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Abstract
The proximal gradient algorithm is an appealing approach in finding solutions of
non-smooth composite optimization problems, which may only has weak
convergence in the infinite-dimensional setting. In this paper, we introduce a
modified proximal gradient algorithm with outer perturbations in Hilbert space and
prove that the algorithm converges strongly to a solution of the composite
optimization problem. We also discuss the bounded perturbation resilience of the
basic algorithm of this iterative scheme and illustrate it with an application.
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1 Introduction
Let H be a real Hilbert space with an inner product 〈·, ·〉 and an induced norm ‖ · ‖. Let
�0(H) be the class of convex, lower semi-continuous, and proper functions from H to
(–∞, +∞]. Consider the following non-smooth composite optimization problem:

min
x∈H

(
f (x) + g(x)

)
, (1)

where f , g ∈ �0(H), f is differentiable and ∇f is L-Lipschitz continuous on H with L > 0.
g may not be differentiable. If further, f + g =: � is coercive, that is,

lim‖x‖→+∞�(x) = +∞, (2)

then � has a minimizer over H , that is, S := Argmin(�) 	= ∅, see [1, page 159, Proposi-
tion 11.14]. Problem (1) has a typical scenario in linear inverse problems [2], it has ap-
plications in compressed sensing, machine learning, data recovering and so on (see [3–6]
and the references therein).

Proximal gradient methods are among the methods used for solving problem (1), which
allow to decouple the contribution of the functions f and g in a gradient descent step
determined by f and in a proximal step induced by g [7, 8]. For the classical proximal
gradient method, the initial value x0 ∈ H is given, and the iterative algorithm for generating
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sequence {xn} is defined as follows:

xn+1 = proxλg(I – λ∇f )(xn), ∀n ≥ 0, (3)

where λ > 0 is the step size, proxλg is a proximal operator (see Sect. 2). If S 	= ∅ and 0 < λ < 2
L ,

then any sequence generated by algorithm (3) converges weakly to an element of S [1,
Corollary 27.9]. Xu [9] put forward the following slightly more general proximal gradient
algorithm:

xn+1 = proxλng(I – λn∇f )(xn) (4)

for problem (1), where the weak convergence of the generated sequence {xn} was obtained.
Besides, it was noted that no strong convergence is guaranteed if dim H = ∞. In 2017, Guo,
Cui and Guo [10] proposed the following proximal gradient algorithm with perturbations:

xn+1 = proxλng(I – λnD∇f + e)(xn). (5)

The generated sequence {xn} again converges weakly to a solution of (1).
On the other hand, it is well known that the viscosity approximation method proposed

by Moudafi [11] generates a sequence {xn}:

xn+1 = tnh(xn) + (1 – tn)Txn, (6)

which converges strongly to a fixed point x∗ of T for some contractive operator h. In 2004,
Xu [12, Theorem 3.1] further proved that the above x∗ is also the unique solution of the
variational inequality:

〈
(I – h)x∗, x – x∗〉 ≥ 0, ∀x ∈ Fix(T), (7)

provided that {tn} satisfies certain conditions.
This paper is based on viscosity algorithm (6) and proximal gradient algorithm (4) to

generate a sequence with perturbations, which converges strongly to a solution of problem
(1). We also apply this algorithm to solve the linear inverse problem.

An objective of this paper considering the perturbation is the superiorization method-
ology introduced by [13]. The superiorization method may not find an optimal solution to
the given objective function. It might try to find a point with a lower cost function value
than other points by a rather simple algorithm, which is known as the basic algorithm (see
[14–18] for more details). It is a heuristic method with less time consuming that makes
it applicable to some important practical problems such as medical image recovery [19,
20], computed tomography [21], intensity-modulated radiation therapy [22] and the like.
However, the superiorization method needs to investigate the basic iterative algorithm’s
bounded perturbation resilience. Hence, there raises a new problem whether the basic al-
gorithm is bounded perturbation resilient. Very recently, several articles focused on this
topic [23–27]. So another task of this paper is to discuss the bounded perturbation re-
silience of the modified proximal gradient algorithm.
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1.1 Results and discussion
In view of the facts that the sequence generated by (5) converges weakly to a solution of
(1), the viscosity method can convert a weakly convergent sequence to a strongly conver-
gent one, and that the applied widely superiorization method introduced by [13] is based
on the bounded perturbation resilience of basic algorithms, we discuss the strong conver-
gence problem of a modified proximal gradient algorithm with perturbations as well as
the bounded perturbation resilience of the responding basic algorithm.

The structure of this paper is as follows. In Sect. 2, we introduce some definitions and
lemmas that will be used to prove the main results in the subsequent sections. In Sect. 3,
we present the modified proximal gradient algorithm with perturbations and prove that
the generated sequence {xn} converges strongly to a solution of problem (1). We conclude
this section with several corollaries. In Sect. 4, we introduce the definition of bounded per-
turbation resilience and certify the corresponding strong convergence result. In Sect. 5, we
apply our algorithm to the linear inverse problem, and illustrate it with a specific numer-
ical example. Finally, we give a conclusion in Sect. 6.

2 Preliminaries
Let {xn} be a sequence in Hilbert space H and x ∈ H . Let T : H → H be an operator (linear
or nonlinear). We list some notations.

xn → x means {xn} converges strongly to x.
xn ⇀ x means {xn} converges weakly to x.
If there exists a subsequence {xnj}, which converges weakly to a point z, we will call z a

weak cluster point of {xn}. The set of all cluster points of {xn} is denoted by ωw(xn).
Fix(T) := {x ∈ H : Tx = x}.
The following definitions are needed in proving our main results.

Definition 2.1 Let T , A : H → H be operators.
(i) T is nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H .

(ii) T is L-Lipschitz continuous with L ≥ 0, if

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H .

We call T a contractive mapping if 0 ≤ L < 1.
(iii) T is α-averaged if

T = (1 – α)I + αS,

where α ∈ (0, 1), and S : H → H is nonexpansive.
(iv) A is v-inverse strongly monotone (v-ism) with v > 0, if

〈Ax – Ay, x – y〉 ≥ v‖Ax – Ay‖2, ∀x, y ∈ H .

Given g ∈ �0(H), [1, Proposition 12.15] ensures that ‖y–x‖2

2 +g(y) has exact one minimizer
over H for each x ∈ H . So we have
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Definition 2.2 (Proximal operator) Let g ∈ �0(H). The proximal operator of g is defined
by

proxg(x) := arg min
y∈H

{‖y – x‖2

2
+ g(y)

}
, x ∈ H . (8)

The proximal operator of g of order α > 0 is defined as the proximal operator of αg . More-
over, it satisfies (see [3, Remark 12.24])

proxαg(x) := arg min
y∈H

{‖y – x‖2

2α
+ g(y)

}
, x ∈ H . (9)

The following lemmas (Lemma 2.3 and Lemma 2.4) describe the properties of the prox-
imal operators.

Lemma 2.3 ([9, Lemma 3.1]) Let g ∈ �0(H), and α > 0, μ > 0. Then

proxαg(x) = proxμg

(
μ

α
x +

(
1 –

μ

α

)
proxαg x

)
.

Lemma 2.4 ([8, Lemma 2.4], [1, Remark 4.24]) Let g ∈ �0(H), and α > 0. Then the prox-
imity operator proxαg is 1

2 -averaged. In particular, it is nonexpansive, that is,

∥∥proxαg(x) – proxαg(y)
∥∥ ≤ ‖x – y‖, ∀x, y ∈ H . (10)

Lemma 2.5 ([9, Proposition 3.2]) Let f , g ∈ �0(H), z ∈ H and α > 0. Assume that f is dif-
ferentiable on H . Then z is a solution to (1) if and only if z solves the fixed point equation

z = proxαg(I – α∇f )z. (11)

The following two lemmas play an important role in proving the strong convergence
result.

Lemma 2.6 ([1, Theorem 4.17]) Let T : H → H be a nonexpansive mapping with
Fix(T) 	= ∅. If {xn} is a sequence in H converging weakly to x, and if {(I – T)xn} converges
strongly to y, then (I – T)x = y.

Lemma 2.7 ([28, Lemma 2.5]) Assume that {an} is a sequence of nonnegative real numbers
satisfying

an+1 ≤ (1 – γn)an + γnδn + βn, n ≥ 0,

where {γn}, {δn} and {βn} satisfy the conditions:
(i) {γn} ⊂ [0, 1],

∑∞
n=0 γn = ∞, or equivalently,

∏∞
n=0(1 – γn) = 0;

(ii) lim supn→∞ δn ≤ 0;
(iii) βn ≥ 0 (n ≥ 0),

∑∞
n=0 βn < ∞.

Then limn→∞ an = 0.
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3 Convergence analysis
In this section, let H be a Hilbert space, h : H → H a ρ-contractive operator with ρ ∈ (0, 1).
f , g ∈ �0(H). f is differentiable, and ∇f is Lipschitz continuous with Lipschitz constant
L > 0. Given x0 ∈ H , we propose the following modified proximal gradient algorithm for
solving (1):

xn+1 := tnh(xn) + (1 – tn) proxαng(I – αn∇f )(xn) + e(xn), n ≥ 0, (12)

where {tn} is a sequence in [0, 1]. 0 < a = infn αn ≤ αn < 2
L . e : H → H represents a pertur-

bation operator and satisfies

∞∑

n=0

∥
∥e(xn)

∥
∥ < +∞. (13)

We also introduce the following iterative scheme as a special case to (12):

xn+1 := tnh(xn) + (1 – tn) proxαng(I – αn∇f + e)(xn), n ≥ 0. (14)

We state the main strong convergence theorem.

Theorem 3.1 Let S be the solution set of (1), and assume that S 	= ∅. Given x0 ∈ H . Let {xn}
be generated by (12). If (13) and the following conditions hold:

(i) 0 < a = infn αn ≤ αn < 2
L ,

∑∞
n=0 |αn+1 – αn| < ∞;

(ii) {tn} ⊂ (0, 1), limn→∞ tn = 0;
(iii)

∑∞
n=0 tn = ∞,

∑∞
n=0 |tn+1 – tn| < ∞.

Then {xn} converges strongly to a point x∗ ∈ S, where x∗ is the unique solution of the
following variational inequality problem:

〈
(I – h)x∗, x – x∗〉 ≥ 0, ∀x ∈ S. (15)

Proof We point out that proxαng(I – αn∇f ) is nonexpansive for each n. Let us follow
the proof of [29]. At first, that ∇f is L-Lipschizian means that ∇f is 1

L -ism ([1, Theo-
rem 18.15]). Consequently, I – αn∇f is αnL

2 -averaged as 0 < αn < 2
L ([1, Proposition 4.33]).

Besides, proxαng is 1
2 -averaged by Lemma 2.4, the composite proxαng(I – αn∇f ) is αnL+2

4 -
averaged ([29, Proposition 3.2]). Then it is nonexpansive ([1, Remark 4.24]).

Set Tn = proxαng(I – αn∇f ). For any x̄ ∈ S, we have

‖Tnxn – x̄‖ ≤ ‖xn – x̄‖

by applying Lemma 2.5 and that Tn is nonexpansive. So,

‖xn+1 – x̄‖
=

∥∥tnh(xn) + (1 – tn)Tnxn + e(xn) – x̄
∥∥

≤ tn
∥
∥h(xn) – x̄

∥
∥ + (1 – tn)‖Tnxn – x̄‖ +

∥
∥e(xn)

∥
∥

≤ tn
∥∥h(xn) – h(x̄)

∥∥ + tn
∥∥h(x̄) – x̄

∥∥ + (1 – tn)‖Tnxn – x̄‖ +
∥∥e(xn)

∥∥
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≤ tnρ‖xn – x̄‖ + tn
∥∥h(x̄) – x̄

∥∥ + (1 – tn)‖xn – x̄‖ +
∥∥e(xn)

∥∥

=
(
1 – tn(1 – ρ)

)‖xn – x̄‖ + tn(1 – ρ) · ‖h(x̄) – x̄‖
1 – ρ

+
∥∥e(xn)

∥∥

≤ max

{
‖xn – x̄‖,

‖h(x̄) – x̄‖
1 – ρ

}
+

∥
∥e(xn)

∥
∥. (16)

An induction argument shows that

‖xn+1 – x̄‖ ≤ max

{
‖x0 – x̄‖,

‖h(x̄) – x̄‖
1 – ρ

}
+

∞∑

k=0

∥∥e(xk)
∥∥.

Hence {xn} is bounded as
∑∞

n=0 ‖e(xn)‖ < ∞. Consequently, we get the boundedness of
{h(xn)} and {Tnxn}.

We next prove that ‖xn+1 – xn‖ → 0 as n → ∞. In fact,

‖xn+1 – xn‖
=

∥∥tnh(xn) + (1 – tn)Tnxn + e(xn) – tn–1h(xn–1) – (1 – tn–1)Tn–1xn–1

– e(xn–1)
∥∥

≤ ∥
∥tn

[
h(xn) – h(xn–1)

]
+

[
tnh(xn–1) – tn–1h(xn–1)

]∥∥

+
∥
∥(1 – tn)(Tnxn – Tnxn–1) + (1 – tn)Tnxn–1 – (1 – tn–1)Tn–1xn–1

∥
∥

+
∥∥e(xn)

∥∥ +
∥∥e(xn–1)

∥∥

≤ tnρ‖xn – xn–1‖ + |tn – tn–1|
∥∥h(xn–1)

∥∥

+ (1 – tn)‖Tnxn – Tnxn–1‖ + (1 – tn)‖Tnxn–1 – Tn–1xn–1‖
+ |tn – tn–1|‖Tn–1xn–1‖ +

∥
∥e(xn)

∥
∥ +

∥
∥e(xn–1)

∥
∥

≤ tnρ‖xn – xn–1‖ + |tn – tn–1|
∥∥h(xn–1)

∥∥ + (1 – tn)‖xn – xn–1‖
+ (1 – tn)‖Tnxn–1 – Tn–1xn–1‖ + |tn – tn–1|‖Tn–1xn–1‖
+

∥
∥e(xn)

∥
∥ +

∥
∥e(xn–1)

∥
∥

≤ (
1 – tn(1 – ρ)

)‖xn – xn–1‖ + |tn – tn–1|
(∥∥h(xn–1)

∥∥ + ‖Tn–1xn–1‖
)

+ (1 – tn)‖Tnxn–1 – Tn–1xn–1‖ +
∥∥e(xn)

∥∥ +
∥∥e(xn–1)

∥∥. (17)

By applying Lemma 2.3 and Lemma 2.4, we compute

‖Tnxn–1 – Tn–1xn–1‖
=

∥∥(
proxαng(I – αn∇f )

)
xn–1 –

(
proxαn–1g(I – αn–1∇f )

)
xn–1

∥∥

=
∥
∥∥
∥
(
proxαng(I – αn∇f )

)
xn–1 – proxαng

(
αn

αn–1
(I – αn–1∇f )xn–1

+
(

1 –
αn

αn–1

)
[
proxαn–1g(I – αn–1∇f )

]
xn–1

)∥
∥∥
∥

≤
∥∥
∥∥(I – αn∇f )xn–1 –

αn

αn–1
(I – αn–1∇f )xn–1 –

(
1 –

αn

αn–1

)
Tn–1xn–1

∥∥
∥∥
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=
∣∣
∣∣1 –

αn

αn–1

∣∣
∣∣‖xn–1 – Tn–1xn–1‖

≤ |αn – αn–1|
a

‖xn–1 – Tn–1xn–1‖, (18)

where a = infn αn > 0.
Substituting (18) into (17), we obtain

‖xn+1 – xn‖
≤ (

1 – tn(1 – ρ)
)‖xn – xn–1‖ + |tn – tn–1|

(∥∥h(xn–1)
∥
∥ + ‖Tn–1xn–1‖

)

+ (1 – tn)
|αn – αn–1|

a
‖xn–1 – Tn–1xn–1‖ +

∥∥e(xn)
∥∥ +

∥∥e(xn–1)
∥∥

≤ (
1 – tn(1 – ρ)

)‖xn – xn–1‖ +
|αn – αn–1|

a
(‖xn–1‖ + ‖Tn–1xn–1‖

)

+ tn(1 – ρ) · (–1) · |αn – αn–1|
a(1 – ρ)

(‖xn–1‖ + ‖Tn–1xn–1‖
)

+ |tn – tn–1|
(∥∥h(xn–1)

∥
∥ + ‖Tn–1xn–1‖

)
+

∥
∥e(xn)

∥
∥ +

∥
∥e(xn–1)

∥
∥

≤ (
1 – tn(1 – ρ)

)‖xn – xn–1‖

+ tn(1 – ρ) · (–1) · |αn – αn–1|
a(1 – ρ)

(‖xn–1‖ + ‖Tn–1xn–1‖
)

+ M1
(|tn – tn–1| + |αn – αn–1|

)
+

∥∥e(xn)
∥∥ +

∥∥e(xn–1)
∥∥, (19)

where M1 := supn∈N{‖h(xn–1)‖ + ‖Tn–1xn–1‖, ‖xn–1‖+‖Tn–1xn–1‖
a } is well defined since {xn},

{h(xn)} and {Tnxn} are bounded.
By taking γn = tn(1 – ρ), δn = (–1)·|αn–αn–1|

a(1–ρ) (‖xn–1‖ + ‖Tn–1xn–1‖) and βn = M1(|tn – tn–1| +
|αn – αn–1|) + ‖e(xn)‖ + ‖e(xn–1)‖ in (19), we get

‖xn+1 – xn‖ → 0, as n → ∞ (20)

according to Lemma 2.7 and (i)–(iii) in Theorem 3.1.
Since {xn} is bounded, there exists a subsequence {xnj} such that xnj ⇀ z as j → ∞. In

the sequel, we shall verify that z ∈ S. To this end, assume that αnj → α (j → ∞), and set
T := proxαg(I – α∇f ). We compute

∥
∥xnj – proxαg(I – α∇f )xnj

∥
∥

≤ ‖xnj – xnj+1‖ +
∥∥xnj+1 – proxαg(I – α∇f )xnj

∥∥

= ‖xnj – xnj+1‖ +
∥
∥tnj h(xnj ) + (1 – tnj )Tnj xnj + e(xnj ) – Txnj

∥
∥

≤ ‖xnj – xnj+1‖ + tnj

∥∥h(xnj ) – Txnj

∥∥ + (1 – tnj )‖Tnj xnj – Txnj‖
+

∥
∥e(xnj )

∥
∥. (21)

By using Lemma 2.3, we get

‖Tnj xnj – Txnj‖
=

∥∥proxαnj g(I – αnj∇f )xnj – proxαg(I – α∇f )xnj

∥∥
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=
∥∥
∥∥proxαg

[
α

αnj

(I – αnj∇f )xnj +
(

1 –
α

αnj

)
proxαnjg (I – αnj∇f )xnj

]

– proxαg(I – α∇f )xnj

∥∥
∥∥

≤
∥
∥∥∥

α

αnj

(I – αnj∇f )xnj +
(

1 –
α

αnj

)
proxαnjg (I – αnj∇f )xnj

– (I – α∇f )xnj

∥
∥∥
∥

=
∥
∥∥
∥

(
α

αnj

– 1
)

xnj +
(

1 –
α

αnj

)
proxαnjg

(I – αnj∇f )xnj

∥
∥∥
∥

=
∣
∣∣
∣1 –

α

αnj

∣
∣∣
∣‖xnj – Tnj xnj‖

≤
∣∣∣
∣1 –

α

αnj

∣∣∣
∣ · (‖xnj‖ + ‖Tnj xnj‖

)
. (22)

Thus, we have

‖Tnj xnj – Txnj‖ → 0 as j → ∞ (23)

in view of that {‖xnj‖}, {‖Tnj xnj‖} are bounded for j, and limj→∞ αnj = α.
We combine (20), (21) and (23) to have

∥∥xnj – proxαg(I – α∇f )xnj

∥∥ → 0 as j → ∞, (24)

which implies that z ∈ S owing to Lemma 2.6, and hence ωw(xn) ⊂ S.
Finally, we prove that

lim
n→∞

∥
∥xn – x∗∥∥ = 0.

We have, by utilizing Lemma 2.4,

∥∥xn+1 – x∗∥∥2

=
∥∥tnh(xn) + (1 – tn)Tnxn + e(xn) – x∗∥∥2

=
∥∥tn

(
h(xn) – x∗) + (1 – tn)

(
Tnxn – x∗) + e(xn)

∥∥2

≤ ∥
∥tn

(
h(xn) – x∗) + (1 – tn)

(
Tnxn – x∗)∥∥2 + 2

〈
xn+1 – x∗, e(xn)

〉

≤ ∥
∥tn

(
h(xn) – x∗) + (1 – tn)

(
Tnxn – x∗)∥∥2 + 2

∥
∥xn+1 – x∗∥∥∥

∥e(xn)
∥
∥

=
∥
∥tn

(
h(xn) – h

(
x∗)) + (1 – tn)

(
Tnxn – x∗) + tn

(
h
(
x∗) – x∗)∥∥2

+ 2
∥∥xn+1 – x∗∥∥∥∥e(xn)

∥∥

≤ ∥∥tn
(
h(xn) – h

(
x∗)) + (1 – tn)

(
Tnxn – x∗)∥∥2

+ 2
〈
tn

(
h
(
x∗) – x∗), xn+1 – e(xn) – x∗〉 + 2

∥
∥xn+1 – x∗∥∥∥

∥e(xn)
∥
∥

≤ tn
∥∥h(xn) – h

(
x∗)∥∥2 + (1 – tn)

∥∥Tnxn – x∗∥∥2
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+ 2tn
〈
h
(
x∗) – x∗, xn+1 – e(xn) – x∗〉 + 2

∥∥xn+1 – x∗∥∥∥∥e(xn)
∥∥

≤ tnρ
2∥∥xn – x∗∥∥2 + (1 – tn)

∥∥xn – x∗∥∥2

+ 2tn
〈
h
(
x∗) – x∗, xn+1 – e(xn) – x∗〉 + 2

∥
∥xn+1 – x∗∥∥∥

∥e(xn)
∥
∥

=
(
1 – tn

(
1 – ρ2))∥∥xn – x∗∥∥2 + 2tn

〈
h
(
x∗) – x∗, xn+1 – x∗〉

– 2tn
〈
h
(
x∗) – x∗, e(xn)

〉
+ 2

∥
∥xn+1 – x∗∥∥∥

∥e(xn)
∥
∥

≤ (
1 – tn

(
1 – ρ2))∥∥xn – x∗∥∥2 + 2tn

〈
h
(
x∗) – x∗, xn+1 – x∗〉

+ 2tn
∥∥h

(
x∗) – x∗∥∥∥∥e(xn)

∥∥ + 2
∥∥xn+1 – x∗∥∥∥∥e(xn)

∥∥

=
(
1 – tn

(
1 – ρ2))∥∥xn – x∗∥∥2 + 2tn

〈
h
(
x∗) – x∗, xn+1 – x∗〉

+ 2
(
tn

∥
∥h

(
x∗) – x∗∥∥ +

∥
∥xn+1 – x∗∥∥)∥∥e(xn)

∥
∥

≤ (
1 – tn

(
1 – ρ2))∥∥xn – x∗∥∥2 + 2tn

〈
h
(
x∗) – x∗, xn+1 – x∗〉

+ M2
∥∥e(xn)

∥∥, (25)

where M2 = supn∈N{2(tn‖h(x∗) – x∗‖+‖xn+1 – x∗‖)} < ∞ in view of tn ∈ [0, 1] and {xn} being
bounded.

In order to apply Lemma 2.7 to (25), we need to prove

lim sup
n→∞

〈
h
(
x∗) – x∗, xn – x∗〉 ≤ 0. (26)

Select a suitable subsequence {xni} from {xn} such that

lim sup
n→∞

〈
h
(
x∗) – x∗, xn – x∗〉 = lim

i→∞
〈
h
(
x∗) – x∗, xni – x∗〉. (27)

Since {xni} is bounded, it has a weakly convergent subsequence. Without loss of generality,
we denote the weakly convergent subsequence by {xni} and assume that xni ⇀ ẑ. Then
ẑ ∈ S, and

lim sup
n→∞

〈
h
(
x∗) – x∗, xn – x∗〉

= lim
i→∞

〈
h
(
x∗) – x∗, xni – x∗〉

=
〈
h
(
x∗) – x∗, ẑ – x∗〉

≤ 0. (28)

Take γn = tn(1 – ρ2), δn = 2
1–ρ2 〈h(x∗) – x∗, xn+1 – x∗〉, βn = M2‖e(xn)‖. Then all conditions

in Lemma 2.7 are satisfied. Thus

∥∥xn+1 – x∗∥∥2 ≤ (1 – γn)
∥∥xn – x∗∥∥2 + γnδn + βn, (29)

which implies that xn → x∗ as n → ∞. �

With {xn} generated by (14), we obtain the following.
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Theorem 3.2 With the conditions in Theorem 3.1 hold, given x0 ∈ H , the sequence {xn}
generated by (14) converges strongly to a point x∗ ∈ S.

Proof We complete the proof by translating (14) into the form of (12). Indeed, we can
rewrite xn+1 as

xn+1 = tnh(xn) + (1 – tn) proxαng(I – αn∇f + e)(xn)

= tnh(xn) + (1 – tn) proxαng(I – αn∇f )(xn) + ê(xn), (30)

where

ê(xn) = (1 – tn)
[
proxαng(I – αn∇f + e)(xn) – proxαng(I – αn∇f )(xn)

]
.

Obviously, ‖ê(xn)‖ ≤ ‖e(xn)‖ owing to Lemma 2.4 and tn ∈ [0, 1]. Thus we have
∑∞

n=0 ‖ê(xn)‖ < ∞. Since (12) was shown to converge, this immediately implies that (14)
converges strongly to a solution of (1). �

If e(xn) ≡ 0, n ≥ 0, the exact form of the two modified proximal gradient algorithms
follows.

Corollary 3.3 With the conditions in Theorem 3.1 holding, and given x0 ∈ H , arbitrarily,
any sequence {xn} defined by

xn+1 := tnh(xn) + (1 – tn) proxαng(I – αn∇f )(xn), n ≥ 0, (31)

converges strongly to a point x∗ ∈ S.

We also get the following result of [12, Theorem 3.2] with T = proxαg(I – α∇f ) and
αn ≡ α.

Corollary 3.4 With the conditions in Theorem 3.1 hold, given x0 ∈ H , any sequence {xn}
defined by

xn+1 := tnh(xn) + (1 – tn) proxαg(I – α∇f )(xn), n ≥ 0 (32)

converges strongly to a point x∗ ∈ S.

In addition, if h is some constant function, we have

Corollary 3.5 Under the conditions given in Theorem 3.1, for any x0 ∈ H , the sequence
{xn} defined by

xn+1 := tnu + (1 – tn) proxαng(I – αn∇f )(xn), n ≥ 0 (33)

converges strongly to a point x∗ ∈ S, where u is a point in H .
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4 Bounded perturbation resilience
The superiorization method can solve a broad class of nonlinear constrained optimal
problems, which works by using the bounded perturbation resilience (BPR) of an origi-
nal algorithm in order to steer the iterates of the algorithm towards to lower values of the
objective function. In this paper, we investigate the BPR of the modified proximal gradi-
ent algorithm. The superiorization version of this scheme will be presented in the sequel
paper.

Given a problem �. Assume that we have a basic algorithm operator A : H → H , where
H is a real Hilbert space. Then we have the following definition, which was originally given
with a finite-dimensional Euclidean space [13].

Definition 4.1 ([14], Bounded perturbation resilience) An algorithmic operator A is said
to be bounded perturbation resilient if the following condition holds: if the sequence {xn},
generated by xn+1 = Axn with x0 ∈ H , converges to a solution of �, then any sequence {yn}
generated by yn+1 = A(yn + βnvn) with any y0 ∈ H , also converges to a solution of �, where
the vector sequence {vn}∞n=0 is bounded, and the scalars {βn}∞n=0 are such that βn ≥ 0 for all
n ≥ 0, and

∑∞
n=0 βn < ∞.

If we treat the modified proximal gradient algorithm (31) as the basic algorithm A, the
bounded perturbation of it is a sequence {xn} generated by

xn+1 = tnh(xn + βnvn) + (1 – tn) proxαng(I – αn∇f )(xn + βnvn). (34)

We have the following result.

Theorem 4.2 Let H be a real Hilbert space. Let h : H → H be a ρ-contractive operator, ρ ∈
(0, 1) and f , g ∈ �0(H). Assume the solution set S of (1) is nonempty. Assume, in addition,
that f is differentiable, ∇f is L-Lipschitz continuous on H . {βn}, {vn} satisfy the conditions
in Definition 4.1, {tn} and {αn} satisfy the conditions in Theorem 3.1, respectively. Then any
sequence {xn} generated by (34) converges strongly to a point x∗ in S.

Thus, the modified proximal gradient algorithm is bounded perturbation resilient.

Proof We rewrite (34) as

xn+1 = tnh(xn + βnvn) + (1 – tn) proxαng(I – αn∇f )(xn + βnvn)

= tnh(xn) + (1 – tn) proxαng(I – αn∇f )(xn) + ẽ(xn), (35)

where

ẽ(xn) = tn
[
h(xn + βnvn) – h(xn)

]

+ (1 – tn)
[
proxαng(I – αn∇f )(xn + βnvn)) – proxαng(I – αn∇f )(xn)

]
.

In view of Lemma 2.4 and the assumptions as regards h and f , we have

∥
∥̃e(xn)

∥
∥

≤ tn‖βnvn‖ + (1 – tn)
∥∥βnvn + αn

[∇f (xn) – ∇f (xn + βnvn)
]∥∥
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≤ tn‖βnvn‖ + (1 – tn)(1 + αnL)‖βnvn‖
=

[
1 + (1 – tn)αnL

]‖βnvn‖, (36)

which implies that
∑∞

n=0 ‖̃e(xn)‖ < ∞ owing to the conditions imposed on tn, αn, βn and
vn. We then deduce the conclusion from Theorem 3.1. �

5 An application and the numerical experiment
In this section, we apply Theorem 4.2 to linear inverse problem and show the numerical
experiment.

5.1 Linear inverse problem
Let H be a real Hilbert space and A : H → H a bounded linear operator. Given b ∈ H . We
consider the following linear inverse problem:

Ax = b + w, x ∈ H , (37)

which is used to estimate an unknown signal x from the noise measurement b in finite-
dimensional space. w is an unknown noise vector. This problem can be solved via the
regularized least-squares problem:

min
x∈H

{
1
2
‖Ax – b‖2 + γ ‖x‖

}
, (38)

where γ > 0 is a regularization parameter.
By applying algorithm (34) to (38), we obtain the following.

Theorem 5.1 Let h : H → H be a ρ-contractive operator with ρ ∈ (0, 1). Assume A 	= 0
and the solution set S of (38) is nonempty. Assume, in addition, {vn} is a bounded sequence
in H , {βn} ⊂ (0, +∞) such that

∑∞
n=0 βn < ∞. Given x0 ∈ H , we define {xn} by the iterative

scheme

xn+1 = tnh(xn + βnvn) + (1 – tn) proxαnγ ‖·‖
(
I – αnA∗(A(xn + βnvn) – b

))
(39)

(A∗ is the adjoint of A), where
(i) 0 < a ≤ αn < 2

‖A‖2 ,
∑∞

n=0 |αn+1 – αn| < ∞;
(ii) {tn} ⊂ (0, 1), limn→∞ tn = 0;

(iii)
∑∞

n=0 tn = ∞,
∑∞

n=0 |tn+1 – tn| < ∞.
Then {xn} converges strongly to a point x∗ ∈ S, where x∗ is the unique solution of the

following variational inequality problem:

〈
(I – h)x∗, x – x∗〉, ∀x ∈ S.

Proof Take f (x) = 1
2‖Ax – b‖2, g(x) = γ ‖x‖. It is easy to see that f , g ∈ �0(H), ∇f (x) =

A∗(Ax – b), and

∥∥∇f (x) – ∇f (y)
∥∥

=
∥∥A∗(Ax – b) – A∗(Ay – b)

∥∥ =
∥∥A∗A(x – y)

∥∥ ≤ ‖A‖2‖x – y‖. (40)
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So ∇f is Lipschitz continuous with L = ‖A‖2. In addition, g is subdifferentiable, and its
subdifferential is

∂‖ · ‖(x) =

⎧
⎨

⎩
{x/‖x‖}, if x 	= 0;

B(0; 1), if x = 0.
(41)

So we can apply Theorem 4.2 to obtain this result. �

5.2 Numerical experiment
In this subsection, we apply the iterative scheme (34) to solve (38) with H = R

J to demon-
strate the effectiveness of this algorithm. For finite-dimensional spaces, the least-squares
problem (38) takes the form as follows:

min

{
1
2
‖Ax – b‖2

2 + γ ‖x‖1 : x ∈R
J
}

, (42)

where A ∈ R
M×J is a matrix. The vector b ∈ R

M . f (x) = 1
2‖Ax – b‖2

2 implies ∇f (x) =
AT (Ax – b) with L = ‖AT A‖, where AT represents the transpose of A. proxαnγ ‖·‖1 (xn) =
(proxαnγ |·|1 (x1

n), . . . , proxαnγ |·|1 (xJ
n))T , where proxαnγ |·|1 (xk

n) = sgn(xk
n) max{|xk

n| – αnγ , 0}, k =
1, 2, . . . , J . The bounded sequence {vn} and the summarizable nonnegative real sequence
{βn} can be chosen as follows:

vn =

⎧
⎨

⎩
– dn

‖dn‖ , if 0 	= dn ∈ ∂g(xn),

0, if 0 ∈ ∂g(xn).
(43)

βn = cn for some c ∈ (0, 1).
Throughout the experiments, A ∈R

M×J is a matrix whose entries are sampled indepen-
dently from a Gaussian distribution of zero mean and unit variance. The vector b ∈R

M is
generated from a uniformly distribution in the interval [–5, 5]. The regularization param-
eter γ = 0.05. We choose M = 50 and J = 200. Given tn = 1

3n , αn = n
3
√

L(n+1)
, we define the

stopping criterion

Err := ‖xn+1 – xn‖ < ε, (44)

where ε is a given small positive constant. To see the behavior of algorithm (34), we
plotted the evolutions of ‘Err’ defined by (44) with respect to the numbers of iterations
in Fig. 1 for the initial point x0 = (0, 0, . . . , 0)T ∈ R

200. The plots in Fig. 1 show that the
proposed algorithm is reliable to solve (42). Besides, The iteration numbers (“Iter”), the
computing time in seconds (“Time”), the error’s values (“Err”) and (“‖Axn – b‖”) are re-
ported in Table 1 when the stopping criterion ε = 5 × 10–5 is reached. We can see from
Table 1 that the summarizable positive real sequence {β = cn} and the contractive con-
stant ρ can have a large impact on the numerical performance. We also find that the se-
quence {xn} generated by algorithm (34) can get very close to the solution of the problem
Ax = b.
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Figure 1 The numbers of iterations under the different error values

Table 1 Numerical results with different (c,ρ) and initial value x0

(c,ρ) x0 = (0, 0, . . . , 0)T x0 = (1, 1, . . . , 1)T

Iter. Time ‖Axn – b‖ Iter. Time ‖Axn – b‖
(0.1, 0.5) 152 0.140 0.066 199 0.140 0.074
(0.8, 0.5) 440 0.608 0.220 260 0.172 0.070
(0.9, 0.2) 680 0.546 0.307 773 0.484 0.353

6 Conclusion
In this paper, we introduced a modified proximal gradient algorithm with perturbations
in Hilbert space by making a convex combination of a proximal gradient operator and a
contractive operator h. There exists a perturbation term in each iterative step (see (12)).
We proved that the generated iterative sequence converges strongly to a solution of a non-
smooth composite optimization problem. We also showed that the perturbation in com-
puting the gradient of f in algorithm (14) actually can be seen as a special case of (12).
Finally, as one of the main objectives of this paper, we verified that the exact modified algo-
rithm is bounded perturbation resilient, a fact which, to some extent, extends the horizon
of the recent developed superiorization methodology.
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