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Abstract
This paper focuses on a class of nonlinear optimization subject to linear inequality
constraints with unavailable-derivative objective functions. We propose a
derivative-free trust-region methods with interior backtracking technique for this
optimization. The proposed algorithm has four properties. Firstly, the derivative-free
strategy is applied to reduce the algorithm’s requirement for first- or second-order
derivatives information. Secondly, an interior backtracking technique ensures not only
to reduce the number of iterations for solving trust-region subproblem but also the
global convergence to standard stationary points. Thirdly, the local convergence rate
is analyzed under some reasonable assumptions. Finally, numerical experiments
demonstrate that the new algorithm is effective.
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1 Introduction
In this paper, we analyze the solution of following nonlinear optimization problem:

min f (x)

s.t. Ax ≥ b,
(1)

where f (x) is a nonlinear twice continuously differentiable function, but its first-order or
second-order derivatives are not explicitly available, A def= [aT

1 , aT
2 , . . . , aT

m]T ∈ �m×n with
aT

i ∈ �n and b def= [b1, b2, . . . , bm]T ∈ �m. The feasible set, in (1), is denoted by �
def= {x ∈

�n|Ax ≥ b} and the strict interior feasible set is int(�) def= {x ∈ �n|Ax > b}.
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1.1 Affine-scaling matrix for inequality constraints
The KKT system of (1) is

∇f (x) – ATλf = 0,

diag{Ax – b}λf = 0, (2)

Ax – b ≥ 0, λf ≥ 0,

where λf ∈ �m. A feasibility x∗ is said to be the stationary point for problem (1), if there
exists a vector 0 ≤ λf ∗ ∈ �m such that the KKT system (2) holds.

To solve this KKT system, some effective affine-scaling algorithms are designed. Ref-
erence [1] proposed an affine-scaling trust-region method with interior-point technique
for bound-constrained semismooth equations. Reference [2] introduced affine-scaling
interior-point Newton methods for bound-constrained nonlinear optimization. In par-
ticular, [3] proved the superlinear and quadratic convergence properties of affine-scaling
interior-point Newton methods for bound optimization problems without strict comple-
mentarity assumption. Different affine-scaling matrix denotes different algorithm. In [4],
the Dikin affine scaling was denoted by

D(x) def= diag{Ax – b} and Dk
def= D(xk). (3)

Moreover, diagonal matrix Cfk
def= diag{|λfk |} was presented in [4]. Then λfk could be ob-

tained as a least-squares Lagrangian multiplier approximation computed by

[
AT

–D
1
2
k

]
λfk

L.S.=

[
∇fk

0

]
. (4)

One efficient affine-scaling interior-point trust-region model is the one which is presented
in [5] and [6], written in the form

min qfk (p) = ∇f T
k p +

1
2

pT Hfk p +
1
2

pT AT D–1
k Cfk Ap

subject to
∥∥[

p; D– 1
2

k Ap
]∥∥ ≤ �k ,

(5)

where ∇f (xk) is the gradient of f (x) at the current iteration, Hfk is either ∇2f (xk) or its
approximation. Furthermore, ‖∇f T

k hfk ‖ ≤ ε, where

hfk = –
(∇f (xk) – ATλfk

)
, (6)

and ε is a small enough constant, is usually considered as the termination criterion in this
class of algorithms.

Motivation The above discussions illustrate that the affine-scaling interior-point trust-
region method is an effective way to solve the nonlinear optimization problems with in-
equality constraints. The trust-region frame guarantees the stable numerical performance.
However, in Eqs. (4)–(6) the first- and second-order derivatives play important roles dur-
ing the computational process, which maybe fail to solve the optimization problems like
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(1). If both the feasibility and the stability of the algorithm need to be guaranteed, we
should consider the derivative-free trust-region methods.

1.2 Derivative-free technique for trust-region subproblem
Since the first- or second-order derivatives of objective functions are not explicitly avail-
able, the derivative-free optimization algorithms have been favored by researchers for a
time. The application forms of the derivative-free theory are devise [7, 8] and widely ap-
plied. Reference [9] proposed a derivative-free algorithm for least-squares minimization,
and proved the local convergence in [10]. Reference [11] presented a derivative-free ap-
proach to constrained multiobjective nonsmooth optimization. Reference [12] presented
a higher-order contingent derivative of perturbation maps in multiobjective optimization.
In [13], Conn proposed an unconstrained derivative-free trust-region method. They con-
structed the trust-region subproblem

min
s∈B(0;�k )

mk = m(xk + s) = m(xk) + sT gk +
1
2

sT Hmk s

by using a polynomial interpolation technique, where ∇m(xk) = gk , and ∇2m(xk) = Hmk .
Following this idea, we consider that Yk = {y0

k , y1
k , . . . , yt

k} is an interpolation sample set
around the current iteration point xk , and we construct the trust-region subproblem

min qmk (p) = gT
k p +

1
2

pT Hmk p +
1
2

pT AT D–1
k Cmk Ap

s.t.
∥∥[

p; D– 1
2

k Ap
]∥∥ ≤ �k .

(7)

Cmk
def= diag{|λmk |} with λmk obtained from

[
AT

–D
1
2
k

]
λmk

L.S.=

[
gk

0

]
, (8)

hmk = –
(
gk – ATλmk

)
. (9)

We should note that the gradient and Hessian in (5) and (7), (4) and (8), (6) and (9) are
different. Meanwhile, since the algorithm in this paper adopts both the decrease direction
p and the stepsize α to update the iteration point, we give a new definition of the error
bounds between the objective function f (xk + αp) and the approximation function m(xk +
αp) to ensure the global convergence. We shall show the details after assumption (A1).

Assumption
(A1) Suppose that a level set L(x0) and a maximal radius �max are given. Assume that f

is twice continuously differentiable with Lipschitz continuous Hessian in an
appropriate open domain containing the �max neighborhood

⋃
x∈L(x0) B(x,�max)

of the set L(x0).

Definition 1 Given a function f satisfies (A1).M = {m : �n → �, m ∈ C2} is a set of model
functions. If there exist positive constants κef , κeg , κeh, and κblh, such that, for any x ∈L(x0),
� ∈ (0,�max], and α ∈ (0, 1], there is a model function m(x + αp) ∈ M, with Lipschitz
continuous Hessian and corresponding Lipschitz constant bounded by κblh, and such that:
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1 the error between the Hessian of the model m(x + αp) and the Hessian of the function
f (x + αp) satisfies

∥∥∇2f (x + αp) – ∇2m(x + αp)
∥∥ ≤ κehα�, ∀p ∈ B(0,�); (10)

2 the error between the gradient of the model m(x + αp) and the gradient of the
function f (x + αp) satisfies

∥∥∇f (x + αp) – ∇m(x + αp)
∥∥ ≤ κegα

2�2, ∀p ∈ B(0,�); (11)

3 the error between the model m(x + αp) and the function f (x + αp) satisfies

∥∥f (x + αp) – m(x + αp)
∥∥ ≤ κef α

3�3, ∀p ∈ B(0,�). (12)

Such a model m is called fully quadratic on B(x,�).

In this paper, we aim to present a class of derivative-free trust-region method for nonlin-
ear programming with linear inequality constraints. The main features of this paper are:

• We use the derivatives of approximation function m(xk + αp) to replace the
derivatives of objective function f (xk + αp) to reduce the algorithm’s requirement for
gradient and Hessian of the iteration points. We solve an affine-scaling trust-region
subproblem to find a feasible search direction in each iteration.

• In the kth iteration, a feasible search direction p is obtained from an affine-scaling
trust-region subproblem. Meanwhile, interior backtracking skill will be applied both
for determining stepsize α and for guaranteeing the feasibility of iteration point.

• We will show that the iteration points generated by the proposed algorithm could
converge to the optimal points of (1).

• Local convergence will be given under some reasonable assumptions.
This paper is organized as follows: we describe a class of derivative-free trust-region

method in Sect. 2. The main results including global convergence property and local con-
vergence rate will be discussed in Sect. 3. The numerical results will be illustrated in
Sect. 4. Finally, we give some conclusions.

Notation In this paper, ‖ · ‖ is the 2-norm for a vector and the induced 2-norm for a
matrix. B ⊂ �n is a closed ball and B(x,�) is the closed ball centered at x, with radius
� > 0. Y is a sample set and L(x0) = {x ∈ �n|f (x) ≤ f (x0), Ax ≥ b} is the level set about the
objective function f . We use the subscript fk and subscript mk to distinguish the relevant
information between the original function and the approximate function. For example,
Hfk is the Hessian of f at kth iteration and Hmk is the Hessian of mk at kth iteration.

2 A derivative-free trust region method with interior backtracking technique
To solve the optimization problem (1) with not all available first- or second-order deriva-
tives, we design a derivative-free trust-region method. An affine-scaling matrix is denoted
by (3) for linear inequality constraints. We chose a stepsize αk satisfying the following in-
equalities:

f (xk + αkpk) ≤ f (xk) + αkκ1gT
k pk , (13a)

with xk + αkpk ∈ �. (13b)
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Moreover, set

θk =

⎧⎨
⎩1, if xk + αkpk ∈ int(�),

1 – O(‖pk‖2), otherwise,
(14)

where θk ∈ (θ0, 1], for some 0 < θ0 < 1. The θk is to ensure the iterative points generated
by the algorithm are strictly interior. Combining with (13a), (13b) and (14), this interior
backtracking technique is to guarantee the feasibility of the iterative points. The algo-
rithm possesses the trust-region property and the derivative-free technique is reflected
in the trust-region subproblem (7) since the gradient gk and Hessian Hmk come from the
approximation function, which are different from ∇fk and Hfk in (5), satisfying the error
bounds (11) and (12). We adopt ‖gT

k hmk ‖ to be a termination criterion. Now we present
the derivative-free trust-region method in detail (see Algorithm 1).

Remark 1 We add a backtracking interior line-search technique in the algorithm. It is
helpful to reducing the number of iterations. Equation (13a) is used to guarantee the de-
scent property of f (x) and (13b) ensures the feasibility of xk + αkpk .

Remark 2 The scalar αk , given in step 5, denotes the stepsize along pk to the boundary
(13b) of the linear inequality constraints

	k
def= min

{
–

aT
i xk – bi

aT
i pk

∣∣∣ –
aT

i xk – bi

aT
i pk

> 0, i = 1, 2, . . . , m
}

, (15)

with 	k
def= +∞ if –(aT

i xk – bi)/(aT
i pk) ≤ 0 for all i = 1, 2, . . . , m. A key property of the scalar

αk is that an arbitrary step αkpk to the point xk +αkpk does not violate any linear inequality
constraints.

Remark 3 Let

Mmk =

[
Hmk 0

0 Cmk

]
. (16)

The first-order necessary conditions of (7) implies that there exists vmk ≥ 0 such that

(Mmk + vmk I)

[
pk

p̂k

]
= –

[
gk

0

]
+

[
AT

–D
1
2
k

]
λmk+1 , with

vmk

(
�k –

∥∥∥∥∥
[

pk

p̂k

]∥∥∥∥∥
)

= 0.

(17)

In order to obtain a suitable approximation function, Algorithm 1 needs to update the
objective function of the trust-region subproblem if necessary. The model-improvement
algorithm is applied only if ‖gT

k hmk ‖ ≤ ε and at least one of the following holds: The model
m(xk + αp) is not certifiably fully quadratic on B(xk ,�k) or �k > ι‖gT

k hmk ‖. It improves on
the current approximate function m(xk +αp) to meet the requirements of the error bounds
so that the model function becomes fully quadratic. We display the model-improvement
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Algorithm 1 Derivative-free trust-region method with interior backtracking technique
1 Initialization: Given x0, �max > 0, �0 ∈ (0,�max], 0 ≤ η0 ≤ η1 < 1, (η1 = 0) and

θ0 ∈ (0, 1) are constants. k := 0.
2 Construct model function: Let yk = xk , and obtain an interpolation point set

Yk = {y0
k , . . . , yt

k}. Construct a quadratic function m(xk + αp), get the information
such as gk , Hmk . Calculate Dk , λmk and hmk from (3), (8) and (9).

3 Termination criterion: If ‖gT
k hmk ‖ > ε, then go to step 4. Consider the model mk on

B(xk ,�k), there are two cases would be happened:
(a) If mk is not fully quadratic on B(xk ,�k) or �k > ι‖gT

k hmk ‖ holds, construct
another model to modified mk , �k = min{max{�̃k ,β‖g̃T

k hm̃k ‖},�k} and go to
step 4.

(b) Otherwise, we get the optimal point and stop.
4 Trust-region subproblem: solve trust-region subproblem (7) to find descent direction

pk .
5 Step size: choose αk = 1,α,α2, . . . , until the inequalities (13a) and (13b) are satisfied.
6 Set sk = αkθkpk by (14).
7 Calculate Pred(sk) = m(xk) – m(xk + sk), Ared(sk) = f (xk) – f (xk + sk),

ρk =
Ared(sk)
Pred(sk)

.

(a) If ρk ≥ η1 or if both ρk ≥ η0 and mk is fully quadratic on B(xk ,�k), then set
yk+1 = xk+1 = xk + sk , go to step 2.

(b) Otherwise xk+1 = xk .
8 If ρk < η1, call Algorithm 2 to guarantee mk is fully quadratic.

(a) If mk is not fully quadratic, modify �k .
(b) Otherwise, set mk+1 = mk .

9 Trust-region radius update: set

�k+1 ∈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min{ς�k ,�max} if ρk ≥ η1 and �k < ι‖gT
k hmk ‖,

[�k , min{ς�k ,�max}] if ρk ≥ η1 and �k ≥ ι‖gT
k hmk ‖,

ζ�k if ρk < η1 and mk is fully quadratic,

�k if ρk < η1 and mk is not fully quadratic.

10 Set k := k + 1 and go to step 2.

Algorithm 2 Model-improvement mechanism
1 Initialization: set i = 0, m(0)

k = mk .
2 Repeat: i = i + 1; �̃k = ωi–1�k ; Ensure m(i–1)

k satisfies the error bounds (10)–(12) in
Definition 1 on B(xk ,ωi–1�k).

Until �̃k ≤ ι(‖gT
k hmk ‖)(i).

mechanism in Algorithm 2 which has the same principle as Algorithm 2 proposed in [14],
with a constant ω ∈ (0, 1) .
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3 Main results and discussion
In this section, we mainly discuss some properties about the proposed algorithm, includ-
ing the discussion of the error bounds, the sufficiently descent property, the global and
local convergence properties. First of all, we make some necessary assumptions as follows.

Assumptions
(A2) The level set L(x0) is bounded.
(A3) There exist positive constants κgf and κgm such that ‖∇fk‖ ≤ κgf and ‖gk‖ ≤ κgm ,

respectively, for all xk ∈L(x0).
(A4) There exist positive constants κHf and κHg such that ‖Hfk ‖ ≤ κHf and

‖Hmk ‖ ≤ κHm , respectively, for all xk ∈L(x0).
(A5) [A –D

1
2
k

] is full row rank for all xk ∈L(x0).

3.1 Error bounds
Observe first that some error bounds hold immediately.

Lemma 1 Suppose that (A1)–(A5), the error bounds (10)–(12) and the fact that �k ≤ �max

hold. If mk is a fully quadratic model on B(xk ,�k), then the following bound is true:

‖hfk – hmk ‖ ≤ κhαk�k . (18)

Proof Using the theory of matrix perturbation analysis, Eqs. (4) and (8), we obtain

‖λfk – λmk ‖ ≤ ∥∥(
AAT + Dk

)–1∥∥‖A‖∥∥∇f (xk) – gk
∥∥, (19)

where AAT is a positive definition matrix and Dk is a diagonal matrix related with xk ∈
L(x0). By (A2), there exists a constant κλ > 0 such that ‖(AAT + Dk)–1‖‖A‖ ≤ κλ. Thus,
from (6), (9) and the error bound (11), one has the fact that

‖hfk – hmk ‖ =
∥∥∇f (xk) – gk – AT (λfk – λmk )

∥∥
≤ ∥∥∇f (xk) – gk

∥∥ + κλ‖A‖∥∥∇f (xk) – gk
∥∥

≤ (
1 + κλ‖A‖)∥∥∇f (xk) – gk

∥∥
≤ (

1 + κλ‖A‖)κegα
2
k�

2
k

≤ (
1 + κλ‖A‖)κeg�maxαk�k .

Clearly, the conclusion holds with κh = (1 + κλ‖A‖)κeg�max. �

Lemma 2 Suppose that (A1)–(A5), the error bounds (10)–(12) and the fact that �k ≤ �max

hold. If mk is a fully quadratic model on B(xk ,�k), for some constant κ2, one has

∣∣∥∥∇f (xk)T hfk
∥∥ –

∥∥gT
k hmk

∥∥∣∣ ≤ κ2αk�k . (20)

Proof Using the triangle inequality, Cauchy–Schwarz inequality, (18), (A3), the error
bounds (10)–(12) and the fact that αk ∈ (0, 1] and �k ≤ �max successively, we obtain

∣∣∥∥∇f (xk)T hfk
∥∥ –

∥∥gT
k hmk

∥∥∣∣
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≤ ∥∥∇f (xk) – gk
∥∥‖hfk ‖ + ‖gk‖‖hmk – hfk ‖

≤ ∥∥∇f (xk) – gk
∥∥‖hfk ‖ + κhαk�k‖gk‖

≤ (κegκgf �max + κgmκh)αk�k ,

which implies that the inequality (20) holds with κ2 = κegκgf �max + κgmκh. �

Lemma 3 Suppose that (A1)–(A5), the error bounds (10)–(12) and the fact that �k ≤ �max

hold. If ‖∇f T
k hfk ‖ = 0, then step 3 of Algorithm 1 will stop in a finite number of improvement

steps.

Proof Now we should prove that ‖∇f T
k hfk ‖ must be zero if the loop of Algorithm 2 is

infinite.
In fact, there are two cases could cause Algorithm 2 to be implemented. One is that

mk is not fully quadratic, the other is that the radius �k > ι‖gT
k hmk ‖. Then set m(0)

k =
mk , and improve the model to be fully quadratic on B(xk ,�k), which denoted by m(1)

k .
If (gT

k hmk )(1) of m(1)
k satisfies the inequality ι‖(gT

k hmk )(1)‖ ≥ �k , Algorithm 2 stops with
�̃k = �k ≤ ι‖(gT

k hmk )(1)‖.
Otherwise, ι‖(gT

k hmk )(1)‖ < �k holds. Algorithm 2 will improve the model on B(xk ,ω�k)
and the resulting model is denoted by m(2)

k . If m(2)
k satisfies ι‖(gT

k hmk )(2)‖ ≥ ω�k , the pro-
cedure stops. If not, the radius should be multiplied by ω and Algorithm 2 will improve
the model on B(xk ,ω2�k), and go on.

The only case for Algorithm 2 to be infinite is if

ι
∥∥(

gT
k hmk

)(i)∥∥ < ωi–1�k for all i ≥ 1.

It implies

lim
i→+∞

∥∥(
gT

k hmk

)(i)∥∥ = 0.

By the bound (20) ‖∇f T
k hfk – (gT

k hmk )(i)‖ ≤ κ2ω
i–1αk�k for all i ≥ 1, we obtain

∥∥∇f T
k hfk

∥∥ ≤ ∥∥∇f T
k hfk –

(
gT

k hmk

)(i)∥∥ +
∥∥(

gT
k hmk

)(i)∥∥
≤ κ2ω

i–1αk�k +
ωi–1

ι
�k

≤ κ2ω
i–1�k +

ωi–1

ι
�k

≤
(

κ2 +
1
ι

)
ωi–1�k .

By the choice of ω ∈ (0, 1) the above inequality means that ‖∇f T
k hfk ‖ = 0. The conclusion

shows us step 3 will stop in a finite number of improvements. �

3.2 Sufficiently descent property
In order to guarantee the global convergence property of the proposed algorithm, it is
necessary to show that a sufficiently descent condition is satisfied at the kth iteration. We
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obtained in [6] if step pk is the optimal point of the trust-region subproblem (7), there is a
constant κ3 > 0 such that

gT
k pk ≤ –κ3

∥∥gT
k hmk

∥∥ 1
2 min

{
�k ,

‖gT
k hmk ‖

1
2

‖Mmk ‖
}

. (21)

Lemma 4 Suppose that (A1)–(A5) and the error bounds (10)–(12) hold. pk is the solution of
the trust-region subproblem (7). Then there must exist an appropriate αk > 0 which satisfied
inequalities (13a).

Proof We start by considering the maximal step-length along the trust-region subproblem
descent direction that preserves sufficient feasibility in the sense of the (13a). Successively
using the mean value theorem and (11), we obviously obtain

f (xk) – f (xk + αpk)

= –α∇f (xk)T pk –
1
2
α2pT

k ∇2f (ξk)pk

≥ –κegα
3�3

k – αgT
k pk –

1
2
α2pT

k ∇2f (ξk)pk

= –ακ1gT
k pk – κegα

3�3
k + α(κ1 – 1)gT

k pk –
1
2
α2pT

k ∇2f (ξk)pk , (22)

where ξk ∈ (xk , xk + sk).
There are two cases that may be considered. The first is pT

k ∇2f (ξk)pk ≤ 0. By canceling

the last term of Eqs. (22), (21), ‖gT
k hmk ‖ 1

2

κλm κHm
≤ �k for large enough k and the fact that �k ≤

�max, it is thus easy to see that there exists an α∗ = [ κ3(1–κ1)κHm κλm
κeg�max

] 1
2 > 0 such that (13a)

holds. The second case is pT
k ∇2f (ξk)pk > 0. Using the Cauchy–Schwarz inequality and the

fact that αk ∈ (0, 1] and �k ≤ �max, we deduce that

f (xk) – f (xk + αpk) + ακ1gT
k pk

≥ –κegα
3�3

k + α(κ1 – 1)gT
k pk –

1
2
α2κHf ‖pk‖2

≥ –κegα
2�max�

2
k + α(κ1 – 1)gT

k pk –
1
2
α2κHf �

2
k

= α

[(
–κeg�max –

1
2
κHf

)
�2

kα + (κ1 – 1)gT
k pk

]

≥ 0,

when α∗ = κ3(1–κ1)κHm κλm
κeg�max+ 1

2 κHf
> 0. Thus the final conclusion obtained. �

We therefore see that it is reasonable to design line-search step criterion in step 5, which
provided us a nonincreasing sequence {f (xk)}.

Lemma 5 Let step pk be the solution of the trust-region subproblem (7). Suppose that (A1)–
(A5) hold. Then there exists a positive constant κ4 such that step pk satisfies the following
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sufficiently descent condition:

Pred(sk) ≥ κ4αkθk
∥∥gT

k hmk

∥∥ 1
2 min

{
�k ,

‖gT
k hmk ‖

1
2

‖Mmk ‖
}

, (23)

for all gk , hmk , ‖Mmk ‖, and �k .

Proof Combining now (7), (17), Lemma 4, θk ∈ (θ0, 1] and the fact that αk ≤ 1, we get

Pred(sk) = mk – m(xk + sk)

= –αkθkgT
k pk –

(αkθk)2

2
pT

k Mmk pk

(17)= –αkθkgT
k pk +

(αkθk)2

2
gT

k pk +
(αkθk)2

2
vmk

∥∥∥∥∥
[

pk

p̂k

]∥∥∥∥∥
2

≥ αkθk

(
αkθk

2
– 1

)
gT

k pk

≥ 1
2
κ3αkθk

∥∥gT
k hmk

∥∥ 1
2 min

{
�k ,

‖gT
k hmk ‖

1
2

‖Mmk ‖
}

= κ4αkθk
∥∥gT

k hmk

∥∥ 1
2 min

{
�k ,

‖gT
k hmk ‖

1
2

‖Mmk ‖
}

. �

3.3 Global convergence
Every iteration point in the k + 1th iteration will be chosen on the region B(xk ,αk�k).
Following the lemma one first shows that the current iteration must be successful if αk�k

is small enough.

Lemma 6 Suppose that (A1)–(A5) and the error bounds (10)–(12) hold. mk is fully
quadratic on B(xk ,�k), ‖gT

k hmk ‖ = 0 and

αk�k ≤ �k ≤ min

{
1

κHmκλm
,
κ4(1 – η1)
2κef �2

max

}∥∥gT
k hmk

∥∥ 1
2 ,

where κλm is the bound of Cmk , for all x ∈L(x0). Then the kth iteration is successful.

Proof We notice that, for all k and the model function mk , one has f (xk) = m(xk). Let
Mfk =

[ Hfk 0
0 Cfk

]
, from (16) and (A3), we know that ‖Mmk ‖ ≤ κHmκλm . Thus combining �k ≤

‖gT
k hmk ‖ 1

2

κHm κλm
with the sufficient decrease condition (23), we immediately get

Pred(sk) ≥ κ4αkθk
∥∥gT

k hmk

∥∥ 1
2 min

{
�k ,

‖gT
k hmk ‖

1
2

‖Mmk ‖
}

≥ κ4αkθk
∥∥gT

k hmk

∥∥ 1
2 �k .

Using Eqs. (12), (23), the fact that αk ∈ (0, 1] and θk ∈ (0, 1], we have

|ρk – 1| =
∣∣∣∣ f (xk) – f (xk+1)
m(xk) – m(xk+1)

– 1
∣∣∣∣
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≤
∣∣∣∣ f (xk) – m(xk)
m(xk) – m(xk+1)

∣∣∣∣ +
∣∣∣∣m(xk+1) – f (xk+1)

m(xk) – m(xk+1)

∣∣∣∣
f (xk )=m(xk )≤ 2κef α

3
kθ

3
k �3

k

κ4αkθk‖gT
k hmk ‖

1
2 �k

θk≤1≤ 2κef �
2
maxαk�k

κ4‖gT
k hmk ‖

1
2

≤ 1 – η1.

Thus ρk ≥ η1 and the iteration is successful. �

Lemma 7 Suppose that (A1)–(A5) and the error bounds (10)–(12) hold. If the number of
successful iteration is finite, then

lim
k→+∞

∥∥∇f (xk)T hfk
∥∥ = 0.

Proof We consider that all the model-improving iterations before mk becomes fully
quadratic are less than a constant N . Suppose that the current iteration is an iteration
after a successful one. It means that an infinite number of iterations are acceptable or not
nice. In these two cases, �k is shrinking. Furthermore, �k is reduced by a factor ζ at least
once every N iterations, which implies �k → 0.

For the jth iteration, we denote the ith iteration after j by the index ij, then

‖xj – xij‖ ≤ N�j → 0, j → +∞.

Using the triangle inequality, we obtain

∥∥∇f (xj)T hfj
∥∥ ≤ ∥∥∇f (xj)T hfj – ∇f (xj)T hfij

∥∥ +
∥∥∇f (xj)T hfij

+ ∇f (xij )
T hfij

∥∥
+

∥∥∇f (xij )
T hfij

– gT
ij hfij

∥∥ +
∥∥gT

ij hfij
– gT

ij hmij

∥∥ +
∥∥gT

ij hmij

∥∥.

The following work is to show that all these terms on the right-hand side are converging to
zero. Because of the Lipschitz continuity of ∇f and the fact that ‖xij – xj‖ → 0 the first and
second terms converge to zero. The inequalities (10) and (11) imply the third and fourth
terms on the right-hand side are converging to zero. According to Lemma 3, if ‖gT

ij hmij
‖�

0 for small enough �ij , ij would be a successful iteration, which yield a contradiction. Thus
the last term converges to zero. �

Lemma 8 Suppose that (A1)–(A5), the error bounds (10)–(12) and (23) hold. Suppose fur-
thermore that the strict complementarity of the problem (1) holds. Then

lim inf
k→+∞

∥∥gT
k hmk

∥∥ = 0.

Proof The key is that we may find a contradiction with the fact that {f (xk)} is a nonincreas-
ing bounded sequence unless xk is a stationary point. We thus have to verify that there ex-
ists some ε > 0 such that {f (xk)} is not convergent under the assumption of ‖gT

k hmk ‖ ≥ ε2.
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We observe from (13a), Lemma 4 and (21) that

f (xk) – f (xk + αkpk) ≥ –αkκ1gT
k pk

≥ αkκ1κ3
∥∥gT

k hmk

∥∥ 1
2 min

{
�k ,

‖gT
k hmk ‖

1
2

‖Mmk ‖
}

≥ αkκ1κ3ε min

{
�k ,

ε

‖Mmk ‖
}

→ 0. (24)

Thus from (24), two cases should be considered next, that is,

lim inf
k→∞

αk = 0 (25)

and

lim
k→∞

�k = 0. (26)

We now start the proof of (25). On one hand, αk is accepted by (13b) the boundary of
inequality constraints along pk . From Eq. (15)

	k = min

{
–

aT
i xk – bi

aT
i pk

∣∣∣ –
aT

i xk – bi

aT
i pk

> 0, i = 1, 2, . . . , m
}

,

with αk = +∞ if –(aT
i xk – bi)/(aT

i pk) ≤ 0 for all i = 1, 2, . . . , m, p̂k = D– 1
2

k Apk and (17), we
know that there exists λmk+1 such that

aT
i pk =

(
aT

i pk – bi
) 1

2 p̂i
k = –

(aT
i pk – bi)λi

mk+1

vmk + |λi
mk+1

| ,

where p̂i
k and λi

mk+1
are the ith components of the vectors p̂k and λmk+1 , respectively. Hence,

there exists j ∈ 1, . . . , m such that

αk = –
aT

j xk – bj

aT
j pk

≥ vmk + |λj
mk+1 |

λ
j
mk+1

≥ vmk + |λj
mk+1 |

‖λmk+1‖∞
. (27)

From (17), we have

[
AT

–D
1
2
k

]
λmk+1 = –

[
gk

0

]
+ (Mmk + vmk I)

[
pk

p̂k

]
.

Since [A –D
1
2
k

]T is full row rank for all x ∈L(x0), λmk is bounded and m(x) is twice contin-
uously differentiable, there exist κ5 > 0 and κ6 > 0 such that

‖λmk+1‖∞ ≤ κ5 + (κ6 + vmk )�k .



Gao and Cao Journal of Inequalities and Applications  (2018) 2018:108 Page 13 of 22

Using the fact that vmk (�k – ‖( pk
p̂k

)‖) = 0 and taking the norm to both sides of (17), we
deduce that

vmk �k = vmk

∥∥∥∥∥
(

pk

p̂k

)∥∥∥∥∥
≥ (∥∥gk – ATλmk

∥∥2 +
∥∥D

1
2
k λmk

∥∥2) 1
2 – ‖Mmk ‖

∥∥(pk ; p̂k)
∥∥

=
∥∥gT

k hmk

∥∥ 1
2 – ‖Mmk ‖

∥∥(pk ; p̂k)
∥∥.

And noting ‖(pk ; p̂k)‖ ≤ �k , we can obtain

vmk ≥ ‖gT
k hmk ‖

1
2

�k
– ‖Mmk ‖.

Combining the assumption ‖gT
k hmk ‖ > ε2 with �k → 0 deduced from (24), it is clear from

the fact ‖Mmk ‖ ≤ κλmκHm that, for ∀k,

lim
k→∞

vmk = +∞.

Thus (27) implies that

lim
k→∞

αk = 0.

Furthermore, �k → 0 means that limk→∞ ‖pk‖ = 0, from which we deduce that, for some
0 < θ0 < 1 and θk – 1 = O(‖pk‖2), the strictly feasible stepsize θk ∈ (θ0, 1] → 1. From the
above, we have already seen that (25) holds in the case that αk is determined by (13b).

There is another case that αk is determined by (13a). In this case, we are able to verify
that αk = 1 is acceptable when k sufficiently large. If not,

κ1gT
k pk < f (xk + pk) – f (xk)

must hold. Applying the Taylor series, (10)–(11), (A3) and the fact that �k ≤ �max, we
deduce that

κ1gT
k pk < f (xk + pk) – f (xk) = ∇f (xk)T pk +

1
2

pT
k ∇2f (ξk)pk

≤
(

κeg�max +
1
2
κeh�max +

1
2
κHm

)
�2

k + gT
k pk ,

where ξk ∈ (xk , xk + sk). This inequality is equivalent to the form of

(1 – κ1)gT
k pk +

(
κeg�max +

1
2
κeh�max +

1
2
κHm

)
�2

k > 0.

Moreover, (21) and ‖gT
k hmk ‖ ≥ ε2 imply that

–(1 – κ1)κ3ε min

{
�k ,

ε

κHm

}
+

(
κeg�max +

1
2
κeh�max +

1
2
κHm

)
�2

k > 0.
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Thus if �k ≤ 2(1–κ1)κ3ε

2κeg�max+κeh�max+κHm
≤ ε

κHm
we deduce from the inequality

�k

[
�k

(
κeg�max +

1
2
κeh�max +

1
2
κHm

)
– (1 – κ1)κ3ε

]
> 0

that

�k >
2(1 – κ1)κ3ε

2κeg�max + κeh�max + κHm
.

Clearly, a contradiction appears here. It implies that αk = 1 for k sufficiently large. There-
fore (25) always holds.

On the other hand, we should prove that (26) is true. From step 3 of Algorithm 1, we
know that

�k ≥ ι
∥∥gT

k hmk

∥∥.

By the assumption that ‖gT
k hmk ‖ ≥ ε2, we obtain

�k ≥ ιε.

Whenever �k falls below a constant κ̄7 given by

κ̄7 = min

{
ε

κHmκλm
,
κ4ε(1 – η1)
2κef �2

max

}
,

the kth iteration is either successful or model-improving, and hence from step 9, we are
able to deduce both that �k+1 ≥ �k and �k+1 ≥ ζ�k . Combining with the rules of step 9
we conclude that �k+1 ≥ min{ιε, ζ κ̄7} = κ7. It means that �k � 0, if ‖gT

k hmk ‖ ≥ ε2.
In conclusion, the sequence {f (xk)} is not convergent if we suppose that ‖gT

k hmk ‖ ≥ ε2,
which contradicts the fact that {f (xk)} is a nonincreasing bounded sequence. It implies
that

lim inf
k→+∞

∥∥gT
k hmk

∥∥ = 0. �

Lemma 9 For any subsequence {ki} such that

lim
i→+∞

∥∥gT
ki

hmki

∥∥ = 0, (28)

we also have

lim
i→+∞

∥∥∇f T
ki

hfki

∥∥ = 0. (29)

Proof First, we note that, by (28), ‖gT
ki

hmki
‖ ≤ ε when i sufficiently large. Thus the criti-

cality step ensures that the model mki is a fully quadratic function on the ball B(xki ,�ki ),
with �ki ≤ ι‖gT

ki
hmki

‖ for all i sufficiently large (if ‖∇f T
ki

hfki
‖ = 0). Then, using the bound

(20) on the error between the terminal conditions of function and model, we have

∥∥∇f T
ki

hfki
– gT

ki
hmki

∥∥ ≤ κ2αki�ki ≤ κ2ιαki

∥∥gT
ki

hmki

∥∥ ≤ κ2ι
∥∥gT

ki
hmki

∥∥.
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As a consequence, we have

∥∥∇f T
ki

hfki

∥∥ =
∥∥∇f T

ki
hfki

– gT
ki

hmki

∥∥ +
∥∥gT

ki
hmki

∥∥ ≤ (κ2αki ι + 1)
∥∥gT

ki
hmki

∥∥
≤ (κ2ι + 1)

∥∥gT
ki

hmki

∥∥
for all i sufficiently large. But ‖gT

ki
hmki

‖ → 0 implies (29) holds. �

Then we obtain the global convergence derived from Lemmas 8 and 9.

Theorem 1 Suppose that (A1)–(A5), the error bounds (10)–(12) and (23) hold. Suppose
furthermore that the strict complementarity of the problem (1) holds. Let {xk} ⊂ �n be
sequence generated by Algorithm 1. Then

lim inf
k→+∞

∥∥∇f T
k hfk

∥∥ = 0.

The above theorem shows us there exists a limit point that is first-order critical. In fact,
we are able to prove that all limit points of the sequence of iterations are first-order critical.

Theorem 2 Suppose that (A1)–(A5), the error bounds (10)–(12) and (23) hold. Suppose
furthermore that the strict complementarity of the problem (1) holds. Let {xk} ⊂ �n be
sequence generated by Algorithm 1. Then

lim
k→+∞

∥∥∇f T
k hfk

∥∥ = 0.

Proof We first obtained from Lemma 7 that the theorem holds in the case when S is finite.
Hence, we will assume that S is infinite. For the purpose of deriving a contradiction, we
suppose that there exists a subsequence {ki} of successful or acceptable iterations such
that

∥∥∇f T
ki

hfki

∥∥ ≥ ε2
1 > 0 (30)

for some ε1 > 0 and for all i. Then, because of Lemma 9, we obtain

∥∥gT
ki

hmki

∥∥ ≥ ε2
2 > 0

for some ε2 > 0 and for all i sufficiently large. Without loss of generality, we pick ε2 such
that

ε2
2 ≤ min

{
ε2

1
2(2 + κeg ι)

, ε
}

. (31)

Lemma 8 then ensures the existence, for each {ki} in the subsequence, of a first iteration
�i > ki such that ‖gT

�i
hm�i

‖ < ε2
2 . By removing elements from {ki}, without loss of general-

ity and without a change of notation, we thus see that there exists another subsequence
indexed by {�i} such that

∥∥gT
k hmk

∥∥ ≥ ε2
2 for ki ≤ k ≤ �i and

∥∥gT
�i

hm�i

∥∥ < ε2
2 , (32)

for sufficiently large i, with inequality (30) being retained.
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We now restrict our attention to the set K corresponding to the subsequence of itera-
tions whose indices are in the set

⋃
i∈N0

{k ∈N0 : ki ≤ k ≤ �i},

where ki and �i belong to the two subsequences given above in (31).
We know that ‖gT

k hmk ‖ ≥ ε2
2 for k ∈ K. From Lemma 8 limk→+∞ αk�k = 0 and by

Lemma 5 we conclude that for any large enough k ∈K the iteration k is either successful if
the model is fully quadratic or model-improving otherwise. Moreover, for each k ∈K ∩ S
we have

f (xk) – f (xk + sk) ≥ η1
[
m(xk) – m(xk + hk)

]
≥ η1κ4αkθk

∥∥gT
k hmk

∥∥ 1
2 min

{
�k ,

‖gT
k hmk ‖

1
2

‖Mmk ‖
}

,

and, for any such k large enough, �k ≤ ε2
κhm κλm

. Hence, we have αkθk�k ≤ f (xk )–f (xk +sk )
η1κ4ε2

for
k ∈ K ∩ S sufficiently large. Since for any k ∈ K large enough the iteration is either suc-
cessful or model-improving and since for a model-improving iteration xk+1 = xk + sk , we
have, for all i sufficiently large,

‖xki – x�i‖ ≤
�i–1∑
j=ki

j∈K∩S

‖xj – xj+1‖ ≤
�i–1∑
j=ki

j∈K∩S

αjθj�j ≤ 1
η1κ4ε2

[
f (xki ) – f (x�i )

]
.

Because the sequence {f (xk)} is bounded below and monotonic decreasing, we see that
the right-hand side of this inequality must converge to zero, and we therefore obtain

lim
i→+∞‖xki – x�i‖ = 0.

Now,

∥∥∇f (xki )
T hfki

∥∥ ≤ ∥∥∇f (xki )
T hfki

– ∇f (x�i )
T hf�i

∥∥ +
∥∥∇f (x�i )

T hf�i
– gT

�i
hm�i

∥∥
+

∥∥gT
�i

hm�i

∥∥.

Since ∇f is Lipschitz continuity, we see that the first term of the above inequality
‖∇f (xki )T hfki

–∇f (x�i )T hf�i
‖ → 0 and is bounded by ε2

2 for i sufficiently large. Equation (32)
implies the third term ‖gT

�i
hm�i

‖ ≤ ε2
2 . From (31) we see that m�i is a fully quadratic function

on B(x�i , ι‖gT
�i

hm�i
‖). Using (11) and (32), we deduce that ‖∇f (x�i )T hf�i

– gT
�i

hm�i
‖ ≤ κeg ιε

2
2

for i sufficiently large. Combining with these bounds we obtain the consequence that

∥∥∇f T
ki

hfki

∥∥ ≤ (2 + κeg ι)ε2
2 ≤ 1

2
ε2

1

for i large enough. This result contradicts (30), which implies the initial assumption is false
and the theorem follows. �
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3.4 Local convergence
Having proved the global convergence, we now focus on the speed of the local conver-
gence. For this motivation, more acceptable assumptions are given as follows.

Assumptions
(A6) x∗ is the solution of problem (1), which satisfies the strong second-order sufficient

condition, that is, let the columns of Z∗ denote an orthogonal basis for the null
space of [A –D

1
2∗ ], then there exists � > 0 such that

dT (Z∗Mf∗Z∗)d ≥ �‖d‖2, ∀d. (33)

(A7) Let

lim
k→∞

‖(Mmk – Mfk )Zkpk‖
‖pk‖ = 0. (34)

This means that for large k

pT
k
(
ZT

k Mmk Zk
)
pk = pT

k
(
ZT

k Mfk Zk
)
pk + o

(‖pk‖2).

Theorem 3 Suppose that (A1)–(A7), the error bounds (10)–(12) and (23) hold. {xk} is a
sequence generated by Algorithm 1. Suppose furthermore that the strict complementarity
of the problem (1) holds. Then, for sufficiently large k, the stepsize αk ≡ 1 and there exists
�̂ > 0 such that �k ≥ �K ′ ≥ �̂, ∀k ≥ K ′, where K ′ is a large enough index.

Proof According to the algorithm, the stepsize αk is given in (15)

	k = min

{
–

aT
i xk – bi

aT
i pk

∣∣∣ –
aT

i xk – bi

aT
i pk

> 0, i = 1, 2, . . . , m
}

.

From p̂k = D– 1
2

k Apk and (17), there exists λmk+1 such that

aT
i pk =

(
aT

i pk – bi
) 1

2 p̂i
k = –

(aT
i pk – bi)λi

mk+1

vmk + |λi
mk+1

| , (35)

where p̂i
k and λi

mk+1
are the ith component of the vectors p̂k and λmk+1 , respectively.

If ‖pk‖ < �k , then vmk = 0. Since the strict complementarity of the problem (1) holds at
every limit point of {xk}, i.e., |λT

mk+1
j|+ |aT

j xk – bj| > 0, for all large k, λmk+1 = λN
mk+1

> 0 when
vmk = 0. So, λj

mk+1 = (λN
mk+1

)j > 0. From (35), it is clear that limk→∞ αk = 1.
If ‖pk‖ = �k → 0, then vmk+1 → ∞. From (35),

αk = –
aT

j x – bj

aT
j pk

≥ vmk + |λj
mk+1 |

|λj
mk+1 |

≥ vmk + |λj
mk+1 |

‖λj
mk+1‖∞

→ ∞.

From the above, we have found that if ‖gT
k hmk ‖ ≥ ε2 holds and �k → 0, we conclude

that limk→∞ αk = +∞, and limk→∞ θk = 1.
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Further, by the condition on the strictly feasible stepsize θk – 1 = O(‖pk‖), and
limk→∞ pk = 0, we have limk→∞ θk = 1.

We can obtain from above that limk→∞ 	k = +∞ when αk is given in (15) along pk . It
means that if αk is determined by (13b), αk ≡ 1 for sufficiently large k. Thus

f (xk + pk) = f (xk) + ∇f T
k pk +

1
2

pT
k Hfk pk + o

(‖pk‖2)
= f (xk) + κ1gT

k pk +
(

1
2

– κ1

)
gT

k pk + ∇f T
k pk – gT

k pk

+
1
2
(
gT

k pk + pT
k Hmk pk

)
+

1
2

pT
k (Hfk – Hmk )pk + o

(‖pk‖2). (36)

The error bound (11) shows us (gk – ∇fk)T pk = o(‖pk‖2). Hence we see from (36) that
f (xk + pk) ≤ f (xk) + κ1gT

k pk at the kth iteration.
Combining with the fact that pT

k AT D–1
k Cmk Apk → 0, we know that xk+1 = xk + pk . So

∣∣f (xk) – f (xk + pk) – m(xk) + m(xk + pk)
∣∣

=
∣∣∣∣
[

gT
k pk +

1
2

pT
k Mmk pk

]
–

[
∇f T

k pk +
1
2

pT
k Hfk pk + o

(‖pk‖2)]∣∣∣∣
=

∣∣∣∣(gk – ∇fk)T pk +
1
2

pT
k (Hmk – Hfk )pk + o

(‖pk‖2)∣∣∣∣
(10),(11)= o

(‖pk‖2).

By assumptions (A1)–(A7), we can obtain

ρk – 1 =
f (xk) – f (xk + pk) + m(xk) – m(xk + pk)

Pred(pk)

=
[gT

k pk + 1
2 pT

k Mmk pk] – [∇f (xk)T pk + 1
2 pT

k Hfk pk + o(‖pk‖2)]
Pred(pk)

=
o(‖pk‖2)
Pred(pk)

. (37)

By (16) and (17), we get

gT
k pk =

{[
gk

0

]
+

[
AT

–D
1
2
k

]
λmk+1

}T [
pk

p̂k

]

= –
[

pT
k , p̂T

k

]
(Mmk + vmk I)

[
pk

p̂k

]

≤ –
[

pT
k , p̂T

k

]
Mmk

[
pk

p̂k

]
.

Let the columns of Zk denote an orthogonal basis for the null space of [A –D
1
2
k

]. We get

gT
k pk ≤ –[pT

k , p̂T
k ]Mmk

[ pk
p̂k

]
= –pT

k ZT
k Mmk Zkpk . Therefore, from (33)–(34), we see that for
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all large k

gT
k pk ≤ –

�

2
‖pk‖2 + o

(‖pk‖2).

Hence, one has

Pred(pk) = –gT
k pk –

1
2

pT
k Mmk pk

= –gT
k pk –

1
2

pT
k
(
Hmk + AT D–1

k CkA
)
pk

= –gT
k pk –

1
2

pT
k Mfk pk + o

(‖pk‖2)
≥ �

4
‖pk‖2 + o

(‖pk‖2). (38)

For a similar proof, we can obtain pk → 0. Combining (37) with (38), one has the fact
that ρk → 1. Hence there exists �̂ > 0 such that when ‖pk‖ ≤ �̂, ρ̂k ≥ ρk ≥ η2, and �k+1 ≥
�k . As pk → 0, there exists an index K ′ such that ‖pk‖ ≤ �̂ whenever k ≥ K ′. Thus, the
conclusion holds. �

Theorem 3 implies that the local convergence rate of Algorithm 1 depends on the Hes-
sian at x∗ and the local convergence rate of pk . Meanwhile, if pk is a quasi-Newton step,
for sufficiently large k, the sequence {xk} will reach a superlinear local convergence rate to
the optimal point x∗.

4 Numerical experiments
We now demonstrate the experiment performance of the proposed derivative-free trust-
region method.

Environment: The algorithms are written in Matlab R2009a and run on a PC with
2.66 GHz Intel(R) Core(TM)2 Quad CPU and 4 G DDR2.

Initialization: The values �0 = 2, η0 = 0.25, η1 = 0.75, ζ = 0.5, ς = 1.5, ι = 0.5, β = 0.25,
α = 0.2, ε = 10–8 and ω = 0.3 are used. �max is equal to 4, 6, 8, respectively.

Termination criteria: ‖gT
k hmk ‖ ≤ ε.

Problems: We first test 20 linear inequality constrained optimization problems (listed
in Table 1) from Test Examples for Nonlinear Programming Codes [15, 16]. It is worth
noting that the assumptions (A2)–(A5) play very important roles in the theoretical proof.
Here (A2) is a general assumption in the optimization problem and (A5) can be satisfied

Table 1 Test problems

No. Problem Dim x0

1 HS21 2 [–1, –1]
3 HS25 3 [100, 12.5, 3]
5 HS36 3 [10, 10, 10]
7 HS44 4 [0, 0, 0, 0]
9 HS76 4 [0.5, 0.5, 0.5, 0.5]
11 HS231 2 [–1.2, 1]
13 HS224 2 [0.1, 0.1]
15 HS250 3 [10, 10, 10]
17 HS253 3 [0, 2, 0]
19 HS331 2 [0.5, 0.1]

No. Problem Dim x0

2 HS24 2 [1, 0.5]
4 HS35 3 [0.5, 0.5, 0.5]
6 HS37 3 [10, 10, 10]
8 HS45 5 [2, 2, 2, 2, 2]
10 HS224 2 [0.1, 0.1]
12 HS232 2 [2, 0.5]
14 HS232 2 [2, 0.5]
16 HS251 3 [10, 10, 10]
18 HS268 5 [1, 1, . . . , 1]
20 HS340 3 [1, 1, 1]
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if the iteration points are not optimal. According to the definitions of error bounds in
our algorithm, the gradient (or Hessian) of the model function must be bounded if there
exists a constant such that the gradient (or Hessian) norm of the objective function is
bounded. Therefore, most of the above test problems satisfy the assumptions (A2)–(A5).
For example (HS21)

min f (x) = 0.01x2
1 + x2

2 – 100

s.t. 10x1 – x2 – 10 ≥ 0,

2 ≤ x1 ≤ 50,

– 50 ≤ x2 ≤ 50;

∥∥∇f (x)
∥∥ =

∥∥∥∥∥
[

0.02x1

2x2

]∥∥∥∥∥ ≤ 980.0005,
∥∥∇2f (x)

∥∥ =

∥∥∥∥∥
[

0.02 0
0 2

]∥∥∥∥∥ = 2.

Of course, we will use the level set to limit the bound of ‖∇f (x)‖ during program execu-
tion, which will be much smaller than this value. Even if the boundedness of the gradient
and of the Hessian of the objective functions cannot be satisfied at the same time, at least
the boundedness within the level set can be guaranteed.

We use the tool of Dolan and Moré [17] to analyze the efficiency of the given algorithm.
Figures 1 and 2 show that Algorithm 1 is feasible and has the robust property.

Furthermore we test five simple linear inequality constrained optimization problems
from [16] and compare the experiment results of different trust-region radius upper bound

Figure 1 The total iteration number performance
of Algorithm 1

Figure 2 The CPU time performance of
Algorithm 1
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Table 2 Experiment results on linear inequality constrained optimization problems

Problem name Results

�max = 4 �max = 6 �max = 8

n nf CPUt nf CPUt nf CPUt

HS224 2 26 5.187 23 3.35 23 3.35
HS231 2 16 2.025 18 4.018 F F
HS232 2 8 2.387 23 2.455 F F
HS250 3 12 55 17 73 16 61
HS251 3 35 3.036 32 2.022 37 2.332

�max. Table 2 shows the experiment results, where nf represents the number of function
evaluations, n is the dimension of the test problems and F means the algorithm terminated
in the case that the iteration number exceeds the maximum number. The CPU times of
the test problems are reported. Table 2 indicates that Algorithm 1 is executable to reach
optimal point. The choice of �max = 6 is made to enable us to carry out more gratifying
results. But the results show that the number of iterations maybe higher than any other
derivative-based algorithms. The reason we think is that the derivatives of most of the test
problems we chose are available and a derivative-free technique may increase the number
of executions; then higher iteration numbers are necessary.

5 Conclusions
In this paper, we propose an affine-scaling derivative-free method for linear inequality
constrained optimizations.

(1) This algorithm is mainly designed to solve the unavailable derivatives optimization
problems in engineering. The proposed algorithm adopts interior backtracking
technique and possesses the trust-region property.

(2) The global convergence is proved by using the definition of fully quadratic. It shows
that the iteration points generated by the proposed algorithm could converge to the
optimal points of (1). Meanwhile, we get the result that the local convergence rate of
the proposed algorithm depends on pk . If pk becomes the quasi-Newton step, then
the sequence xk generated by the algorithm converges to x∗ superlinearly.

(3) The preliminary numerical experiments verify the new algorithm we proposed is
feasible and effective for solving unavailable-derivative linear inequality constrained
optimization problems.
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