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Abstract
We investigate the efficiency of Chebyshev Thresholding Greedy Algorithm (CTGA)
for an n-term approximation with respect to general bases in a Banach space. We
show that the convergence property of CTGA is better than TGA for
non-quasi-greedy bases. Then we determine the exact rate of the Lebesgue
constants Lch

n for two examples of such bases: the trigonometric system and the
summing basis. We also establish the upper estimates for Lch

n with respect to general
bases in terms of quasi-greedy parameter, democracy parameter and A-property
parameter. These estimates do not involve an unconditionality parameter, therefore
they are better than those of TGA. In particular, for conditional quasi-greedy bases, a
faster convergence rate is obtained.
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1 Introduction
Nonlinear n-term approximations with respect to biorthogonal systems such as the
trigonometric system and wavelet bases are frequently used in image or signal process-
ing, PDE solvers and statistic learning (see [1]). The fundamental question of a nonlinear
approximation is how to construct good algorithms to realize the best n-term approxi-
mation. It turns out the Thresholding Greedy Algorithm (TGA), which was proposed by
Konyagin and Temlyakov in [2], in some sense is a suitable method for nonlinear n-term
approximation. In this paper, we investigate the efficiency of the Chebyshev Thresholding
Greedy Algorithm (CTGA), which is an enhancement of TGA.

Throughout this paper, X is an infinite-dimensional separable Banach space (over K = R

or C) with a norm ‖ · ‖ = ‖ · ‖X and its dual space is denoted by X∗. A family {ei, e∗
i }∞i=1 ⊂

X × X∗ is called a bounded biorthogonal system if
1. X = span[ei : i ∈N].
2. e∗

i (ej) = 1 if i = j, e∗
i (ej) = 0 if i �= j.

3. 0 < infi min{‖ei‖,‖e∗
i ‖} ≤ supi max{‖ei‖,‖e∗

i ‖} < ∞.
For brevity, we refer to (ei) as a basis, and denote it by � . It is known from [1] that, for any

c > 1, any separable Banach space has a bounded biorthogonal system (a Markushevitch
basis) with 1 ≤ ‖ei‖, ‖e∗

i ‖ ≤ c, and X∗ = spanw∗
[e∗

i : i ∈N].
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For any x ∈ X, we have the formal expansion

x ∼
∞∑

i=1

e∗
i (x)ei.

It is easy to see that limi→∞ e∗
i (x) = 0, and supi |e∗

i (x)| > 0, unless x = 0. For each n ∈ N, let

�n := �n(�) :=
{∑

i∈A

aiei : A ⊂N, #(A) = n, ai ∈K

}
,

where #(A) denotes the cardinality of the set A. We consider the problem of approximating
x ∈ X by the elements of �n and define the best error of such an approximation as

σn(x) := σn(x,�) = inf
y∈�n

‖x – y‖.

For any finite set A ⊂ N, define the projection operator PAx =
∑

i∈A e∗
i (x)ei. The n-term

error of the expansion approximation with respect to � is

σ̃n(x) := σ̃n(x,�) = inf
#(A)=n

‖x – PAx‖.

It is clear that σ̃n(x) ≥ σn(x).
A finite set � with mini∈� |e∗

i (x)| ≥ maxi∈�c |e∗
i (x)|, is called a greedy set of order n for x if

#(�) = n, and we write � ∈ G(x, n). Let ρ : N→N be a permutation, it is a greedy ordering
if |e∗

ρ(j)(x)| ≥ |e∗
ρ(i)(x)| for j ≤ i. In general, a greedy ordering is not unique. In [2], Konyagin

and Temlyakov defined the thresholding greedy operator of x of order n with respect to
� by

Gn(x) := Gn(x,�) :=
n∑

i=1

e∗
ρ(i)(x)eρ(i).

We write Gn(x,�) for the set of all thresholding greedy operators of order n with respect to
� for x, when there is no confusion about x and � , denote it by Gn. We note that Gn ∈ Gn is
neither continuous nor bounded, but homogeneous, that is, Gn(λx) = λGn(x) for λ ∈K, so
we can define the norm of Gn as ‖Gn‖ := sup‖x‖≤1 ‖Gn(x)‖, and we have ‖Gn(x)‖ ≤ ‖Gn‖‖x‖
for any x ∈ X.

We address the concept of a class of important bases which are called quasi-greedy
bases.

Definition 1.1 ([2]) We call a basis � of a Banach space X a quasi-greedy basis if, for any
Gn ∈ Gn, the inequality

‖Gn‖ ≤ C

holds with a constant C independent of n.
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Subsequently, Wojtaszczyk in [3] proved that a basis � is quasi-greedy if and only if for
any x ∈ X,

lim
n→+∞ Gn(x,�) = x.

Examples of quasi-greedy bases can be found in the literature [4–9]. Of course, bases
need not to be quasi-greedy, there exists a non-quasi-greedy basis, for these types of bases,
TGA may fail to converge for certain vector x ∈ X. For example, Temlyakov in [10] showed
that trigonometric system in Lebesgue spaces is not quasi-greedy. Now we recall this re-
sult.

Let d be a natural number, Td the d-dimensional torus. For 1 ≤ p < ∞, let Lp(Td) denote
the space of all measurable functions for which

‖f ‖p :=
(

1
(2π )d

∫

Td

∣∣f (x)
∣∣p dx

) 1
p

< ∞.

For convenience we also set L∞(Td) = C(Td), the space of continuous functions with the
uniform norm

‖f ‖∞ := max
x∈Td

∣∣f (x)
∣∣.

Let T d denote the trigonometric system {ei(k,x) : k ∈ Z
d} in Lp(Td), where {ei(k,x)} is for the

complex exponentials and 1 ≤ p ≤ ∞. In [10] Temlyakov proved that there is a positive
absolute constant C such that for each n and 1 ≤ p ≤ ∞ there exists a nonzero function
f ∈ Lp(Td) for which

∥∥Gn
(
f ,T d)∥∥

p ≥ Cn| 1
2 – 1

p |‖f ‖p.

So T d is not a quasi-greedy basis of Lp(Td) when p �= 2.
Now we recall the definition of CTGA. An n-term Chebyshev thresholding greedy ap-

proximant of x with respect to � is defined as CGn(x) := CGn(x,�) ∈ span[eρ(i) : 1 ≤ i ≤ n]
such that

∥∥x – CGn(x)
∥∥ = min

{∥∥∥∥∥x –
n∑

i=1

aieρ(i)

∥∥∥∥∥ : (ai)n
i=1 ∈K

n

}
.

We have the following results on the convergence of CTGA in the more general bases.

Theorem 1.1 Let � = (ei) be a basis for a Banach space X. Then for each x ∈ X,

lim
n→+∞ CGn(x,�) = x.

From Theorem 1.1, we know that the convergence property of CTGA is better than
TGA for non-quasi-greedy bases. As a consequence, we have the following result, which
was firstly pointed out in [11].
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Corollary 1.2 Let 1 ≤ p ≤ ∞ and T d be trigonometric system in Lp(Td). Then, for any
f ∈ Lp(Td),

lim
n→+∞

∥∥f – CGn
(
f ,T d)∥∥

p = 0.

In view of Theorem 1.1, it is natural to study the convergence rate of CTGA for every
x ∈ X. To this end, we will estimate the Chebyshevian Lebesgue constants and its relatives:

Lch
n := Lch

n (�) := sup
x∈X,σn(x) �=0

‖x – CGn(x)‖
σn(x)

and

L̃ch
n := L̃ch

n (�) := sup
x∈X ,̃σn(x) �=0

‖x – CGn(x)‖
σ̃n(x)

.

It is obvious that Lch
n ≥ L̃ch

n .
In [6] and [12], the authors got the exact orders for Lch

n (�) and L̃ch
n (�) with respect to

quasi-greedy bases. To state their results, we recall some notions. For n ≥ 1 and A, B ⊂N,
the democracy parameter μn and the disjoint democracy parameter μd

n are defined as

μn = sup
#(A)=#(B)≤n

‖1A‖
‖1B‖ and μd

n = sup
#(A)=#(B)≤n,A∩B=∅

‖1A‖
‖1B‖ ,

where 1C =
∑

i∈C ei for any finite set C. Clearly, μd
n ≤ μn. For a quasi-greedy basis, we

define the quasi-greedy constant K to be the least constant such that

∥∥Gn(x,�)
∥∥ ≤ K‖x‖ and

∥∥x – Gn(x,�)
∥∥ ≤ K‖x‖ for all x ∈ X, n ≥ 1.

Theorem 1.3 If � is a K-quasi-greedy basis in a Banach space (over K = R or C), then,
for all n ≥ 1,

μd
n

2K
≤ L̃ch

n (�) ≤ Lch
n (�) ≤ 20K3μd

n for K = R

and

μd
n

2K
≤ L̃ch

n (�) ≤ Lch
n (�) ≤ 100K3μd

n for K = C.

To compare Theorem 1.3 with the corresponding results of TGA, for a basis � of a
Banach space X, we recall the definitions of Lebesgue constants Ln and L̃n:

Ln := Ln(�) := sup
x∈X,σn(x) �=0

‖x – Gn(x)‖
σn(x)

and

L̃n := L̃n(�) := sup
x∈X ,̃σn(x) �=0

‖x – Gn(x)‖
σ̃n(x)

.
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In what follows, for any two nonnegative sequences {an} and {bn}, the order inequality
an � bn (an � bn) means that there is a number C independent of n such that an ≤ Cbn,
(an ≥ Cbn). The asymptotic relation an � bn means an � bn and an � bn.

It is known from Theorem 1.1 in [7] that, for any quasi-greedy basis � ,

Ln(�) � kn + μn,

where kn := sup#(A)≤n ‖PA‖ is the unconditionality parameter. So together with Theo-
rem 1.3, we have

Ln(�)
Lch

n (�)
� kn + μn

μn
= 1 +

kn

μn
� 1 + kn,

since μn ≥ 1 for all n ≥ 1. It is known from [13, Lemma 8.2], that

kn � ln n for any n = 2, 3, . . . .

So we have

Ln(�)
Lch

n (�)
� 1 + ln n.

From the above inequalities one can see that the order of Lch
n may have some improvements

for some conditional quasi-greedy bases. In fact it is shown in [7], Example 2, that the
maximum improvement is ln n. On the other hand, for unconditional bases, CTGA makes
no essential improvements.

However, as far as we know, there is no result on the estimates of Lch
n (�) for non-quasi-

greedy bases. So in Sect. 2, we study Chebyshevian Lebesgue constants for two examples
of such bases, the trigonometric system and the summing basis. We determine the exact
order of Lch

n (�) for these bases. In Sect. 3, we obtain the upper estimates for Lch
n (�) with

respect to the general bases which leads to an improvement of Theorem 1.3 for condi-
tional quasi-greedy bases. In the final section, we present a short survey of the results and
questions on the efficiency of CTGA.

2 Chebyshevian Lebesgue constants for two non-quasi-greedy bases
The conclusion of Theorem 1.1 is our motivation to study the efficiency of CTGA for
non-quasi-greedy bases. So we begin with the proof of Theorem 1.1.

Proof of Theorem 1.1 Since � = (ei) is a basis for a Banach space X, we have X = span{ei :
i ∈ N}. Let x ∈ X. For any ε > 0, there exist M ∈N and {xi}M

i=1 ⊂K
M , such that

∥∥∥∥∥x –
M∑

i=1

xiei

∥∥∥∥∥ < ε.

For this M, we can take a positive integer N such that

{1, 2, . . . , M} ⊂ {
ρ(1),ρ(2), . . . ,ρ(N)

}
.
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So for a Chebyshev greedy approximant CGN (x) =
∑N

i=1 cieρ(i), we have

∥∥∥∥∥x –
N∑

i=1

cieρ(i)

∥∥∥∥∥ ≤
∥∥∥∥∥x –

M∑

i=1

xiei

∥∥∥∥∥ < ε.

The proof is completed. �

A basic problem in approximation theory is to represent a given function approximately,
and solving this problem is to choose a representation system. Traditionally, a represen-
tation system has natural features such as minimality, orthogonality, simple structure and
nice computational characteristics. The trigonometric system is one of the most typical
representation systems, a very importance feature of the trigonometric system that made
it attractive for the representation of periodic functions is orthogonality.

Next we consider Lch
n (�) for two non-quasi-greedy bases � . The first one is the trigono-

metric system. We obtain the following result.

Theorem 2.1 For the trigonometric system T d = {eikx}k∈Z in Lp(Td), 1 < p ≤ ∞, we have,
for n ≥ 1,

Lch
n

(
T d) � n| 1

2 – 1
p |.

The upper bound of Lch
n (T d) follows from the known results of Ln(T d) and the proof

of the lower bound of Lch
n (T d) relies on a theorem on the lower estimate of Lch

n (�) for a
general basis � in a Banach space X.

To present this theorem we recall some concepts. For a basis � = (ei)∞i=1 of X, define the
partial sum operator Sm : X → X by

Sm(x) :=
m∑

i=1

e∗
i (x)ei. (2.1)

Then Sm is a continuous linear operator. So we define ‖Sm‖ in the usual way. For finite sets
A, B ⊂ N, we write A < B if max{n : n ∈ A} < min{n : n ∈ B}. Denote by ϒ the set of ε = {εi}
with |εi| = 1 for all i (where εi could be real or complex).

Theorem 2.2 Let � be a basis of a Banach space X. For any A, B ⊂N with #(A) = #(B) = n
and A < B, we have, for all ε ∈ ϒ and n ≥ 1,

Lch
n (�) ≥ max

{
1

‖Sn‖
‖1εA‖
‖1B‖ ,

1
1 + ‖Sn‖

‖1B‖
‖1εA‖

}
, (2.2)

where 1εA =
∑

i∈A εiei.

Proof Let ε = (εi) be any choice of signs from ϒ . Choose ε > 0, we consider

x =
∑

i∈A

εiei + (1 + ε)
∑

i∈B

ei, (2.3)
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then B ∈ G(x, n) and we can find a Chebyshev greedy approximant CGn(x) which is sup-
ported on B, such that

x – CGn(x) =
∑

i∈A

εiei +
∑

i∈B

aiei

for some {ai}i∈B ⊂K. Thus

∥∥x – CGn(x)
∥∥ =

∥∥∥∥
∑

i∈A

εiei +
∑

i∈B

aiei

∥∥∥∥ ≤ Lch
n σn(x). (2.4)

Notice that A < B and ‖Sn(x – CGn(x))‖ ≤ ‖Sn‖‖x – CGn(x)‖, we have

∥∥∥∥
∑

i∈A

εiei

∥∥∥∥ ≤ ‖Sn‖
∥∥∥∥
∑

i∈A

εiei +
∑

i∈B

aiei

∥∥∥∥. (2.5)

Combining (2.4) and (2.5), we obtain

∥∥∥∥
∑

i∈A

εiei

∥∥∥∥ ≤ ‖Sn‖
∥∥∥∥
∑

i∈A

εiei +
∑

i∈B

aiei

∥∥∥∥ ≤ ‖Sn‖Lch
n σn(x).

Hence

σn(x) ≤ ∥∥x – PB(x)
∥∥ =

∥∥∥∥
∑

i∈A

εiei

∥∥∥∥ ≤ ‖Sn‖Lch
n σn(x). (2.6)

Now we consider

y = (1 + ε)
∑

i∈A

εiei +
∑

i∈B

ei, (2.7)

then A ∈ G(y, n) and there exists some {bi}i∈A ⊂K such that

y – CGn(y) =
∑

i∈A

biei +
∑

i∈B

ei.

Since A < B and

∥∥y – CGn(y)
∥∥ =

∥∥∥∥
∑

i∈A

biei +
∑

i∈B

ei

∥∥∥∥ ≤ Lch
n σn(y),
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we have, for Sn(y – CGn(y)) =
∑

i∈A biei,

∥∥∥∥
∑

i∈B

ei

∥∥∥∥ =
∥∥∥∥
∑

i∈A

biei +
∑

i∈B

ei –
∑

i∈A

biei

∥∥∥∥

≤
∥∥∥∥
∑

i∈A

biei +
∑

i∈B

ei

∥∥∥∥ +
∥∥∥∥
∑

i∈A

biei

∥∥∥∥

≤
∥∥∥∥
∑

i∈A

biei +
∑

i∈B

ei

∥∥∥∥ + ‖Sn‖
∥∥∥∥
∑

i∈A

biei +
∑

i∈B

ei

∥∥∥∥

=
(
1 + ‖Sn‖

)∥∥∥∥
∑

i∈A

biei +
∑

i∈B

ei

∥∥∥∥

≤ (
1 + ‖Sn‖

)
Lch

n σn(y).

Hence

σn(y) ≤ ∥∥y – PA(y)
∥∥ =

∥∥∥∥
∑

i∈B

ei

∥∥∥∥ ≤ (
1 + ‖Sn‖

)
Lch

n σn(y). (2.8)

For any z ∈ �n,

σn(x) ≤ ‖x – z‖ ≤ ‖x – y‖ + ‖y – z‖.

Taking the infimum over all such z, and using the symmetry of x and y, we have

∣∣σn(x) – σn(y)
∣∣ ≤ ‖x – y‖. (2.9)

From (2.3) and (2.7),

‖x – y‖ =
∥∥∥∥ε

(∑

i∈D

ei –
∑

i∈A

ei

)∥∥∥∥ → 0 as ε → 0,

then (2.9) and the above equality imply that

σn(x) � σn(y). (2.10)

Combining (2.6), (2.8) and (2.10), we obtain

1
‖Sn‖Lch

n

∥∥∥∥
∑

i∈A

εiei

∥∥∥∥ ≤
∥∥∥∥
∑

i∈B

ei

∥∥∥∥

≤ (
1 + ‖Sn‖

)
Lch

n

∥∥∥∥
∑

i∈A

εiei

∥∥∥∥. (2.11)

Thus,

Lch
n ≥ 1

‖Sn‖
‖1εA‖
‖1B‖ from the first inequality of (2.11)
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and

Lch
n ≥ 1

1 + ‖Sn‖
‖1B‖
‖1εA‖ from the second inequality of (2.11).

We complete the proof. �

If � is a Schauder basis of a Banach space X, then for any x ∈ X there exists a unique
expansion

x =
∞∑

i=1

e∗
i (x)ei,

which means the partial sum sequence {Sm(x)} defined in (2.1) converges to x in X norm
for every x ∈ X. By the principle of uniform boundedness, we have supm ‖Sm‖ < ∞. The
number supm ‖Sm‖ is called the basis constant of the basis � (see [14]) and denoted by β ,
which is used frequently for the research of greedy algorithms (see [15]).

We have the following corollary, which is a direct consequence of Theorem 2.2.

Corollary 2.3 Let � be a Schauder basis for a Banach space X. For any A, B ⊂ N with
#(A) = #(B) = n and A < B, we have, for all ε ∈ ϒ and n ≥ 1,

Lch
n (�) ≥ max

{
1
β

‖1εA‖
‖1B‖ ,

1
1 + β

‖1B‖
‖1εA‖

}
.

Now we prove Theorem 2.1.

Proof of Theorem 2.1 The upper bounds follows from the obvious relationship Lch
n (T ) ≤

Ln(T ), and the inequality

Ln(T ) ≤ 1 + 3n| 1
p – 1

2 | for 1 ≤ p ≤ ∞, (2.12)

which was proved by Temlykov in [10].
Now we turn to the proof of the lower bounds. It suffices to prove the results for d = 1.

We consider separately two cases 1 < p < ∞ and p = ∞.
We first apply Theorem 2.2 to prove the results for 1 < p < ∞. It is well known that e∗

k(f )
is the kth Fourier coefficient of f defined by

e∗
k(f ) = f̂ (k) :=

1
2π

∫

T

f (x)e–ikx dx.

For notational convenience, we take a particular order

{
1, eix, e–ix, ei2x, e–i2x, . . .

}

of the trigonometric system T .
We consider two important trigonometric polynomials (see for instance [16]).
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1. The Dirichlet kernel of order n is defined as

Dn(x) =
∑

|k|≤n

eikx, x ∈ T. (2.13)

It is well known that

‖Dn‖p � n1– 1
p , n = 1, 2, . . . , 1 < p ≤ ∞, (2.14)

and

‖Dn‖1 � ln n, n = 1, 2, 3 . . . . (2.15)

2. The Rudin–Shapiro polynomial RN (x), which is defined recursively by pairs of
trigonometric polynomials Pj(x) and Qj(x) of order 2j – 1:

P0 = Q0 = 1,

Pj+1(x) = Pj(x) + ei2jxQj(x), Qj+1(x) = Pj(x) – ei2jxQj(x).

From the definition of Pn, it is clear that

Pn(x) =
2n–1∑

k=0

εkeikx, εk = ±1.

Let N be a natural number, and let it have the binary representation

N =
m∑

j=1

2nj , n1 > n2 > · · · > nm ≥ 0.

We set

R̃N (x) = Pn1 (x) +
m∑

j=2

Pnj (x)ei(2n1 +···+2nj–1 )x,

RN (x) = R̃N (x) + R̃N (–x) – 1.

Then RN (x) has the form

RN (x) =
∑

|k|≤N

εkeikx, εk = ±1, (2.16)

and it is known that

‖RN‖∞ ≤ CN
1
2 for 1 ≤ p ≤ ∞.
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Notice that

2N + 1 = 〈RN ,RN 〉
≤ ‖RN‖1 · ‖RN‖∞

≤ ‖RN‖1 · CN
1
2 ,

which implies ‖RN‖1 � N 1
2 . It is trivial that ‖RN‖1 � ‖RN‖p � ‖RN‖∞. Hence, we have

‖RN‖p � N
1
2 for 1 ≤ p ≤ ∞. (2.17)

Firstly, we assume that n is even. Define the sets

A = {k : 2 ≤ k ≤ n + 1} and B = {k : n + 1 < k ≤ 2n + 1}.

It is clear that #(A) = #(B) = n and A < B. So from (2.13) we have

1B(x) = Dn(x) – D n
2

(x),

where 1B(x) =
∑

k∈B eikx, hence the triangle inequality and (2.14) give

n1– 1
p � ‖Dn‖p + ‖D n

2
‖p ≥ ‖1B‖p ≥ ‖Dn‖p – ‖D n

2
‖p � n1– 1

p ,

which is equivalent to

‖1B‖p � n1– 1
p . (2.18)

And if we choose in ε the signs of the corresponding Rudin–Shapiro polynomial, according
to (2.16) and the definition of the set A, we have

1εA(x) = R n
2

(x) – ε0,

where 1εA(x) =
∑

k∈A εkeikx, by (2.17) and the triangle inequality, we obtain

n
1
2 – 1 � ‖R n

2
‖p – 1 ≤ ‖1εA‖p ≤ ‖R n

2
‖p + 1 � n

1
2 ,

which can be rewritten as

‖1εA‖p � n
1
2 . (2.19)

Combining (2.2), (2.18) and (2.19), we obtain

Lch
n (T ) ≥ 1

1 + ‖Sn‖Lp→Lp

‖1B‖p

‖1εA‖p
� n1– 1

p

n 1
2

= n
1
2 – 1

p for 2 < p < ∞

and

Lch
n (T ) ≥ 1

‖Sn‖Lp→Lp

‖1εA‖p

‖1B‖p
� n 1

2

n1– 1
p

= n
1
p – 1

2 for 1 < p ≤ 2,
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which imply that

Lch
n (T ) � n| 1

2 – 1
p | for 1 < p < ∞. (2.20)

Here we use the fact that the trigonometric system T d = {ei(k,x)}k∈Zd is a Schauder basis
for Lp(Td), which is equivalent to

sup
n

‖Sn‖ < ∞,

i.e., the partial sum operator Sn is uniformly bounded.
Secondly, if n is an odd number. For n > 1, we define

A = {k : 1 ≤ k ≤ n} and B = {k : n < k ≤ 2n + 1}.

An argument similar to (2.19) gives

‖1εA‖p = ‖R n–1
2

‖p � (n – 1)
1
2 � n

1
2 , (2.21)

where we choose ε as above.
On the other hand, it is clear that

1B(x) = Dn(x) – D n–1
2

(x),

and from (2.14) and the triangle inequality

(n – 1)1– 1
p � ‖Dn–1‖p – ‖D n–1

2
‖p

≤ ‖1B‖p

≤ ‖Dn–1‖p + ‖D n–1
2

‖p

� (n – 1)1– 1
p ,

we have

‖1B‖p � (n – 1)1– 1
p � n1– 1

p . (2.22)

Combining (2.2), (2.21), (2.22) and using a similar argument to above, we also prove the
inequality (2.20). So we complete the proof for 1 < p < ∞.

For p = ∞, if we take A, B and ε as above, then from Theorem 2.2, (2.14) and (2.17), we
obtain

Lch
n (T ) ≥ 1

1 + ‖Sn‖L∞→L∞

‖1B‖∞
‖1εA‖∞

� n 1
2

ln n
,

where we use the well-known relation ‖Sn‖L∞→L∞ � ln n for all n ≥ 2 (see [17]).
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Now we adopt a different approach to remove the factor ln n. Let T(n) denote the space
of trigonometric polynomials of degree n, which consists of functions of the form

T(x) =
∑

|k|≤n

ck(T)eikx, k ∈ Z.

For n ≥ 1, we define the class of sparse trigonometric polynomials

A1(T(n)
)

:=
{

T ∈ T(n) :
∑

|k|≤n

∣∣ck(T)
∣∣ ≤ 1

}

and the function

fn(x) :=
1

4n
∑

1≤|k|≤2n

(
1 –

|k|
4n

)
eikx,

which can be rewritten as

fn(x) =
1

2n

2n∑

k=1

(
1 –

k
4n

)
cos kx.

It is clear that {1, 2, . . . , n} ∈ G(fn, n). Let CGn(fn) be the best approximant to fn in L∞(T)
from span{cos x, cos 2x, . . . , cos nx}. From the relationship

∥∥∥∥∥

2n∑

k=n+1

cos kx

∥∥∥∥∥
q

� n1– 1
q ,

which holds for any 1 < q < ∞, and the Hölder inequality, we have

〈
fn,

2n∑

k=n+1

cos kx

〉
=

〈
fn – CGn(fn),

2n∑

k=n+1

cos kx

〉

≤ ∥∥fn – CGn(fn)
∥∥

q′ ·
∥∥∥∥∥

2n∑

k=n+1

cos kx

∥∥∥∥∥
q

� n
1
q′ ∥∥fn – CGn(fn)

∥∥
q′ ,

where 1
q + 1

q′ = 1. It is easy to check that

〈
fn,

2n∑

k=n+1

cos kx

〉
� 1.

Thus, we obtain

∥∥fn – CGn(fn)
∥∥

q′ � 1

n
1
q′

.

Letting q′ → ∞, we have

∥∥fn – CGn(fn)
∥∥∞ � 1.
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To estimate the upper bound of σn(fn)∞, we invoke the following inequality, which holds
for any m > n and g ∈ A1(T(m)):

σn(g,T )∞ ≤ Cn– 1
2

(
1 + ln

m
n

) 1
2

, (2.23)

which was proved by DeVore and Temlyakov in [18] with the help of Gluskin’s theorem
[19]. Notice that fn ∈ A1(T(2n)), we have by (2.23), with m = 2n,

σn(fn,T )∞ ≤ Cn– 1
2 (1 + ln 2)

1
2 � n– 1

2 .

Hence

Lch
n (T ) ≥ ‖fn – CGn(fn)‖∞

σn(fn,T )∞
� n

1
2 .

Thus the proof of Theorem 2.1 is completed. �

Remark When p = 1, we have, for n ≥ 2,

Lch
n (T ) � n 1

2

(ln n)2 . (2.24)

As in the proof of Theorem 2.1, we can derive the inequality

Lch
n ≥ ‖∑

i∈A εiei‖1

‖Sn‖L1→L1‖
∑

i∈B ei‖1
.

Choosing A, B and {εi} as above, from (2.15) and (2.17) we have

∥∥∥∥
∑

i∈A

εiei

∥∥∥∥
1
� n

1
2 , and

∥∥∥∥
∑

i∈B

ei

∥∥∥∥
1
� ln n.

Moreover it is well known that ‖Sn‖L1→L1 � ln n, see for instance [16], Theorem 7.4.1, so
we get the inequality (2.24).

An interesting and challenging problem is whether the inequality (2.24) can be improved
to

Lch
n (T ) � n

1
2 .

The second example is the summing basis. Let X be the real Banach space of all se-
quences α = (an)n∈N with

‖α‖ := sup
M≥1

∣∣∣∣∣

M∑

n=1

an

∣∣∣∣∣ ≤ ∞.

The standard canonical basis {en, e∗
n} satisfies ‖em‖ ≡ 1,‖e∗

1‖ = 1 and ‖e∗
n‖ = 2 if n ≥ 2,

which is called the summing basis. It is known from [20], Proposition 5.1, for this basis,
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that gn = 2n. So this is a non-quasi-greedy basis of X. For this basis, we can give the estimate
for Lch

n (�) by directly computing.

Theorem 2.4 For the summing basis � = {en} of the real Banach space X, we have, for
n ≥ 1,

1 + 2n ≤ L̃ch
n ≤ 1 + 4n ≤ Lch

n ≤ 1 + 6n.

Proof We begin with the lower estimate of L̃ch
n . We first pick the vector

x = (
︷ ︸︸ ︷
0, 2, 0;

︷ ︸︸ ︷
0, 2, 0; . . . ;

︷ ︸︸ ︷
0, 2, 0; 1;

︷︸︸︷
–2, 2,

︷︸︸︷
–2, 2, . . . ,

︷︸︸︷
–2, 2, 0, 0, . . .).

Then � = {n : xn = –2} ∈ G(x, n). Let CGn(x) be the Chebyshev approximant of x which is
supported on �, we have, for some {ai}n

i=1 ⊂R
n,

x – CGn(x) = (
︷ ︸︸ ︷
0, 2, 0;

︷ ︸︸ ︷
0, 2, 0; . . . ;

︷ ︸︸ ︷
0, 2, 0; 1; a1, 2, a2, 2, . . . , an, 2, 0, 0, . . .).

Notice that

∥∥x – CGn(x)
∥∥ =

∥∥(
︷ ︸︸ ︷
0, 2, 0;

︷ ︸︸ ︷
0, 2, 0; . . . ;

︷ ︸︸ ︷
0, 2, 0; 1; a1, 2, a2, 2, . . . , an, 2, 0, 0, . . .)

∥∥

≥ ∥∥(
︷ ︸︸ ︷
0, 2, 0;

︷ ︸︸ ︷
0, 2, 0; . . . ;

︷ ︸︸ ︷
0, 2, 0; 1; 0, 0, 0, 0, . . . , 0, 0, 0, 0, . . .)

∥∥

= 2n + 1

and

σ̃n(x) ≤ ∥∥x – (
︷ ︸︸ ︷
0, 2, 0; . . . ;

︷ ︸︸ ︷
0, 2, 0; 0, 0, . . .)

∥∥

= ‖(0, 0, 0; . . . ; 0, 0, 0; 1,
︷︸︸︷
–2, 2,

︷︸︸︷
–2, 2, . . . ,

︷︸︸︷
–2, 2, 0, 0, . . .)

= 1,

we have

L̃ch
n ≥ ‖x – CGn(x)‖

σ̃n(x)
≥ 2n + 1.

For the upper estimate of L̃ch
n , we use the notation and the method in the proof of The-

orem 3.5 of the next section and notice that (3.6) can be bounded by
∥∥∥∥

∑

i∈A\�
e∗

i (x)ei

∥∥∥∥ ≤
∑

i∈A\�

∣∣e∗
i (x)

∣∣‖ei‖

≤ sup
i∈A\�

‖ei‖
∑

�\A

∣∣e∗
i (x)

∣∣

≤ sup
i

‖ei‖
∑

�\A

∣∣e∗
i (x – PAx)

∣∣

≤ sup
i

‖ei‖
∥∥e∗

i
∥∥|� \ A|‖x – PAx‖

≤ 2n‖x – PAx‖,
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which implies kn ≤ 2n, we have

L̃ch
n ≤ gc

n + 2n ≤ kc
n + 2n ≤ 1 + kn + 2n ≤ 1 + 4n,

where gc
n = supG∈⋃

k≤n Gk
‖I – G‖ and kc

n = sup#(A)≤n ‖I – PA‖.
Now we turn to the estimate of Lch

n . It is known from Proposition 5.1 in [20] that Ln ≤ 1 +
6n, hence the upper bound follows from this inequality and the trivial inequality Lch

n ≤ Ln.
For the estimate of the lower bound, let

x =
(︷ ︸︸ ︷

1
2

, 1,
1
2

;
︷ ︸︸ ︷
1
2

, 1,
1
2

; . . . ;
︷ ︸︸ ︷
1
2

, 1,
1
2

;
1
2

;
︷︸︸︷
–1, 1,

︷︸︸︷
–1, 1, . . . ,

︷︸︸︷
–1, 1, 0, 0, . . .

)
.

Similar to the proof of the first inequality, for � = {n : xn = –1} ∈ G(x, n), there exists some
{bi}n

i=1 ⊂ R
n such that, for the Chebyshev approximant CGn(x) of x which is supported

on �,

x – CGn(x) =
(︷ ︸︸ ︷

1
2

, 1,
1
2

;
︷ ︸︸ ︷
1
2

, 1,
1
2

; . . . ;
︷ ︸︸ ︷
1
2

, 1,
1
2

;
1
2

;
︷︸︸︷
b1, 1,

︷︸︸︷
b2, 1, . . . ,

︷︸︸︷
bn, 1, 0, 0, . . .

)
.

Using the definition of the norm, we have

∥∥x – CGn(x)
∥∥ ≥ 2n +

1
2

.

Notice that

σn(x) ≤ ∥∥x – 2(
︷ ︸︸ ︷
0, 1, 0; . . . ;

︷ ︸︸ ︷
0, 1, 0; 0, 0, . . .)

∥∥ =
1
2

,

so we conclude

Lch
n ≥ ‖x – CGn(x)‖

σn(x)
≥ 1 + 4n.

The proof of Theorem 2.4 is completed. �

3 Chebyshevian Lebesgue constants for general bases
In this section, we obtain some upper bounds for Lch

n (�) and L̃ch
n (�) with respect to a

general basis � in a Banach space X. These bounds are given in terms of the following
quantities, which have been defined in [20].

Let G =
⋃

n≥1 Gn. Given G, G′ ∈ G we shall write G′ < G whenever G ∈ Gn and G′ ∈ Gm

with m < n and {ρ(1), . . . ,ρ(m)} ⊂ {ρ(1), . . . ,ρ(n)}. Now we introduce the following param-
eters.

• Quasi-greedy parameters:

g̃n = sup
G∈⋃

k≤n Gk ,G′ <G

∥∥G – G′∥∥.
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• Super-democracy parameters and their counterparts for disjoint sets:

μ̃n = sup
#(A)=#(B)≤n,ε,η∈ϒ

‖1εA‖
‖1ηB‖ and μ̃d

n = sup
#(A)=#(B)≤n,A∩B=∅,ε,η∈ϒ

‖1εA‖
‖1ηB‖ .

• A-property parameters:

νn = sup

{‖1εA + x‖
‖1ηB + x‖ : #(A) = #(B) ≤ n, ε,η ∈ ϒ , |x|∞ ≤ 1, A ∪̇ B ∪̇ x

}
,

where |x|∞ = supi |e∗
i (x)|, supp x = {i ∈ N : e∗

i (x) �= 0}, and A ∪̇ B ∪̇ x means that A, B and
supp x are pairwise disjoint.

To prove our results, we shall develop the technique used in the proof of Theorem 1.3.
We will make use of the properties of the truncation operators defined below.

For any z ∈C, we set

sign z =

⎧
⎨

⎩
z/|z| if |z| �= 0,

0 if z = 0.

And for each α > 0, we define the α-truncation of z by

Tα(z) =

⎧
⎨

⎩
α sign(z) if |z| > α,

z if |z| ≤ α.

We extend Tα to an operator in X by

Tα(x) =
∑

i

Tα

(
e∗

i (x)
)
ei =

∑

i∈�α

α
e∗

i (x)
|e∗

i (x)|ei +
∑

i /∈�α

e∗
i (x)ei,

where �α = {n : |e∗
i (x)| > α}. The sum above converges, since �α is finite. Moreover, we

notice that Tα(x) has the property, for every i, e∗
i (Tα(x)) = Tα(e∗

i (x)).
We also need the following lemmas.

Lemma 3.1 ([20]) If x ∈ X and ε = {sign e∗
i (x)}, then

min
�

∣∣e∗
i (x)

∣∣‖1ε�‖ ≤ g̃n‖x‖, ∀� ∈ G(x, n).

Lemma 3.2 ([20]) Let x ∈ X and α ≥ max |e∗
i (x)|. Then

‖x + z‖ ≤ νn‖x + α1ηB‖, ∀η ∈ ϒ ,

and for all B and z such that #(supp z) ≤ #(B) ≤ n, B ∪̇ x ∪̇ z and |z|∞ ≤ α.

The following lemma is a special case of Lemma 3.2 for x = 0.

Lemma 3.3 Let z ∈ X and B ⊂N such that #(supp z) ≤ #(B) ≤ n, B ∪̇ z. Then

‖z‖ ≤ μ̃d
n max

∣∣e∗
i (z)

∣∣‖1ηB‖, ∀η ∈ ϒ .
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Now we present our results.

Theorem 3.4 If � is a basis for a Banach space X, then for all n ≥ 1 we have

Lch
n (�) ≤ gc

2n + 2νñgn and L̃ch
n (�) ≤ gc

n + νñgn.

Proof For x ∈ X let ai = e∗
i (x), and � ∈ G(x, n). Fix ε > 0, pick z =

∑
A biei ∈ �n with

supp(z) ⊂ A and #(A) = #(�) = n such that ‖x – z‖ < σn(x) + ε. Set y := x – z =
∑

i yiei, for
which

yi =

⎧
⎨

⎩
ai, i /∈ A,

ai – bi, i ∈ A.

Let α = max�c |e∗
i (x)|. We define

ω = x – P�

(
x – Tα(y)

)
= (I – P�)

(
x – Tα(y)

)
+ Tα(y). (3.1)

For the first term of the above equality, we have

(I – P�)
(
x – Tα(y)

)
= (I – P�∪A)

(
x – Tα(y)

)
+ PA\�

(
x – Tα(y)

)
:= X + Z.

Note that, for i /∈ A, yi = ai, and for i /∈ �, |ai| ≤ α, we have, for i ∈ Ac ∩�c, Tα(yi) = Tα(ai) =
ai. hence |X|∞ = 0. And for Z = PA\�(x – Tα(y)), we have

|Z|∞ = max
i∈A\�

∣∣e∗
i
(
x – Tα(y)

)∣∣ = max
i∈A\�

(|ai| +
∣∣Tα(yi)

∣∣) ≤ 2α

and #(supp Z) ≤ #(A\�) = #(�\A) ≤ n, applying Lemma 3.2 with η = {sign e∗
i (y)}, to obtain

∥∥(I – P�)
(
x – Tα(y)

)∥∥ ≤ νn
∥∥(I – P�∪A)

(
x – Tα(y)

)
+ 2α1η�̃

∥∥

= 2νn max
�c

∣∣e∗
i (x)

∣∣‖1η�̃‖

≤ 2νn min
�\A

∣∣e∗
i (y)

∣∣‖1η�̃‖

≤ 2νn min
�̃

∣∣e∗
i (y)

∣∣‖1η�̃‖, (3.2)

where we choose �̃ as a set of cardinality #(�̃) = #(�\A) = #(A\�) in which x – z attains
the largest coefficients, and hence �̃ ∈ G(y, n). Using (3.2) and Lemma 3.1, we conclude

∥∥(I – P�)
(
x – Tα(y)

)∥∥ ≤ 2νñgn‖y‖. (3.3)

For the second term of (3.1), [20], Lemma 2.3, gives

∥∥Tα(y)
∥∥ ≤ gc

#(�α )‖y‖,

where �α = {i : |e∗
i (y)| > α}.
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Since

�α = (�α ∩ A) ∪ (
�α ∩ Ac) =

{
i ∈ A : |yi| > α

} ∪ {
i ∈ Ac : |ai| > α

} ⊂ A ∪ �, (3.4)

we have

‖ω‖ ≤ (
gc

#(A∪�) + 2νñgn
)‖y‖ ≤ (

gc
2n + 2νñgn

)‖y‖.

Since x – ω = P�(x – Tα(y)), clearly supp(x – ω) ⊂ �. We have

∥∥x – CGn(x)
∥∥ ≤ ‖ω‖ ≤ (

gc
2n + 2νñgn

)‖x – z‖ ≤ (
gc

2n + 2νñgn
)(

σn(x) + ε
)
.

Letting ε → 0, we conclude that

Lch
n ≤ gc

2n + 2νñgn.

The estimate for L̃ch
n is similar: we choose an index set A and let �̃ = �\A, for which

‖x – PAx‖ ≤ σ̃n(x) + ε. For y = x – PAx,

yi = e∗
i (y) =

⎧
⎨

⎩
ai, i /∈ A,

0, i ∈ A.

Now we estimate ω. On one hand, we have

�α =
{

i :
∣∣e∗

i (y)
∣∣ > α

} ⊂ {
i : |ai| > α

} ⊂ �,

hence

∥∥Tα(y)
∥∥ ≤ gc

#(�α )‖y‖ ≤ gc
n‖y‖. (3.5)

On the other hand, note that �̃ = �\A ∈ G(x – PAx, #(�\A)). We have the same inequal-
ities as (3.2) and (3.3) for η = {sign e∗

i (x – PAx)}. Thus,

L̃ch
n ≤ gc

n + νñgn.

The proof of Theorem 3.4 is completed. �

Next, we replace νn by μ̃d
n in Theorem 3.4 and get another estimate for the upper bounds.

Theorem 3.5 If � is a basis for a Banach space X, then for all n ≥ 1 we have

Lch
n (�) ≤ gc

2n + 2μ̃d
ñgn and L̃ch

n (�) ≤ gc
n + μ̃d

ñgn.

Proof With the same notation as in Theorem 3.4, we now deal with P�c (x – Tα(y)). It is
clear that

P�c
(
x – Tα(y)

)
=

∑

A\�

(
ai – Tα(yi)

)
ei.
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Now choose η = {sign e∗
i (x – z)}, B = � \ A. Notice that supp(

∑
A\�(ai – Tα(yi))ei) ∪̇ B,

#

(
supp

(∑

A\�

(
ai – Tα(yi)

)
ei

))
≤ #(A\�) = #(B) ≤ n and B ∈ G

(
PAc (x – z), n

)
,

by Lemma 3.3, we can continue the estimate

∥∥∥∥
∑

A\�

(
ai – Tα(yi)

)
ei

∥∥∥∥ ≤ μ̃d
n max

A\�
∣∣ai – Tα(yi)

∣∣‖1ηB‖

≤ μ̃d
n max

A\�
(|ai| +

∣∣Tα(yi)
∣∣)‖1ηB‖

≤ 2αμ̃d
n‖1ηB‖

≤ 2 max
�c

|ai|μ̃d
n‖1ηB‖. (3.6)

Then inequality (3.6) and Lemma 3.1 give

∥∥P�c
(
x – Tα(y)

)∥∥ ≤ 2 max
�c

|ai|μ̃d
n‖1ηB‖

≤ 2 min
�\A

∣∣e∗
i (x – z)

∣∣μ̃d
n‖1ηB‖

≤ 2μ̃d
ñgn

∥∥PAc (x – z)
∥∥

≤ 2μ̃d
ñgn‖x – z‖. (3.7)

Using (3.4), (3.5) and (3.7), we have

∥∥x – CGn(x)
∥∥ ≤ ‖ω‖ ≤ (

gc
2n + 2μ̃d

ñgn
)‖x – z‖ ≤ (

gc
2n + 2μ̃d

ñgn
)(

σn(x) + ε
)
.

Letting ε → 0, we conclude Lch
n ≤ gc

2n + 2μ̃d
ñgn. The estimate of L̃ch

n can be obtained in a
similar way. We complete the proof. �

The following corollary shows the upper bounds in Theorem 3.5 are asymptotically op-
timal for quasi-greedy bases from the viewpoint of convergence rate.

Corollary 3.6 If � is a quasi-greedy basis of a Banach space X with the quasi-greedy
constant K, then

Lch
n (�) ≤ 20κ2

K
2μd

n and L̃ch
n (�) ≤ 12κ2

K
2μd

n,

with κ = 1 or 2 for the real or complex spaces, respectively.

Proof We need the additional inequality

μ̃d
n ≤ 4κ2γnμ

d
n,

where γn = sup{ ‖1εB‖
‖1εA‖ : B ⊂ A, #(A) ≤ n, ε ∈ ϒ}, to pass from μ̃d

n to μd
n . The proof of this

inequality is almost the same as Lemma 3.4 in [20]. It is clear that, for a quasi-greedy basis
(ei) with the quasi-greedy constant K, γn ≤ gn ≤ K.
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By Theorems 3.5 and the above inequality, we have

Lch
n ≤ gc

2n + 2μ̃d
ñgn

≤ 1 + K + 8κ2γnμ
d
ñgn

≤ 1 + K + 16κ2
K

2μd
n,

where we have used g̃n ≤ 2K in the last inequality. Note that 1 ≤ μn ≤ 2Kμd
n and 1 ≤ K,

thus K≤ 2K2μd
n and we get the first conclusion

Lch
n ≤ 1 + K + 16κ2

K
2μd

n

≤ 2K + 16κ2
K

2μd
n

≤ 20κ2
K

2μd
n.

Similarly for L̃ch
n , we have

L̃ch
n ≤ gc

n + μ̃d
ñgn

≤ 1 + K + 4κ2γnμ
d
ñgn

≤ 1 + K + 8κ2
K

2μd
n

≤ 12κ2
K

2μd
n.

The proof of this corollary is completed. �

From the definition of quasi-greedy constant, we know K ≥ 1. Moreover, it is shown in
[5] that if the quasi-greedy constant K = 1, then � is an unconditional basis. So compared
to O(K3) in the upper bounds of Theorem 1.3, our results improve the implicit constants
for all conditional quasi-greedy bases since in this case K > 1.

Using Lemma 3.3 and the approach we adopt in the proof of Theorem 3.5, we obtain the
following results for TGA.

Theorem 3.7 For all n ≥ 1,

Ln(�) ≤ kc
2n + g̃nμ̃

d
n and L̃n(�) ≤ gc

n + g̃nμ̃
d
n.

Corollary 3.8 If � is a quasi-greedy basis of a Banach space X with the quasi-greedy
constant K, then

max
{

kc
n,μd

n
} ≤ Ln(�) ≤ kc

2n + 8κ2
K

2μd
n

and

μd
n ≤ L̃n(�) ≤ 12κ2

K
2μd

n,

with κ = 1 or 2 for the real or complex spaces, respectively.
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Remark In [20], Berná, Garrigós and Óscar established the inequalities:

Ln(�) ≤ kc
2n + g̃nμ̃n and L̃n(�) ≤ gc

n + g̃nμ̃n.

Note that the bounds in Theorem 3.7 are slightly better since μ̃d
n ≤ μ̃n.

Compared Theorem 3.5 with Theorem 3.7, we replace the unconditionality parameter
kc

n by quasi-greedy parameter gc
n in the first part of the addictive bound. In general, gc

n is
essentially smaller than kc

n, thus the estimate for Lch
n is better than the estimate for Ln. In

particular, for some conditional quasi-greedy bases, a faster convergence rate is obtained.

4 Status of the research on CTGA
In this section, we present a short overview of some results and questions on the efficiency
of CTGA. We will compare the approximation properties of CTGA with TGA.

We first consider quasi-greedy bases. It is well known that, for some conditional quasi-
greedy bases, CTGA has a better convergence rate than TGA, in particular, for democratic,
conditional quasi-greedy basis � , it follows from Theorem 3.5 that the inequality

∥∥x – CGn(x,�)
∥∥ ≤ Cσn(x,�)

holds for any x ∈ X, n ≥ 1, while for TGA with respect to these bases, from Theorem 1.5
in [20], we know that, for any x ∈ X, n ≥ 1, the best inequality we can get is

∥∥x – Gn(x,�)
∥∥ ≤ C ln xσn(x,�).

On the other hand, for unconditional bases, CTGA has the same rate of convergence as
TGA.

Secondly we consider non-quasi-greedy bases. From Theorem 1.1, we know that, for
these bases, CTGA has better convergence properties than TGA. However, as for the
convergence rate, the results obtained so far show CTGA does not make essential im-
provements over TGA. For example, we prove that the orders of the Lebesgue constants
of CTGA with respect to the trigonometric system and the summing basis are the same
as those of TGA. Moreover, for the sparse classes A1(T ) defined by

A1(T ) :=
{

T :
∑

k∈Z

∣∣ck(T)
∣∣ ≤ 1

}
,

the error performance of CTGA is also the same as TGA. In fact, we know from [11] and
[12] that, for 1 ≤ p ≤ ∞,

sup
f ∈A1(T )

∥∥f – CGn(f ,T )
∥∥

p � sup
f ∈A1(T )

∥∥f – Gn(f ,T )
∥∥

p.

For the Lebesgue constant Lch
n of CTGA with respect to non-quasi-greedy bases, many

problems are worthy to be studied: Can one establish some new estimates of the upper
and lower bounds for the general basis, and then obtain the exact rate of Lch

n for more
non-quasi-greedy bases? One more interesting question is the following: Can one find
a non-quasi-greedy basis for which CTGA has an essentially smaller Lebesgue constant
than TGA?
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