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Abstract
We consider a kind of nonsmooth optimization problems with l1-norm minimization,
which has many applications in compressed sensing, signal reconstruction, and the
related engineering problems. Using smoothing approximate techniques, this kind of
nonsmooth optimization problem can be transformed into a general unconstrained
optimization problem, which can be solved by the proposed smoothing modified
three-term conjugate gradient method. The smoothing modified three-term
conjugate gradient method is based on Polak–Ribière–Polyak conjugate gradient
method. For the Polak–Ribière–Polyak conjugate gradient method has good
numerical properties, the proposed method possesses the sufficient descent
property without any line searches, and it is also proved to be globally convergent.
Finally, the numerical experiments show the efficiency of the proposed method.
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1 Introduction
In this paper, we consider the following nonsmooth optimization problems with l1-norm
minimization problem

min
x∈Rn

1
2
‖Ax – b‖2

2 + τ‖x‖1, (1)

where x ∈ Rn, A ∈ Rm×n (m � n), b ∈ Rm, τ > 0, ‖v‖2 denotes the Euclidean norm of v and
‖v‖1 =

∑n
i=1 |vi| is the l1-norm of v. This problem is widely used in compressed sensing,

signal reconstruction, analog-to-information conversion and related to many mathemati-
cal problems [1–16]. Problem (1) is also a typical compressed sensing scenario, which can
reconstruct a length-n sparse signal from m observations. From the Bayesian perspective,
problem (1) can also be seen as a maximum a posteriori criterion for estimating x from ob-
servations b = Ax+ω, where ω is the Gaussian noise of variance σ 2. Many researchers have
studied the numerical algorithms, which can be used to solve problem (1) with large-scale
data such as fixed point method [1], gradient projection method for sparse reconstruction
[2], interior-point continuation method [3, 4], iterative shrinkage thresholds algorithms in
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[5, 6], linearized Bregman method [7, 8], alternating direction algorithms [9], nonsmooth
equations-based method [10] and some related methods [11, 12]. Just recently, a smooth-
ing gradient method has been given for solving problem (1) based on the new transformed
absolute value equations in [14, 15]. The transformation is based on the equivalence be-
tween a linear complementarity problem and an absolute value equation problem [17,
18]. The complementarity problem, the absolute value equation problem, and the related
constrained optimization problem are three kinds of important optimization problems
[19–23]. On the other hand, the nonlinear conjugate gradient methods and smoothing
methods are used widely to solve large-scale optimization problems [24, 25], total varia-
tion image restoration [26], monotone nonlinear equations with convex constraints [27],
and nonsmooth optimization problems, such as nonsmooth nonconvex problems [28],
minimax problem [29], P0 nonlinear complementarity problems [30]. Specially, the effec-
tiveness of widely used and attained different numerical outcomes three-term conjugate
gradient method, which is based on Hang–Zhang conjugate gradient method and Polak–
Ribière–Polyak conjugate gradient method [31–33], has been widely studied. Based on the
above analysis, in this paper, we propose a new smoothing modified three-term conjugate
gradient method to solve problem (1). The global convergence analysis of the proposed
method is also presented.

The remainder of this paper is organized as follows. In Sect. 2, we give the transfor-
mation of problem (1), which includes the transformation of a linear complementarity
problem transformed into an absolute value equation problem. In Sect. 3, we present
the smoothing modified three-term conjugate gradient method and give the convergence
analysis of it. Finally, we give some numerical results of the given method which show the
effectiveness of it.

2 Results: the transformation of the problem
In this section, as in [9, 10, 14, 15], we set

x = u – v, u ≥ 0, v ≥ 0,

where ui = (xi)+ and vi = (–xi)+ for all i = 1, 2, . . . , n with (xi)+ = max{xi, 0}. And we also
have ‖x‖1 = 1T

n u + 1T
n v, where 1n = [1, 1, . . . , 1]T is an n-dimensional vector with n ones.

Thus, problem (1) can be transformed into the following problem:

min
z=(u,v)T ≥0

1
2
‖b – Az‖2

2 + τ1T
n u + τ1T

n v,

i.e.,

min
z≥0

1
2

zT Hz + cT z, (2)

where

z = (u, v)T , c = τ12n +

(
–c–

c–

)

, c = AT b, H =

(
AT A –AT A

–AT A AT A

)

.
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Since H is a positive semi-definite matrix, problem (2) can be translated into a linear vari-
able inequality problem, which is to find z ∈ R2n such that

〈Hz + c, z̃ – z〉 ≥ 0, ∀z̃ ≥ 0. (3)

By the feasible structure of the feasible region of z, problem (3) is equivalent to the linear
complementary problem, which to find z ∈ R2n such that

z ≥ 0, Hz + c ≥ 0, zT (Hz + c) = 0. (4)

Due to the equivalence of linear complementarity problems and absolute value equation
problems, problem (4) can be transformed into the following absolute value equation
problem, which is defined by

(H + I)z + c =
∣
∣(H – I)z + c

∣
∣.

Then problem (1) can be transformed into the following problem:

min
z∈R2n

f (z) =
1
2
∥
∥(H + I)z + c –

∣
∣(H – I)z + c

∣
∣
∥
∥2. (5)

3 Main results and discussions
In this section, we present the smoothing modified three-term conjugate gradient method
to solve problem (1). Firstly, we give the definition of smoothing function and smoothing
approximation function of the absolute value function [14, 15, 29].

Definition 1 Let f : Rn → R be a local Lipschitz continuous function. We call f̃ : Rn ×
R+ → R a smoothing function of f , if

lim
μ→0

f̃ (x) = f (x),

where fμ(·) is continuously differentiable in Rn for any fixed μ > 0.

The smoothing function of the absolute value function is defined by

�iμ(z) =
√(

(H – I)z + c
)2

i + μ2, μ ∈ R+, i = 1, 2, . . . , 2n, (6)

and satisfies

lim
μ→0

�iμ(z) =
∣
∣
(
(H – I)z + c

)
i

∣
∣, i = 1, 2, . . . , 2n.

Based on (6), we obtain the following unconstrained optimization problem:

min
z∈R2n

f̄μ(z) =
1
2

2n∑

i=1

f̄ 2
iμ(z),

where f̄iμ(z) = ((H + I)z +c)i –�iμ(z) is a smoothing function of f (z) in (5) for i = 1, 2, . . . , 2n.
Now, we give the smoothing modified three-term conjugate gradient method.
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Algorithm 1 (Smoothing modified three-term conjugate gradient method)
Step 0. Choose 0 < σ < 1, 0 < ρ < 1, r > 0, μ = 2, η = 1, ε > 0, μ0 > 1 and, given an initial

point z0 ∈ Rn, let d0 = –g̃0, where g̃0 = ∇zf̃ (z0,μ0).
Step 1. If ‖∇zf̃ ‖ ≤ ε, stop; otherwise, go to Step 2.
Step 2. Compute search direction by using β̃BZAU

k and θ̃BZAU
k , which are defined by

β̃BZAU
k =

∇Zf̃μ(zk)T (∇Zf̃μ(zk) – ∇Zf̃μ(zk–1))
–η∇Zf̃μ(zk–1)T dk–1 + μ|∇Zf̃μ(zk)T dk–1|

, (7)

θ̃BZAU
k =

∇Zf̃μ(zk)T dk–1

–η∇Zf̃μ(zk–1)T dk–1 + μ|∇Zf̃μ(zk)T dk–1|
, (8)

dk =

{
–∇Zf̃μ(zk) if k = 0,
–∇Zf̃μ(zk) + β̃BZAU

k dk–1 – θ̃BZAU
k yk–1 if k ≥ 1,

where yk–1 = ∇Zf̃μ(zk) – ∇Zf̃μ(zk–1).
Step 3. Compute αk by the Armijo line search, where αk = max{ρ0,ρ1,ρ2, . . .} and ρ i

satisfies

f̃
(
zk + ρ idk ,μk

) ≤ f̃ (zk ,μk) + σρ i∇Zf̃μ(zk)T dk . (9)

Step 4. Compute zk+1 = zk + αkdk , if ‖∇zf̄ (zk+1,μk)‖ ≥ rμk , set μk+1 = μk . Otherwise, let
μk+1 = σμk .

Step 5. Set k := k + 1 and go to Step 1.

Now, we give convergence analysis of Algorithm 1. In order to get the global convergence
of Algorithm 1, we give the following assumptions.

Assumption 1
(i) The level set � = {z ∈ R2n|f̃μ(z) ≤ f̃μ(z0)} is bounded.

(ii) There exists a positive constant L > 0 such that ∇Zf̃μ(zk) is Lipschitz continuous on
an open convex set B ⊆ � and for any z1, z2 ∈ B, i.e.,

∥
∥∇Zf̃μ(z1) – ∇Zf̃μ(z2)

∥
∥ ≤ L

∥
∥z1 – z2

∥
∥.

(iii) There exists a positive constant m such that

m‖dx‖2 ≤ dT∇2
z f̃μ(zk)dk , ∀x, d ∈ Rn,

where ∇2
z f̃μ(zk) is the Hessian matrix of f̃ .

By Assumption 1, we can see that there exist positive constants γ > 0 and b such that

∥
∥∇Zf̃μ(zk)

∥
∥ ≤ γ , ∀zk ∈ �

and

‖z1 – z2‖ ≤ b, ∀z1, z2 ∈ �.



Du and Chen Journal of Inequalities and Applications  (2018) 2018:105 Page 5 of 14

Lemma 1 Suppose {zk} and {dk} are generated by Algorithm 1, then

∇Zf̃μ(zk)T dk = –
∥
∥∇Zf̃μ(zk)

∥
∥2

and

∥
∥∇Zf̃μ(zk)

∥
∥ ≤ ‖dk‖.

Proof By Algorithm 1, we have

dk = –∇Zf̃μ(zk) + β̃BZAU
k dk–1 – θ̃BZAU

k yk–1.

Multiplying both sides of the above equation by ∇Zf̃μ(zk)T , we obtain

∇Zf̃μ(zk)T dk = –
∥
∥∇Zf̃μ(zk)

∥
∥2 +

∇Zf̃μ(zk)T (∇Zf̃μ(zk) – ∇Zf̃μ(zk–1))(∇Zf̃μ(zk)T dk–1)
–η∇Zf̃μ(zk–1)T dk–1 + μ|∇Zf̃μ(zk)T dk–1|

–
(∇Zf̃μ(zk)T dk–1∇Zf̃μ(zk)T (∇Zf̃μ(zk) – ∇Zf̃μ(zk–1))

–η∇Zf̃μ(zk–1)T dk–1 + μ|∇Zf̃μ(zk)T dk–1|
,

i.e.,

∇Zf̃μ(zk)T dk = –
∥
∥∇Zf̃μ(zk)

∥
∥2.

Now, we have

∣
∣∇Zf̃μ(zk)T dk

∣
∣ =

∥
∥∇Zf̃μ(zk)

∥
∥2

and

∣
∣∇Zf̃μ(zk)T dk

∣
∣ ≤ ∥

∥∇Zf̃μ(zk)
∥
∥‖dk‖.

By

∥
∥∇Zf̃μ(zk)

∥
∥2 ≤ ∥

∥∇Zf̃μ(zk)
∥
∥‖dk‖

we have

∥
∥∇Zf̃μ(zk)

∥
∥ ≤ ‖dk‖.

Hence, the proof is complete. �

Lemma 2 Suppose Assumption 1 holds and {zk} and {dk} are generated by Algorithm 1,
then

∞∑

k=0

(∇Zf̃μ(zk)T dk)2

‖dk‖2 < +∞
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and

∞∑

k=0

‖∇Zf̃μ(zk)‖4

‖dk‖2 < +∞.

Proof Using the techniques similar to lemmas in [31–33], we can get this lemma. The
description will not be repeated again. �

Lemma 3 Suppose Assumption 1 holds and xk and dk are generated by Algorithm 1, then

a1αk‖dk‖2 ≤ –∇Zf̃μ(zk)T dk , (10)

where a1 = (1 – σ )–1(m/2), m is a positive constant and 0 < σ < 1.

Proof By using Taylor’s expansion, we have

f̃ (zk+1) = f̃ (zk) + ∇Zf̃μ(zk)T sk +
1
2

sT
k Gksk , (11)

where sk = zk+1 – zk = αkdk and

Gk =
∫ 1

0
∇2

z f̃μ(zk + τ sk) dτ sk .

By Armijo line search, we know that

f̃ (zk+1) ≤ f̃ (zk) + σ∇zf̃μ(zk)T sk . (12)

By (11) and (12), we have

1
2

sT
k Gksk ≤ (1 – σ )

(
–∇Zf̃μ(zk)T sk

)
,

i.e.,

1
2

(1 – σ )–1mαk‖dk‖2 ≤ –∇Zf̃μ(zk)T dk .

Denote a1 = (1 – σ )–1(m/2), we get (10). Thus, we complete the proof. �

By Lemmas 1, 2, and 3, we can get global convergence of the given method, i.e., the
following theorem.

Theorem 1 Suppose Assumption 1 holds, then

lim
k→∞

∥
∥∇Zf̃μ(zk)

∥
∥ = 0.

Proof From Assumption 1, (7), and (10), we have

∣
∣β̃BZAU

k
∣
∣ ≤

∣
∣
∣
∣
∇Zf̃μ(zk)T (∇Zf̃μ(zk) – ∇Zf̃μ(zk–1))

η(–∇Zf̃μ(zk–1)T dk–1)

∣
∣
∣
∣ ≤ ‖∇Zf̃μ(zk)‖Lαk–1‖dk–1‖

η(a1αk–1‖dk–1‖2)
, (13)
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∣
∣β̃BZAU

k
∣
∣‖dk–1‖ ≤

(
L‖∇Zf̃μ(zk)‖
η(a1‖dk–1‖)

)

‖dk–1‖ =
L‖∇Zf̃μ(zk)‖

ηa1
,

i.e.,

∣
∣θ̃BZAU

k
∣
∣‖yk–1‖ ≤

∣
∣
∣
∣

∇Zf̃μ(zk)T dk–1

η(–∇Zf̃μ(zk–1)T dk–1)

∣
∣
∣
∣‖yk–1‖.

From Assumption 1, (8), and (10), we have

∣
∣θ̃BZAU

k
∣
∣‖yk–1‖ ≤

(‖∇Zf̃μ(zk)‖L‖xk – xk–1‖
η(a1αk–1‖dk–1‖2)

)

‖dk–1‖ =
L‖∇Zf̃μ(zk)‖

ηa1
. (14)

Combining (13), (14), and dk generated in Algorithm 1, we obtain

‖dk‖ ≤ ∥
∥∇Zf̃μ(zk)

∥
∥ +

∣
∣β̃BZAU

k
∣
∣‖dk–1‖+

∣
∣θ̃BZAU

k
∣
∣‖yk–1‖

≤ ∥
∥∇Zf̃μ(zk)

∥
∥ +

L‖∇Zf̃μ(zk)‖
ηa1

+
L‖∇Zf̃μ(zk)‖

ηa1

=
(

1 +
2L
ηa1

)
∥
∥∇Zf̃μ(zk)

∥
∥.

Denote
√

B = (1 + 2L
ηa1

), we have ‖dk‖2 ≤ B‖∇Zf̃μ(zk)‖2, i.e.,

1
‖dk‖2 ≥ 1

B‖∇Zf̃μ(zk)‖2

and

B‖∇Zf̃μ(zk)‖4

‖dk‖2 ≥ ‖∇Zf̃μ(zk)‖4

‖g̃k‖2 =
∥
∥∇Zf̃μ(zk)

∥
∥2

By Lemma 2, we have

∞∑

k=0

∥
∥∇Zf̃μ(zk)

∥
∥2 < +∞.

This completes the proof. �

4 Numerical experiments
In this section, we give some numerical experiments of Algorithm 1, which are also con-
sidered in [2, 9, 10, 14, 15]. We compare Algorithm 1 with smoothing gradient method,
GPSR method, debiased and minimum norm methods proposed in [2, 9, 10, 14] respec-
tively. The numerical results of all the examples show that Algorithm 1 is effective. All
codes run in MATLAB 8.0. For Examples 1 and 2, the parameters used in Algorithm 1 are
chosen as σ = 0.2, μ = 5, η = 2, γ = 0.5, ε = 10–6, ρ = 0.4.
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Example 1 Consider

A =

⎛

⎜
⎜
⎜
⎝

3 5 8 4 1 5
2 9 6 5 7 4
3 4 7 2 1 6
8 9 6 5 7 4

⎞

⎟
⎟
⎟
⎠

, b = ( 2 4 1 7 )T ,

and τ = 5.
From [14], we know that this example has a solution x∗ = (0.3461, 0.0850, 0, 0, 0.3719, 0)T .

The optimal solution of Algorithm 1 is x∗ = (0.3459, 0.0850, 0.0001, 0.0009, 0.3717,
–0.0001)T . In Figs. 1 and 2, we plot the evolution of the objective function versus the
number of iterations when solving Example 1 with Algorithm 1 and the smoothing gradi-
ent method respectively.

Example 2 Consider

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0 · · · 0 0 0 1 · · · 1
0 0 0 1 1 1 · · · 0 0 0 1 · · · 1
...

...
...

...
...

... · · · ...
...

...
... · · · ...

0 0 0 0 0 0 · · · 1 1 1 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎠

m×n

,

b = ( 1 1 · · · 1 )T ,

Figure 1 Numerical results for solving Example 1 with Algorithm 1
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Figure 2 Numerical results for solving Example 1 with smoothing gradient method

and τ = 2. In this example, we choose m = 30, n = 100. The numerical results are given in
Figs. 3 and 4.

Example 3 Consider

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 1 1 · · · 1
0 1 · · · 1 0 1 · · · 1
...

...
. . .

...
...

... · · · ...
0 1 · · · 1 0 1 · · · 1
1 0 · · · 0 1 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

m×n

, b = ( 1 1 · · · 1 )T ,

and τ = 6. In this example, we choose m = 100, n = 110. The numerical results are given
in Figs. 5 and 6.

Example 4 Consider

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 –1 0 · · · 0 1 · · · 1

–1 4 –1 · · · ...
... · · · ...

0 –1 4
. . .

...
... · · · ...

...
. . . . . . . . . –1

... · · · ...
0 · · · 0 –1 4 1 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

m×n

, b = ( 1 1 · · · 1 )T ,
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Figure 3 Numerical results for solving Example 2 with Algorithm 1

Figure 4 Numerical results for solving Example 2 with smoothing gradient method
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Figure 5 Numerical results for solving Example 3 with Algorithm 1

Figure 6 Numerical results for solving Example 3 with smoothing gradient method
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Figure 7 Numerical results for solving Example 4 with Algorithm 1

Figure 8 Numerical results for solving Example 4 with smoothing gradient method
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Figure 9 Numerical results for solving Example 5 with Algorithm 1

and τ = 10. In this example, we choose m = 200, n = 210. The numerical results are given
in Figs. 7 and 8.

Example 5 In this example, we consider a typical compressed sensing problem, which is
also considered in [9, 10, 14, 15]. In this example, we choose m = 24, n = 26, σ = 0.5, ρ = 0.4,
γ = 0.5, ε = 10–6, μ = 5, η = 2. The original signal contains 520 randomly generated ±1
spikes. Further, the m×n matrix A is obtained by first filling it with independent samples of
a standard Gaussian distribution and then orthogonalization of its rows. In this example,
we choose σ 2 = 10–4 and τ = 0.1‖AT y‖∞ the same as suggested in [14]. The numerical
results are shown in Fig. 9.

5 Conclusion
In this paper, we have proposed a new smoothing modified three-term conjugate gradient
method for solving l1-norm nonsmooth problems. Comparing with the smoothing gradi-
ent method, GPSR method, and other methods proposed in [2, 9, 10, 14], we can see that
the smoothing modified three-term conjugate gradient method is simple and needs small
storage. Comparing with the smoothing gradient method proposed in [14], the smoothing
modified three-term conjugate gradient method is significantly faster especially in solving
large-scale problems.
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