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Abstract
In this paper, new bounds for the exponential function with cotangent are found by
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1 Introduction
In 1978, Becker and Stark [1] proved the double inequality

8
π2 – 4x2 <

tan x
x

<
π2

π2 – 4x2

or

–
4x2

π2 < x cot x – 1 <
(π2 – 8) – 4x2

8

holds for all x ∈ (0,π/2). Since then, many inequalities for cotangent function were estab-
lished by different ideas and methods; see e.g. [2–18]. Very recently, Lv, Yang, Luo, and
Zheng [19] gave a new type of bounds for the function exp(x cot x – 1). More precisely,
they proved the following results.

Theorem A Let p, q ∈ (–∞, 4/π2], p∗ ≈ 0.13484 be the unique zero of the function
αp(π/2) – 1 on (–∞, 4/π2), where αp(x) = exp(x cot x – 1)/(1 – px2)1/(3p) if p �= 0 and α0(x) =
exp(x cot x – 1 + x2/3). Then the double inequality

(
1 – px2)1/(3p) < ex cot x–1

<
(
1 – qx2)1/(3q) (1.1)

holds for all x ∈ (0,π/2) if and only if p ≥ p∗ and q ≤ 2/15 ≈ 0.13333.
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Theorem B For x ∈ (0,π/2), the double inequality

(
1 –

4
3π2 x2

)π2/4

< ex cot x–1 <
(

1 –
2

15
x2

)5/2

(1.2)

holds.

Throughout the full text, we suppose that

p3 =
32(30 – π2)

15π6 ≈ 0.04467,

p2 =
4

70,875
≈ 5.6437 × 10–5,

p1 =
64(1 – π2/30 – e–2/5)

π6 ≈ 4.6143 × 10–5,

p0 ≈ 3.799533 × 10–5,

(1.3)

where p0 is the unique zero of the function

h(p) = ln

(
1 –

π2

30
–

π6

64
p
)

–
8(45π4p + 32)

15π6p + 32π2 – 960
(1.4)

on (0, p2).
Now considering the asymptotic expansion of (ex cot x–1)2/5, we have

(
ex cot x–1)2/5 = 1 –

2
15

x2 –
4

70,875
x6 +

2
1,063,125

x8 + O
(
x10).

It is interesting that the power series above has not item of x4, which also remind us to
establish a more accurate estimate for exp(x cot x – 1). The first aim of this paper is to
determine the best parameters p and q such that the double inequality

(
1 –

2
15

x2 – px6
)5/2

< ex cot x–1 <
(

1 –
2

15
x2 – qx6

)5/2

holds for all x ∈ (0,π/2). The main conclusions of this paper are proved by the recursive
method and a new criterion for the monotonicity of the quotient of two power series.
The following result is a theorem on the recurrence relation of coefficients in the series
expansion of the function ln(1 – 2x2/15 – px6).

Theorem 1 Let 0 < p < p3 and x ∈ (0,π/2). Then the function f (x) = ln(1 – 2x2/15 – px6)
can be expressed in the form of a series,

ln

(
1 –

2
15

x2 – px6
)

= –
∞∑

n=1

anx2n, (1.5)

where

a1 =
2

15
, a2 =

2
225

, a3 = p +
8

10,125
, (1.6)
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and, for n ≥ 3,

an+1 =
2n

15(n + 1)
an + p

n – 2
n + 1

an–2. (1.7)

Moreover, an > 0 for all n ≥ 1.

Our main results are contained in the following theorems.

Theorem 2 Let 0 < p < p3 and x ∈ (0,π/2).
(i) If p2 ≤ p < p3, then the function

x 	→ ln(1 – 2x2/15 – px6)
x cot x – 1

:=
f (x)
g(x)

is strictly increasing on (0,π/2), and therefore the double inequality

(
1 –

2
15

x2 – px6
)5/2

< ex cot x–1 <
(

1 –
2

15
x2 – px6

)1/λp

(1.8)

holds, where

λp = – ln

(
1 –

π2

30
–

π6

64
p
)

.

(ii) If p0 < p < p2, then there is an x0 ∈ (0,π/2) such that the function f /g is strictly
decreasing on (0, x0) and strictly increasing on (x0,π/2). Consequently, the inequality

ex cot x–1 <
(

1 –
2

15
x2 – px6

)1/θp

(1.9)

holds, where θp = max(2/5,λp). In particular, we have

ex cot x–1 <
(

1 –
2

15
x2 – px6

)5/2

for p0 < p ≤ p1, (1.10)

ex cot x–1 <
(

1 –
2

15
x2 – px6

)1/λp

for p1 < p < p2. (1.11)

(iii) If 0 < p < p0, then the function f /g is strictly decreasing on (0,π/2), and therefore the
double inequality (1.8) is reversed.

As a consequence of Theorem 2, we immediately get the following.

Theorem 3 Let p2 ≤ p < p3 and p0 < q ≤ p1. Then the double inequality

(
1 –

2
15

x2 – px6
)5/2

< ex cot x–1 <
(

1 –
2

15
x2 – qx6

)5/2

(1.12)
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holds for all x ∈ (0,π/2) with the best coefficients p = p2 and q = p1. In particular, we
have

(
1 –

2
15

x2 –
4

70,875
x6

)5/2

< ex cot x–1 <
(

1 –
2

15
x2 –

64(1 – π2/30 – e–2/5)
π6 x6

)5/2

for all x ∈ (0,π/2).

The second aim of this paper is to refine some known results presented in [19], we shall
state it carefully in the fifth section.

2 Lemmas
In this paper, we will use some methods, such as the monotone form of l’Hospital’s rule,
an important criterion for the monotonicity of the quotient of two power series, and the
latest promotion of the latter.

Lemma 1 ([20, 21]) For –∞ < a < b < ∞, let f , g : [a, b] → R be continuous functions that
are differentiable on (a, b), with f (a) = g(a) = 0 or f (b) = g(b) = 0. Assume that g ′(x) �= 0 for
each x in (a, b). If f ′/g ′ is increasing (decreasing) on (a, b), then so is f /g .

Lemma 2 ([22–24]) Let A(t) =
∑∞

k=0 aktk and B(t) =
∑∞

k=0 bktk be two real power series
converging on (–r, r) (r > 0) with bk > 0 for all k. If the sequence {ak/bk} is increasing (de-
creasing) for all k, then the function t 	→ A(t)/B(t) is also increasing (decreasing) on (0, r).

Now, we will introduce a useful auxiliary function Hf ,g . For –∞ ≤ a < b ≤ ∞, let f and
g be differentiable on (a, b) and g ′ �= 0 on (a, b). Then the function Hf ,g is defined by

Hf ,g :=
f ′

g ′ g – f . (2.1)

The function Hf ,g has some good properties [25, Property 1] and plays an important role
in the proof of a monotonicity criterion for the quotient of power series (see [26]).

Lemma 3 ([26, Theorem 1]) Let A(t) =
∑∞

k=0 aktk and B(t) =
∑∞

k=0 bktk be two real power
series converging on (–r, r) and bk > 0 for all k. Suppose that for certain m ∈ N, the non-
constant sequence {ak/bk} is increasing (resp. decreasing) for 0 ≤ k ≤ m and decreasing
(resp. increasing) for k ≥ m. Then the function A/B is strictly increasing (resp. decreasing)
on (0, r) if and only if HA,B(r–) ≥ (resp. ≤) 0. Moreover, if HA,B(r–) < (resp. >) 0, then there
exists t0 ∈ (0, r) such that the function A/B is strictly increasing (resp. decreasing) on (0, t0)
and strictly decreasing (resp. increasing) on (t0, r).

Lemma 4 ([27]) For n ∈ N , the Bernoulli numbers satisfy

1
(2π )2

2n(2n – 1)(22n–3 – 1)
22n–3 <

|B2n|
|B2n–2| <

1
(2π )2

2n(2n – 1)22n–1

22n–1 – 1
. (2.2)

Lemma 5 For 0 < p < p2 = 4/70,875, let h(p) be defined by (1.4). Then h(p) has a unique
zero p0 ≈ 3.799533 × 10–5 such that h(p) < 0 for p ∈ (0, p0) and h(p) > 0 for p ∈ (p0, p2).
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Proof Differentiation yields

h′(p) = 15π4 15π8p + 32π4 – 1472π2 + 23,040
(15π6p + 32π2 – 960)2 > 0,

which together with the facts that

h
(
0+)

= ln

(
1 –

π2

30

)
–

8
π2 – 30

≈ –0.0015575 < 0,

h(p2) = h
(

4
70,875

)
= ln

(
1 –

π2

30
–

π6

11,340,000

)
–

24π4 + 3,024,000
378,000π2 + π6 – 11,340,000

≈ 0.0007572 > 0,

reveals that there is a unique p0 ∈ (0, p2) such that h(p) < 0 for p ∈ (0, p0) and h(p) > 0
for p ∈ (p0, p2). Numerically, the equation h(p) = 0 for p on (0, p2) has the solution p0 ≈
3.799533 × 10–5. This completes the proof. �

3 Proof of Theorem 1

Proof Since 0 < p < p3 and x ∈ (0,π/2), we see that

0 <
2

15
x2 + px6 < 1,

which shows that

ln

(
1 –

2
15

x2 – px6
)

= –
∞∑

n=1

1
n

(
2

15
x2 + px6

)n

:= –
∞∑

n=1

anx2n (3.1)

holds for all x ∈ (0,π/2). It remains to determine the coefficients an. Differentiation for the
two sides of (3.1) gives

90px5 + 4x
15px6 + 2x2 – 15

= –
∞∑

n=1

2nanx2n–1,

which is equivalent to

45px4 + 2 = –
(
15px6 + 2x2 – 15

) ∞∑

n=1

nanx2n–2

= 15a1 + (30a2 – 2a1)x2 + (45a3 – 4a2)x4

+
∞∑

n=3

[
15(n + 1)an+1 – 15p(n – 1)an–2 – 2nan

]
x2n.

Comparing coefficients gives the recurrence formulas (1.7) and (1.6).
From the second equality of (3.1) we easily find that an > 0 for all n ≥ 1, which completes

the proof. �
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4 Proofs of Theorems 2 and 3

Proof of Theorem 2 Using the expansion

g(x) = x cot x – 1 = –
∞∑

n=1

22n

(2n)!
|B2n|x2n, |x| < π ,

the function f /g can be expressed as

f (x)
g(x)

=
ln(1 – 2x2/15 – px6)

x cot x – 1
=

–
∑∞

n=1 anx2n

–
∑∞

n=1
22n
(2n)! |B2n|x2n

:=
∑∞

n=1 antn
∑∞

n=1 bntn

by Theorem 1, where x2 = t. We now observe the monotonicity of the sequence {an/bn}n≥1.
Since bn > 0 for all n ≥ 1, it suffices to determine the sign of cn := an+1 – (bn+1/bn)an. Direct
computations yield

c1 = a2 –
b2

b1
a1 = 0,

c2 = a3 –
b3

b2
a2 = p –

4
70,875

.

We claim that cn > 0 for n ≥ 3. In fact, by means of the recurrence formula (1.7), we have

cn = an+1 –
bn+1

bn
an

= an+1 –
2

(n + 1)(2n + 1)
|B2n+2|
|B2n| an

=
2

n + 1

(
n
15

–
1

2n + 1
|B2n+2|
|B2n|

)
an + p

n – 2
n + 1

an–2.

Clearly, if we prove

dn =
n
15

–
1

2n + 1
|B2n+2|
|B2n| > 0

for n ≥ 3, then it follows that cn > 0. Using the right hand side of (2.2) we have

dn >
n
15

–
1

2n + 1
1

(2π )2
2(n + 1)(2n + 1)22n+1

22n+1 – 1

>
n
15

–
1

2n + 1
(n + 1)(2n + 1)

4 × 19/2
22n – 1

22n+1 – 1

=
1

285
(8n – 30)22n – 19n

22n+1 – 1
> 0

for n ≥ 4. This together with d3 = 0 yields dn ≥ 0 for n ≥ 3.
(i) If p2 ≤ p < p3, then cn = an+1 – (bn+1/bn)an > 0 for n ≥ 1, that is, the sequence

{an/bn}n≥1 is strictly increasing, so is f /g on (0,π/2) by Lemma 2. Therefore, we
conclude that

2
5

= lim
x→0+

f (x)
g(x)

<
f (x)
g(x)

< lim
x→(π/2)–

f (x)
g(x)

= – ln

(
1 –

π2

30
–

π6

64
p
)

= λp,

which implies (1.8).



Zhu Journal of Inequalities and Applications  (2018) 2018:106 Page 7 of 13

(ii) If 0 < p < p2, then c1 = 0, c2 < 0 and cn > 0 for n ≥ 3, which indicates that the
sequence {an/bn} is decreasing for n = 1, 2, 3 and increasing for n ≥ 3. By Lemma 3,
to determine the monotonicity of f /g on (0,π/2), we have to observe the sign of
H–f (

√
t),–g(

√
t)((π2/4)–). A simple computation leads us to

H–f (
√

t),–g(
√

t)

((
π2

4

)–)
= lim

t→(π2/4)–

[
–f ′(

√
t)

–g ′(
√

t)
(
–g(

√
t)

)
+ f (

√
t)

]

= ln

(
1 –

π2

30
–

π6

64
p
)

–
8(45π4p + 32)

15π6p + 32π2 – 960
= h(p).

Subcase 2.1: For p0 < p < p1. By Lemma 5 we see that H–f (
√

t),–g(
√

t)((π2/4)–) > 0. It follows
from Lemma 3 that there is an t0 ∈ (0,π2/4) such that the function –f (

√
t)/(–g(

√
t)) is

strictly decreasing on (0, t0) and strictly increasing on (t0,π/2), where t = x2. Consequently,
we obtain

f (x)
g(x)

< max

(
lim

x→0+

f (x)
g(x)

, lim
x→(π/2)–

f (x)
g(x)

)
= max

(
2
5

,λp

)
,

which implies (1.9).
In particular, if λp ≤ 2/5, that is, p ∈ (0, p0], then the inequality (1.10) holds. If λp > 2/5,

that is, p ∈ (p0, p1), then the inequality (1.11) holds.
Subcase 2.2: For 0 < p ≤ p0. By Lemma 5 we see that H–f (

√
t),–g(

√
t)((π2/4)–) ≤ 0. From

Lemma 3 it is deduced that f /g is strictly decreasing on (0,π/2), and so the inequalities
(1.8) reverse. This completes the proof. �

Proof of Theorems 3 Let

H(p, x) =
(

1 –
2

15
x2 – px6

)5/2

, 0 < x <
π

2
, 0 < p < p3.

Since

∂

∂p
H(p, x) = –

5
2

x6
(

1 –
2

15
x2 – px6

)3/2

< 0,

we find that the function H(p, x) is decreasing with respect to p on (0, p3). Then by the left
hand side of (1.8) and by (1.10) we can complete the proof of Theorem 3. �

5 Consequences and remarks
Remark 1 One can obtain the double inequality (1.12) using the key theorem of Wu and
Debnath [28].

Let p → 0+ in (iii) of Theorem 2. Then we have the following.

Corollary 1 The function

x 	→ F2/15(x) =
ln(1 – 2x2/15)

x cot x – 1
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is strictly decreasing on (0,π/2), and therefore, the inequalities

α

(
1 –

2
15

x2
)5/2

<
(

1 –
2

15
x2

)1/λ0

< exp(x cot x – 1) <
(

1 –
2

15
x2

)5/2

(5.1)

hold for x ∈ (0,π/2), where

λ0 = – ln

(
1 –

π2

30

)
≈ 0.39897,

α = e–1(1 – π2/30
)–5/2 ≈ 0.99742,

are the best constants.

Proof It suffices to show the first inequality in (5.1). Consider the monotonicity of the
function

K(x) =
(

1 –
2

15
x2

)1/λ0–5/2

on (0,π/2). Since

K ′(x) =
(

1
λ0

–
5
2

)(
–

4
15

x
)(

1 –
2

15
x2

)1/λ0–7/2

< 0

holds for all x ∈ (0,π/2), we see that the function K(x) is decreasing on (0,π/2). So

K(x) > K
(
(π/2)–)

= e–1(1 – π2/30
)–5/2 = α,

which completes the proof of Corollary 1. �

Theorem 4 Let 0 < p ≤ 4/π2. Then the function

x 	→ Fp(x) =
ln(1 – px2)
x cot x – 1

(5.2)

is strictly decreasing on (0,π/2) if and only if 0 < p ≤ 2/15. And therefore, for 0 < p ≤ 2/15,
the double inequality

(
1 – px2)1/βp < ex cot x–1 <

(
1 – px2)1/(3p) (5.3)

holds for x ∈ (0,π/2), where βp = – ln(1 – pπ2/4).

Proof The necessity follows from

lim
x→0+

F ′
p(x)
x

=
1
5

p(15p – 2) ≤ 0.

To prove the sufficiency, we note that

ln(1 – px2)
x cot x – 1

=
ln(1 – 2x2/15)

x cot x – 1
× ln(1 – px2)

ln(1 – 2x2/15)
:= f1(x) × f2(x),
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where f1 is positive and decreasing on (0,π/2) by Corollary 1, it thus suffices to prove the
function f2 is positive and decreasing on (0,π/2). A simple computation gives

[ln(1 – px2)]′

[ln(1 – 2x2/15)]′
=

1
2

p
15 – 2x2

1 – px2 ,

(
1
2

p
15 – 2x2

1 – px2

)′
= 15px

p – 2/15
(px2 – 1)2 < 0,

which indicates that f2 is strictly decreasing on (0,π/2) by Lemma 1. Meanwhile f2(x) is
obviously positive for p ∈ (0, 2/15], which proves the sufficiency.

Inequalities (5.3) follow from the decreasing property of the function Fp(x).
The proof is finished. �

Remark 2 It is easy to check that, for 0 < p ≤ 2/15 and x ∈ (0,π/2),

(
1 – px2)1/βp > αp

(
1 – px2)1/(3p), (5.4)

where αp = e–1(1 – π2p/4)–1/(3p), βp = – ln(1 – pπ2/4). In fact, we have

ln(1 – px2)
βp

– lnαp –
1

3p
ln

(
1 – px2)

=
ln(1 – px2)

– ln(1 – pπ2/4)
+ 1 +

1
3p

ln
(
1 – pπ2/4

)
–

1
3p

ln
(
1 – px2)

=
1

ln(1 – pπ2/4)
ln

1 – pπ2/4
1 – px2 +

1
3p

ln
1 – pπ2/4

1 – px2

=
[

1 –
ln(1 – px2)

ln(1 – pπ2/4)

][
1 +

ln(1 – pπ2/4)
3p

]
.

Due to x ∈ (0,π/2), the first factor is positive. And, since p 	→ 1 + (ln(1 – pπ2/4))/(3p) is
decreasing in p, it follows that, for 0 < p ≤ 2/15,

(
1 +

ln(1 – pπ2/4)
3p

)
>

5
2

ln

(
1 –

π2

30

)
+ 1 ≈ 0.0025838 > 0.

These imply that the inequality (5.4) holds. It thus can be seen that the above theorem
partly refines Lv et al.’s result [19].

Remark 3 We claim that the lower bound in the double inequality (5.3) is strictly increas-
ing with respect to the parameter p. In fact, put

ln
(
1 – px2)1/βp =

ln(1 – px2)
– ln(1 – pπ2/4)

:=
h1(p)
h2(p)

with h1(0+) = h2(0+) = 0, then differentiation yields

h′
1(p)

h′
2(p)

=
d

dp ln(1 – px2)

– d
dp ln(1 – pπ2/4)

= –
x2

π2
4 – π2p
1 – px2 ,
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(
h′

1(p)
h′

2(p)

)′
=

x2

π2
π2 – 4x2

(1 – px2)2 > 0,

which indicates that h1/h2 is increasing in p by Lemma 1.

Remark 4 Taking p = 0+, 1/π2, and 2/15 in Theorem 4. Using the monotonicity of the
lower and upper bounds in (5.3), we can obtain

e–4x2/π2
<

(
1 –

x2

π2

)1/ ln(4/3)

<
(

1 –
2

15
x2

)1/β2/15

< ex cot x–1

<
(

1 –
2

15
x2

)5/2

<
(

1 –
x2

π2

)π2/3

< e–x2/3,

where β2/15 = – ln(1 – π2/30) ≈ 0.39897. This shows that our double inequality (5.3) is a
generalization and refinement of the one (1.2) (see [19]).

The following theorem gives a sufficient condition for the function Fp(x) to be increasing
on (0,π/2).

Theorem 5 The function Fp(x) defined by (5.2) is strictly increasing on (0,π/2) if 1/7 ≤
p ≤ 4/π2. And therefore, for 1/7 ≤ p ≤ 4/π2, the double inequality (5.3) is reversed.

Proof We have

Fp(x) =
– ln(1 – px2)
–(x cot x – 1)

=
∑∞

n=1
pn

n x2n

∑∞
n=1

22n
(2n)! |B2n|x2n

:=
∑∞

n=1 a′
nx2n

∑∞
n=1 b′

nx2n ,

c′
n = a′

n+1 –
b′

n+1
b′

n
a′

n

=
pn+1

n + 1
–

2
(n + 1)(2n + 1)

|B2n+2|
|B2n|

pn

n

=
pn

n + 1

(
p –

2
n(2n + 1)

|B2n+2|
|B2n|

)
:=

pn

n + 1
(p – un).

If we prove (p – un) ≥ 0 for n ≥ 1, then by Lemma 2 Fp is increasing on (0,π/2), and the
reverse of double inequality (5.3) follows. Using the right hand side of (2.2) we have

p – un ≥ 1
7

–
2

n(2n + 1)
1

(2π )2
2(n + 1)(2n + 1)22n+1

22n+1 – 1

=
1

7π2
((π2 – 7)n – 7)22n+1 – π2n

n(22n+1 – 1)
> 0

for n ≥ 3. This together with p–u1 = p–2/15 > 0 and p–u2 = p–1/7 ≥ 0 yields (p–un) ≥ 0
for n ≥ 1.

This completes the proof. �

Remark 5 Likewise, taking p = 1/7, 1/3, 4/π2 in the above theorem, we have

(
1 –

4x2

π2

)π2/12

< 1 –
x2

3
<

(
1 –

x2

7

)7/3

< ex cot x–1
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<
(

1 –
x2

7

)1/β1/7

<
(

1 –
x2

3

)1/β1/3

,

where β1/7 = – ln(1 – π2/28) ≈ 0.43461, β1/3 = – ln(1 – π2/12) ≈ 1.7286.

Finally, we consider the monotonicity of the function Fp(x) on (0,π ). In this case, we
have to assume that 0 < p ≤ 1/π2.

Theorem 6 Let 0 < p ≤ 1/π2. Then the function Fp(x) defined by (5.2) is strictly decreasing
on (0,π ). And therefore, the inequality

ex cot x–1 <
(
1 – px2)1/(3p)

holds for all x ∈ (0,π ).

Proof From Lemma 2 and the proof of the previous theorem, it suffices to prove p – un ≤ 0
for n ≥ 1 and 0 < p ≤ 1/π2. Using the left hand side of (2.2) we get

p – un = p –
2

n(2n + 1)
|B2n+2|
|B2n|

≤ 1
π2 –

2
n(2n + 1)

1
(2π )2

2(n + 1)(2n + 1)(22n–1 – 1)
22n–1

= –
22n – 2n – 2

22nπ2n
≤ 0

for n ≥ 1, which, by Lemma 2, proves the decreasing property of Fp. �

Remark 6 Let p = p1 = 32(30 –π2 – 30e–2/5)/(15π6) ≈ 4.6143×10–5 in Theorem 3, we can
obtain

ex cot x–1 <
(

1 –
2

15
x2 – p1x6

)5/2

, 0 < x <
π

2
,

which is sharper than the right hand side of (1.2):

ex cot x–1 <
(

1 –
2

15
x2

)5/2

, 0 < x <
π

2
.

Remark 7 Let p = p2 = 4/70,875 in Theorem 2 or Theorem 3, we can obtain

(
1 –

2
15

x2 –
4

70,875
x6

)5/2

< ex cot x–1, 0 < x <
π

2
.

Comparing the inequality above with the left hand side of (1.2), we find that they are not
included in each other.

6 Conclusions
In the present study, we first obtain some new bounds for the exponential function with
cotangent by using the recurrence relation between coefficients in the expansion of power
series of the function ln(1 – 2x2/15 – px6) and a new criterion for the monotonicity of the
quotient of two power series. Then we refine some well-known results presented in [19].
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