some Lp-convergence and com-
plete convergence results that are not present in Yuan and Wu [5] even when d = 1.
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