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Abstract
In this paper we give extensions of Sherman’s inequality considering the class of
convex functions of higher order. As particular cases, we get an extended weighted
majorization inequality as well as Jensen’s inequality which have direct connection to
information theory. We use the obtained results to derive new estimates for
Shannon’s and Rényi’s entropy, information energy, and some well-known measures
between probability distributions. Using the Zipf–Mandelbrot law, we introduce new
functionals to derive some related results.
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1 Introduction and preliminaries
We start with a brief overview of divided differences and n-convex functions and give
some basic results from the majorization theory.

An nth order divided difference of a function φ : [α,β] →R at distinct points x0, x1, . . . ,
xn ∈ [α,β] may be defined recursively by

[xi;φ] = φ(xi), i = 0, . . . , n,

[x0, . . . , xn;φ] =
[x1, . . . , xn;φ] – [x0, . . . , xn–1;φ]

xn – x0
.

The value [x0, . . . , xn;φ] is independent of the order of the points x0, . . . , xn.
A function φ is n-convex on [α,β] if

[x0, x1, . . . , xn;φ] ≥ 0

holds for all choices of (n + 1) distinct points xi ∈ [α,β], i = 0, . . . , n.

Remark 1 From this definition it follows that 1-convex function is an increasing function
and 2-convex function is just a convex function. If φ(n) exists, then φ is n-convex iff φ(n) ≥
0. Also, if φ is n-convex for n ≥ 2, then φ(k) exists and φ is (n – k)-convex for 1 ≤ k ≤ n – 2.
For more information, see [1].
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For two vectors x, y ∈ [α,β]l , let x[i], y[i] denote the ith largest entries of x and y, respec-
tively. It is well known that

m∑

i=1

y[i] ≤
m∑

i=1

x[i] for m = 1, 2, . . . , l – 1 and
l∑

i=1

xi =
l∑

i=1

yi,

i.e., we say that x majorizes y, in symbol y ≺ x, iff

y = xA

for some doubly stochastic matrix A = (aij) ∈ Ml(R), i.e., a matrix with nonnegative en-
tries and rows and columns sums equal to 1. Moreover, y ≺ x implies

l∑

i=1

φ(yi) ≤
l∑

i=1

φ(xi)

for every continuous convex function φ : [α,β] →R. This result, obtained by Hardy et al.
(1929 [2]), is well known as a majorization inequality and plays an important role in the
study of majorization theory.

Sherman [3] considered the weighted concept of majorization

(a, y) ≺ (b, x)

between two vectors x = (x1, . . . , xm) ∈ [α,β]m and y = (y1, . . . , yl) ∈ [α,β]l with nonnega-
tive weights a = (a1, . . . , am) and b = (b1, . . . , bl). The concept of weighted majorization is
defined by the assumption of existence of a matrix A = (aij) ∈Mlm(R) such that

aij ≥ 0 for all i, j, (1.1)
m∑

j=1

aij = 1, i = 1, . . . , l, (1.2)

aj =
l∑

i=1

biaij, j = 1, . . . , m, (1.3)

yi =
m∑

j=1

xjaij, i = 1, . . . , l. (1.4)

The matrix A = (aij) ∈ Mlm(R) with conditions (1.1) and (1.2) is called row stochastic
matrix. Sherman proved that under conditions (1.1)–(1.4) for every convex function φ :
[α,β] →R, the inequality

l∑

i=1

biφ(yi) ≤
m∑

j=1

ajφ(xj) (1.5)

holds. We can write conditions (1.3) and (1.4) in the form

a = bA and y = xAT , (1.6)

where AT denotes the transpose matrix.
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As a special case of Sherman’s inequality, when l = m and aj = bi, for all i, j = 1, . . . , m, we
get the weighted version of majorization inequality

m∑

i=1

aiφ(yi) ≤
m∑

i=1

aiφ(xi).

Putting
∑m

i=1 ai = 1 and y1 = y2 = · · · = ym =
∑m

i=1 aixi, we get Jensen’s inequality in the form

φ

( m∑

i=1

aixi

)
≤

m∑

i=1

aiφ(xi). (1.7)

We can get Jensen’s inequality (1.7) directly from (1.5) by setting l = 1 and b = (1).
The concept of majorization has a large number of appearances in many different fields

of applications, particular in many branches of mathematics. A complete and superb refer-
ence on the subject is the monograph [4], and many results from the theory of majorization
are directly or indirectly inspired by it. In this paper we give extensions of Sherman’s in-
equality by considering the class of convex functions of higher order. As a particular case,
we get an extension of weighted majorization inequality and Jensen’s inequality which can
be used to derive some new estimates for some entropies and measures between probabil-
ity distributions. Also, we use the Zipf–Mandelbrot law to illustrate the obtained results.

2 Some technical lemmas
In this section we present two technical lemmas that give us two identities which will be
very useful for us to obtain main results.

Let us consider the function G : [α,β] × [α,β] →R defined by

G(x, y) =

⎧
⎨

⎩

(x–β)(y–α)
β–α

, α ≤ y ≤ x,
(y–β)(x–α)

β–α
, x ≤ y ≤ β ,

(2.1)

which presents Green’s function of the boundary value problem

z′′ = 0, z(α) = z(β) = 0.

This function is convex and continuous with respect to both variables x and y.
Integration by parts easily yields that, for any function φ ∈ C2([α,β]), the following

holds:

φ(t) =
β – t
β – α

φ(α) +
t – α

β – α
φ(β) +

∫ β

α

G(t, y)φ′′(y) dy. (2.2)

Applying (2.2) to Sherman’s difference
∑m

j=1 ajφ(xj) –
∑l

i=1 biφ(yi), we obtain the first
identity.

Lemma 1 Let x ∈ [α,β]m, y ∈ [α,β]l , a ∈R
m, and b ∈R

l be such that (1.6) holds for some
matrix A ∈ Mlm(R) with

∑m
j=1aij = 1, i = 1, . . . , l. Let G be defined by (2.1). Then, for every
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function φ ∈ C2([α,β]), the following identity holds:

m∑

j=1

ajφ(xj) –
l∑

i=1

biφ(yi) =
∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
φ′′(y) dy. (2.3)

Proof Using (2.2) in Sherman’s difference, we have

m∑

j=1

ajφ(xj) –
l∑

i=1

biφ(yi)

=
βφ(α) – αφ(β)

β – α

( m∑

j=1

aj –
l∑

i=1

bi

)
+

φ(β) – φ(α)
β – α

( m∑

j=1

ajxj –
l∑

i=1

biyi

)

+
∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
φ′′(y) dy.

Since (1.3) and (1.4) hold, then we have

m∑

j=1

aj –
l∑

i=1

bi = 0 and
m∑

j=1

ajxj –
l∑

i=1

biyi = 0,

i.e., we get identity (2.3). �

We use the Abel–Gontscharoff interpolation for two points with integral remainder to
obtain another identity.

Let n, k ∈N, n ≥ 2, 0 ≤ k ≤ n – 1, and φ ∈ Cn([α,β]). Then

φ(t) = PAG(t) + eAG(t), (2.4)

where

PAG(t) =
k∑

s=0

(t – α)s

s!
φ(s)(α) +

n–k–2∑

r=0

[ r∑

s=0

(t – α)k+1+s(α – β)r–s

(k + 1 + s)!(r – s)!

]
φ(k+1+r)(β)

is the Abel–Gontscharoff interpolating polynomial for two points of degree n – 1, and the
remainder is given by

eAG(t) =
∫ β

α

Gn(t, u)φ(n)(u) du,

where

Gn,k(t, u) =
1

(n – 1)!

⎧
⎨

⎩

∑k
s=0

(n–1
s

)
(t – α)s(α – u)n–s–1, α ≤ u ≤ t;

–
∑n–1

s=k+1
(n–1

s
)
(t – α)s(α – u)n–s–1, t ≤ u ≤ β .

(2.5)
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Further, for α ≤ u, t ≤ β , the following inequalities hold:

(–1)n–k–1 ∂ sGn,k(t, u)
∂ts ≥ 0, 0 ≤ s ≤ k,

(–1)n–s ∂
sGn,k(t, u)

∂ts ≥ 0, k + 1 ≤ s ≤ n – 1.
(2.6)

For more information, see [5].
Now we use interpolation (2.4) on φ′′ to obtain the second identity.

Lemma 2 Let x ∈ [α,β]m, y ∈ [α,β]l , a ∈R
m, and b ∈R

l be such that (1.6) holds for some
matrix A ∈ Mlm(R) with

∑m
j=1aij = 1, i = 1, . . . , l. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n – 1, and

G, Gn,k be defined by (2.1), (2.5), respectively. Then, for every function φ ∈ Cn([α,β]), the
following identity holds:

m∑

j=1

ajφ(xj) –
l∑

i=1

biφ(yi)

=
k∑

s=0

φ(s+2)(α)
s!

∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
(y – α)s dy

+
n–k–4∑

r=0

r∑

s=0

(–1)r–s(β – α)r–s

(k + 1 + s)!(r – s)!
φ(k+3+r)(β)

×
∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
(y – α)k+1+s dy

+
∫ β

α

∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
Gn–2,k(y, u)φ(n)(u) du dy. (2.7)

Proof If we apply formula (2.4) to a function φ′′, it implies substitution of n with n – 2 in
(2.4), and we get

φ′′(y)

=
k∑

s=0

(y – α)s

s!
φ(s+2)(α) +

n–k–4∑

r=0

[ r∑

s=0

(y – α)k+1+s(α – β)r–s

(k + 1 + s)!(r – s)!

]
φ(k+3+r)(β)

+
∫ β

α

Gn–2,k(y, u)φ(n)(u) du. (2.8)

Using (2.8) in (2.3), we obtain the required result. �

3 Extensions of Sherman’s inequality
We start this section with an extension of Sherman’s inequality to a more general class of
n-convex functions.

Theorem 1 Let x ∈ [α,β]m, y ∈ [α,β]l , a ∈ R
m, and b ∈ R

l be such that (1.6) holds for
some matrix A ∈ Mlm(R) with

∑m
j=1aij = 1, i = 1, . . . , l. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n – 1,
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and G, Gn,k be defined by (2.1), (2.5), respectively. If φ ∈ Cn([α,β]) is n-convex and

∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
Gn–2,k(y, u) dy ≥ 0, for all u ∈ [α,β], (3.1)

then

m∑

j=1

ajφ(xj) –
l∑

i=1

biφ(yi)

≥
k∑

s=0

φ(s+2)(α)
s!

∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
(y – α)s dy

+
n–k–4∑

r=0

r∑

s=0

(–1)r–s(β – α)r–s

(k + 1 + s)!(r – s)!
φ(k+3+r)(β)

×
∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
(y – α)k+1+s dy. (3.2)

If the reverse inequality in (3.1) holds, then also the reverse inequality in (3.2) holds.

Proof Under the assumptions of the theorem, identity (2.7) holds. Since φ is n-convex,
then φ(n) ≥ 0 on [α,β]. Therefore, if (3.1) is satisfied, then inequality (3.2) holds. �

Remark 2 Since we have (–1)n–k–3Gn–2,k(y, u) ≥ 0 by (2.6), then in case n – k is odd, instead
assumption (3.1), it is enough to assume that

m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y) ≥ 0, for y ∈ [α,β].

The following extension of Sherman’s inequality, under Sherman’s condition of nonneg-
ativity of vectors a, b, and matrix A, also holds.

Theorem 2 Let x ∈ [α,β]m, y ∈ [α,β]l , a ∈ [0,∞)m, and b ∈ [0,∞)l be such that (1.6)
holds for some row stochastic matrix A ∈ Mlm(R). Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n – 1, be
such that n – k is odd. Let G, Gn,k be defined by (2.1), (2.5), respectively, and φ ∈ Cn([α,β])
be n-convex. Then inequality (3.2) holds.

Proof Since by (2.6) we have (–1)n–k–3Gn–2,k(y, u) ≥ 0, then, when n – k is odd, we have

Gn–2,k(y, u) ≥ 0.

Further, G(·, y), y ∈ [α,β], is convex on [α,β], and by Sherman’s inequality, we have

m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y) ≥ 0.
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Combining these two facts, assumption (3.1) is satisfied. Hence by Theorem 1, inequality
(3.2) holds. �

Remark 3 In case n – k is even, then the reverse inequality in (3.1) holds, i.e., the reverse
inequality in (3.2) holds.

Theorem 3 Let all the assumptions of Theorem 2 be satisfied.
(i) If φ(s+2)(α) ≥ 0 for each s = 0, . . . , k and (–1)r–sφ(k+3+r)(β) ≥ 0 for each

r = 0, . . . , n – k – 4 and s = 0, . . . , r, then

m∑

j=1

ajφ(xj) –
l∑

i=1

biφ(yi)

≥
k∑

s=0

φ(s+2)(α)
s!

∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
(y – α)s dy

+
n–k–4∑

r=0

r∑

s=0

(–1)r–s(β – α)r–s

(k + 1 + s)!(r – s)!
φ(k+3+r)(β)

×
∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
(y – α)k+1+s dy

≥ 0. (3.3)

(ii) If the function

F(·) =
k∑

s=0

φ(s+2)(α)
s!

∫ β

α

G(·, y)(y – α)s dy

+
n–k–4∑

r=0

r∑

s=0

(–1)r–s(β – α)r–s

(k + 1 + s)!(r – s)!
φ(k+3+r)(β)

∫ β

α

G(·, y)(y – α)k+1+s dy (3.4)

is convex on [α,β], then (3.3) holds.

Proof (i) Under the assumptions,the nonnegativity of the right-hand side of (3.2) is obvi-
ous, i.e., the double inequality (3.3) holds.

(ii) The right-hand side of (3.2) can be written in the form
∑m

j=1 ajF(xj) –
∑l

i=1 biF(yi).
So, if F is convex, then by Sherman’s inequality we have

m∑

j=1

ajF(xj) –
l∑

i=1

biF(yi) ≥ 0,

i.e., we again get the nonnegativity of the right-hand side of (3.2), which we need to
prove. �
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Remark 4 Note that inequality (3.3) includes a new lower bound for Sherman’s difference
in the form

An(φ;α,β) =
k∑

s=0

φ(s+2)(α)
s!

∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
(y – α)s dy

+
n–k–4∑

r=0

r∑

s=0

(–1)r–s(β – α)r–s

(k + 1 + s)!(r – s)!
φ(k+3+r)(β)

×
∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
(y – α)k+1+s dy. (3.5)

Specially, for n = 4, k = 1, the lower bound has the form

∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
(
φ′′(α) + φ′′′(α)(y – α)

)
dy. (3.6)

Using notation ‖ · ‖p for the standard p-norm and applying the well-known Hölder in-
equality, we obtain the following result.

Theorem 4 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let
x ∈ [α,β]m, y ∈ [α,β]l , a ∈ R

m, and b ∈ R
l be such that (1.6) holds for some matrix A ∈

Mlm(R) with
∑m

j=1aij = 1, i = 1, . . . , l. Let n, k ∈ N, n ≥ 4, 0 ≤ k ≤ n – 1, φ ∈ Cn([α,β]), and
G, Gn,k be defined by (2.1), (2.5), respectively. Then

∣∣∣∣∣

m∑

j=1

ajφ(xj) –
l∑

i=1

biφ(yi) – An(φ;α,β)

∣∣∣∣∣

≤ ∥∥φ(n)∥∥
p

(∫ β

α

(∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
Gn–2,k(y, u) dy

)q

du

) 1
q

,

where An(φ;α,β) is defined by (3.5).

Proof Under the assumptions of the theorem, identity (2.7) holds. Applying Hölder’s in-
equality to (2.7), we get

∣∣∣∣∣

m∑

j=1

ajφ(xj) –
l∑

i=1

biφ(yi) – An(φ;α,β)

∣∣∣∣∣

=

∣∣∣∣∣

∫ β

α

∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
Gn–2,k(y, u)φ(n)(u) du dy

∣∣∣∣∣

≤ ∥∥φ(n)∥∥
p

(∫ β

α

(∫ β

α

( m∑

j=1

ajG(xj, y) –
l∑

i=1

biG(yi, y)

)
Gn–2,k(y, u) dy

)q

du

) 1
q

.
�

As a direct consequence of the previous results, choosing n = 4 and k = 1, we get the
following corollary.



Ivelić Bradanović et al. Journal of Inequalities and Applications  (2018) 2018:98 Page 9 of 21

Corollary 1 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let
G be defined by (2.1), x ∈ [α,β]m, y ∈ [α,β]l , a ∈ [0,∞)m, and b ∈ [0,∞)l be such that (1.6)
holds for some row stochastic matrix A ∈Mlm(R). If φ ∈ C4([α,β]) is 4-convex, then

0 ≤
m∑

j=1

ajφ(xj) –
l∑

i=1

biφ(yi) –
∫ β

α

G(y)
(
φ′′(α) + φ′′′(α)(y – α)

)
dy

≤ ∥∥φ(4)∥∥
p

(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (3.7)

where G(y) =
∑m

j=1ajG(xj, y) –
∑l

i=1biG(yi, y) and

G2,1(y, u) =

⎧
⎨

⎩
y – u, α ≤ y ≤ u,

0, u ≤ y ≤ β .
(3.8)

Remark 5 Specially, if we set l = m and aj = bi for each i, j = 1, . . . , l, from the previous re-
sult, as a direct consequence, we obtain the following extension of majorization inequality:

0 ≤
m∑

i=1

aiφ(xi) –
m∑

i=1

aiφ(yi) –
∫ β

α

G(y)
(
φ′′(α) + φ′′′(α)(y – α)

)
dy

≤ ∥∥φ(4)∥∥
p

(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (3.9)

where G(y) =
∑m

i=1aiG(xi, y) –
∑m

i=1aiG(yi, y).

Remark 6 By setting l = 1, b = (1), from (3.7), as a direct consequence, we get the extension
of Jensen’s inequality

0 ≤
m∑

i=1

aiφ(xi) – φ

( m∑

i=1

aixi

)
–

∫ β

α

G(y)
(
φ′′(α) + φ′′′(α)(y – α)

)
dy

≤ ∥∥φ(4)∥∥
p

(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (3.10)

where G(y) =
∑m

i=1aiG(xi, y) – G(
∑m

i=1 aixi, y).

4 Applications in information theory
Throughout the rest of paper, let α,β be positive real numbers such that 0 < α < β .

By X we denote a discrete random variable with distribution

(
x1 x2 . . . xm

p1 p2 . . . pm

)
,

where p = (p1, . . . , pm) is a positive probability distribution, i.e., pi > 0, i = 1, . . . , m, with
∑m

i=1pi = 1.
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Shannon entropy [6] is defined by

H(X) =
m∑

i=1

pi ln
1
pi

.

It is well known that the maximum possible value of H(X) concerns in terms of the size of
R(X), i.e., the inequality

0 ≤ H(X) ≤ ln m

holds. Furthermore, H(X) = 0 iff pi = 1 for some i, and H(X) = ln m iff pi = 1
m for all i =

1, . . . , m. Some related results can be found in [7–13].

Corollary 2 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let G,
G2,1 be defined by (2.1), (3.8), respectively. Let ξ = (ξ1, . . . , ξm) ∈ [α,β]m and p = (p1, . . . , pm)
be a positive probability distribution. Then

0 ≤ ln

( m∑

i=1

piξi

)
–

m∑

i=1

pi ln ξi –
∫ β

α

G(y)
3α – 2y

α3 dy

≤ 6
(

β1–4p – α1–4p

1 – 4p

) 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (4.1)

where G(y) =
∑m

i=1piG(ξi, y) – G(
∑m

i=1piξi, y).

Proof Substituting ξi in place of xi, pi in place of ai in (3.10) and choosing φ(x) = – ln x, we
obtain (4.1). �

Corollary 3 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let
G, G2,1 be defined by (2.1), (3.8), respectively. Let p be a positive probability distribution
with p–1

i ∈ [α,β], i = 1, . . . , m. Then

0 ≤ ln m – H(X) –
∫ β

α

G(y)
3α – 2y

α3 dy

≤ 6
(

β1–4p – α1–4p

1 – 4p

) 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
,

where G(y) =
∑m

i=1piG(p–1
i , y) –

∑m
i=1G(m, y).

Proof If we substitute 1
pi

in place of ξi in (4.1), we get the required result. �

Rényi’s entropy [14] of order λ, λ ∈ (0, 1) ∪ (1,∞), is defined by

Hλ(X) =
1

1 – λ
ln

( m∑

i=1

pλ
i

)
.
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Applying discrete Jensen’s inequality to the convex function φ(x) = – ln x, we have

ln

( m∑

i=1

pixi

)
≥

m∑

i=1

pi ln xi.

Substituting pλ–1
i in place of xi, we get

ln

( m∑

i=1

pλ
i

)
≥ (λ – 1)

m∑

i=1

pi ln pi,

which is equivalent to

(1 – λ)
[
Hλ(X) – H(X)

] ≥ 0.

Specially, we have

Hλ(X) ≥ H(X), λ ∈ (0, 1),

Hλ(X) ≤ H(X), λ ∈ (1,∞)

with the equality in case of the uniform distribution, i.e., when pi = 1
m , i = 1, . . . , m.

Corollary 4 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let
G, G2,1 be defined by (2.1), (3.8), respectively. Let λ ∈ (0, 1) ∪ (1,∞) and p be a positive
probability distribution with pλ–1

i ∈ [α,β], i = 1, . . . , m. Then

0 ≤ (1 – λ)
[
Hλ(X) – H(X)

]
–

∫ β

α

G(y)
3α – 2y

α3 dy

≤ 6
(

β1–4p – α1–4p

1 – 4p

) 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
,

where G(y) =
∑m

i=1piG(pλ–1
i , y) – G(

∑m
i=1pλ

i , y).

Proof Substituting pλ–1
i in place of ξi in (4.1), we obtain the required result. �

The information energy of the random variable X is defined by

E(X) =
m∑

i=1

p2
i .

Corollary 5 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let G,
G2,1 be defined by (2.1), (3.8), respectively. Let ξ = (ξ1, . . . , ξm) ∈ [α,β]m and p = p1, . . . , pm

be a positive probability distribution.
(i) For λ ∈ (0, 1), we have

0 ≤
( m∑

i=1

piξi

)λ

–
m∑

i=1

piξ
λ
i
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–
∫ β

α

G(y)
(
λ(1 – λ)αλ–2 – λ(1 – λ)(2 – λ)αλ–3(y – α)

)
dy

≤ λ(1 – λ)(2 – λ)(3 – λ)
(

β (λ–4)p+1 – α(λ–4)p+1

(λ – 4)p + 1

) 1
p

×
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (4.2)

where

G(y) =
m∑

i=1

piG(ξi, y) – G

( m∑

i=1

piξi, y

)
. (4.3)

(ii) For λ ∈ (1,∞), we have

0 ≤
m∑

i=1

piξ
λ
i –

( m∑

i=1

piξi

)λ

–
∫ β

α

G(y)
(
λ(λ – 1)αλ–2 + λ(λ – 1)(λ – 2)αλ–3(y – α)

)
dy

≤ λ(λ – 1)
∣∣(λ – 2)(λ – 3)

∣∣
(

β (λ–4)p+1 – α(λ–4)p+1

(λ – 4)p + 1

) 1
p

×
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
,

where G(y) is defined by (4.3).

Proof (i) Substituting ξi in place of xi, pi in place of ai in (3.10), and choosing φ(x) =
–xλ,λ ∈ (0, 1), we obtain (4.2).

(ii) Substituting ξi in place of xi, pi in place of ai in (3.10), and choosing φ(x) = xλ, λ ∈
(1,∞), we obtain the required result. �

Corollary 6 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1.
Let G, G2,1 be defined by (2.1), (3.8), respectively. Let p ∈ [α,β]m be a positive probability
distribution.

(i) For λ ∈ (0, 1), we have

0 ≤ Eλ(X) – exp
[
–λHλ+1(X)

]

–
∫ β

α

G(y)
(
λ(1 – λ)αλ–2 – λ(1 – λ)(2 – λ)αλ–3(y – α)

)
dy

≤ λ(1 – λ)(2 – λ)(3 – λ)
(

β (λ–4)p+1 – α(λ–4)p+1

(λ – 4)p + 1

) 1
p

×
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (4.4)
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where

G(y) =
m∑

i=1

piG(pi, y) – G
(
E(X), y

)
. (4.5)

(ii) For λ ∈ (1,∞), we have

0 ≤ exp
[
–λHλ+1(X)

]
–

(
E(X)

)λ

–
∫ β

α

G(y)
(
λ(λ – 1)αλ–2 + λ(λ – 1)(λ – 2)αλ–3(y – α)

)
dy

≤ λ(λ – 1)
∣∣(λ – 2)(λ – 3)

∣∣
(

β (λ–4)p+1 – α(λ–4)p+1

(λ – 4)p + 1

) 1
p

×
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
,

where G(y) is defined by (4.5).

Proof (i) Substituting pi in place of ξi in (4.2) and taking into account that

m∑

i=1

pλ
i = exp

[
(1 – λ)Hλ(X)

]
,

i.e.,

m∑

i=1

pλ+1
i = exp

[
–λHλ+1(X)

]
,

we get (4.4).
(ii) Similar to (i). �

Let u, v be two positive probability distributions. The following measures are well known
in information theory:

• Hellinger discrimination:

h2(u, v) =
1
2

m∑

i=1

(
√

ui –
√

vi)2.

• χ2-divergence:

Dχ2 (u, v) =
m∑

i=1

(ui – vi)2

vi
.

• Triangular discrimination:

	(u, v) =
m∑

i=1

(ui – vi)2

ui + vi
.
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In the following results, we consider positive probability distributions u, v, w with the
assumption of existence of a row stochastic matrix A ∈Mm(R) such that

w = wA and
v
w

=
u
w

AT , (4.6)

where u
w = ( u1

w1
, . . . , um

wm
) and v

w = ( v1
w1

, . . . , vm
wm

).

Corollary 7 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let G,
G2,1 be defined by (2.1), (3.8), respectively. Let u, v, w be positive probability distributions
such that u

w , v
w ∈ [α,β]m and (4.6) is satisfied for some row stochastic matrix A ∈ Mm(R).

Then:
(i)

0 ≤ h2(u, w) – h2(v, w) –
∫ β

α

G(y)
[

1
4
α– 3

2 –
3
8
α– 5

2 (y – α)
]

dy

≤ 15
16

[
2

2 – 7p
(
β

2–7p
2 – α

2–7p
2

)] 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (4.7)

where

G(y) =
m∑

i=1

wiG
(

ui

wi
, y

)
–

m∑

i=1

wiG
(

vi

wi
, y

)
. (4.8)

(ii)

Dχ2 (u, w) – Dχ2 (v, w) = 2
∫ β

α

G(u) du, (4.9)

where G(y) is defined by (4.8).
(iii)

0 ≤ 	(u, w) – 	(v, w) –
∫ β

α

G(y)
[
8(α + 1)–3 – 24(α + 1)–4(y – α)

]
dy

≤ 96
[

(β + 1)1–5p – (α + 1)1–5p

1 – 5p

] 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (4.10)

where G(y) is defined by (4.8).

Proof If we substitute xi by ui
wi

, yi by vi
wi

, ai by wi in (3.9) and
(i) take φ(x) = 1

2 (
√

x – 1)2, we obtain (4.7).
(ii) take φ(x) = (x – 1)2, we obtain (4.9).
(iii) take φ(x) = (x–1)2

x+1 , we obtain (4.10). �

5 Applications as the Zipf–Mandelbrot law
The Zipf–Mandelbrot law is a discrete probability distribution depending on three pa-
rameters m ∈N, t ≥ 0, and s > 0 with probability mass function defined by

f (k, m, t, s) =
1

(k + t)sHm,t,s
, k = 1, 2, . . . , m,
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where

Hm,t,s =
m∑

i=1

1
(i + t)s .

When t = 0, we get so-called Zipf ’s law.
The Zipf–Mandelbrot, as well as Zipf ’s, law has wide applications in many branches of

science as well as linguistics [15], information sciences [16, 17], ecological field studies
[18], etc. For more information, see also [15, 19].

We introduce the following definitions of Csiszár divergence for the Zipf–Mandelbrot
law. For more information about Csiszár divergence, see [20, 21].

Definition 1 (Csiszár divergence for Z–M law) Let m ∈ N and φ : [α,β] → R be a func-
tion.

(a) For t ≥ 0 and s, r1, . . . , rm > 0, such that

1
ri(i + t)sHm,t,s

∈ [α,β], i = 1, . . . , m,

we define

Îφ(m, t, s, r) =
m∑

i=1

riφ

(
1

ri(i + t)sHm,t,s

)
.

Specially, when ri = 1, i = 1, . . . , m, we have

Îφ(m, t, s, 1) =
m∑

i=1

φ

(
1

(i + t)sHm,t,s

)
.

(b) For t, t̃ ≥ 0 and s, s̃ > 0, such that

(i + t̃)s̃Hm,t̃,s̃

(i + t)sHm,t,s
∈ [α,β], i = 1, . . . , m,

we define

Ĩφ(m, t, t̃, s, s̃) =
m∑

i=1

1
(i + t̃)s̃Hm,t̃,s̃

φ

(
(i + t̃)s̃Hm,t̃,s̃

(i + t)sHm,t,s

)
.

Corollary 8 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let
G, G2,1 be defined by (2.1), (3.8), respectively. Let m ∈ N, t1, t2, t3 ≥ 0 and s1, s2, s3 > 0 be
such that

(i + t2)s2 Hm,t2,s2

(i + t1)s1 Hm,t1,s1
,

(i + t3)s3 Hm,t3,s3

(i + t2)s2 Hm,t2,s2
∈ [α,β], i = 1, . . . , m, (5.1)



Ivelić Bradanović et al. Journal of Inequalities and Applications  (2018) 2018:98 Page 16 of 21

and

(i + t3)s3 Hm,t3,s3

(i + t2)s2 Hm,t2,s2
=

m∑

j=1

(j + t3)s3 Hm,t3,s3

(j + t1)s1 Hm,t1,s1
aij, i = 1, . . . , m,

1
(j + t3)s3 Hm,t3,s3

=
m∑

i=1

1
(i + t3)s3 Hm,t3,s3

aij, j = 1, . . . , m,

(5.2)

hold for some row stochastic matrix A = (aij) ∈ Mm(R). Then, for every 4-convex function
φ : [α,β] →R, we have

0 ≤ Ĩφ(i, m, t1, t3, s1, s3) – Ĩφ(i, m, t2, t3, s2, s3) –
∫ β

α

G(y)
(
φ′′(α) + φ′′′(α)(y – α)

)
dy

≤ ∥∥φ(4)∥∥
p

(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (5.3)

where

G(y) =
m∑

i=1

1
(i + t3)s3 Hm,t3,s3

G
(

(i + t3)s3 Hm,t3,s3

(i + t1)s1 Hm,t1,s1
, y

)

–
m∑

i=1

1
(i + t3)s3 Hm,t3,s3

G
(

(i + t3)s3 Hm,t3,s3

(i + t2)s2 Hm,t2,s2
, y

)
. (5.4)

Proof If we substitute xi by (i+t3)s3 Hm,t3,s3
(i+t1)s1 Hm,t1,s1

, yi by (i+t3)s3 Hn,t3,s3
(i+t2)s2 Hm,t2,s2

, and ai by 1
(i+t3)s3 Hm,t3,s3

in (3.9),
we obtain the required result. �

Corollary 9 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let
G, G2,1 be defined by (2.1), (3.8), respectively. Let m ∈ N, t1, t2 ≥ 0 and s1, s2, r1, . . . , rm > 0
be such that

1
ri(i + t1)s1 Hm,t1,s1

,
1

ri(i + t2)s2 Hm,t2,s2
∈ [α,β], i = 1, . . . , m (5.5)

and

1
ri(i + t2)s2 Hm,t2,s2

=
m∑

j=1

1
rj(j + t1)s1 Hm,t1,s1

aij, i = 1, . . . , m,

rj =
m∑

i=1

riaij, j = 1, . . . , m,

(5.6)

hold for some row stochastic matrix A = (aij) ∈ Mm(R). Then, for every 4-convex function
φ : [α,β] →R, we have

0 ≤ Îφ(m, t1, s1, r) – Îφ(m, t2, s2, r) –
∫ β

α

G(y)
(
φ′′(α) + φ′′′(α)(y – α)

)
dy

≤ ∥∥φ(4)∥∥
p

(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (5.7)



Ivelić Bradanović et al. Journal of Inequalities and Applications  (2018) 2018:98 Page 17 of 21

where

G(y) =
m∑

i=1

riG
(

1
ri(i + t1)s1 Hm,t1,s1

, y
)

–
m∑

i=1

riG
(

1
ri(i + t2)s2 Hm,t2,s2

, y
)

. (5.8)

Proof If we substitute xi by 1
ri(i+t1)s1 Hm,t1,s1

, yi by 1
ri(i+t2)s2 Hm,t2,s2

, and ai by ri > 0 in (3.9), we
obtain the required result. �

Corollary 10 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let
G, G2,1 be defined by (2.1), (3.8), respectively. Let m ∈ N, t1, t2 ≥ 0, and s1, s2 > 0 be such
that

1
(i + t1)s1 Hm,t1,s1

,
1

(i + t2)s2 Hm,t2,s2
∈ [α,β], i = 1, . . . , m (5.9)

and

1
(i + t2)s2 Hm,t2,s2

=
m∑

j=1

1
(j + t1)s1 Hm,t1,s1

aij, i = 1, . . . , m, (5.10)

hold for some row stochastic matrix A = (aij) ∈ Mm(R). Then, for every 4-convex function
φ : [α,β] →R, we have

0 ≤ Îφ(m, t1, s1, 1) – Îφ(m, t2, s2, 1) –
∫ β

α

G(y)
(
φ′′(α) + φ′′′(β)(y – α)

)
dy

≤ ∥∥φ(4)∥∥
p

(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
,

where

G(y) =
m∑

i=1

G
(

1
(i + t1)s1 Hm,t1,s1

, y
)

–
m∑

i=1

G
(

1
(i + t2)s2 Hm,t2,s2

, y
)

. (5.11)

Proof Substituting ri = 1, i = 1, . . . , m, in (5.7), we get the required result. �

Next we introduce definitions of Shannon’s entropy for the Zipf–Mandelbrot law.

Definition 2 (Shannon’s entropy for Z–M law) Let m ∈N.
(a) For t ≥ 0 and s, r1, . . . , rm > 0, we define

Ĥ(m, t, s, r) = –
m∑

i=1

ri ln

(
1

ri(i + t)sHm,t,s

)
.

(b) For t, t̃ ≥ 0 and s, s̃ > 0, we define

H̃(m, t, t̃, s, s̃) = –
m∑

i=1

1
(i + t̃)s̃Hm,t̃,s̃

ln

(
(i + t̃)s̃Hm,t̃,s̃

(i + t)sHm,t,s

)
.
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Corollary 11 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let
G2,1 be defined by (3.8) and m ∈N.

(i) If t1, t2, t3 ≥ 0 and s1, s2, s3 > 0 are such that (5.1) and (5.2) hold for some row
stochastic matrix A = (aij) ∈Mm(R), then

0 ≤ H̃(m, t1, t3, s1, s3) – H̃(m, t2, t3, s2, s3) –
∫ β

α

G(y)
3α – 2y

α3 dy

≤ 6
(

β1–4p – α1–4p

1 – 4p

) 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
,

where G(y) is defined by (5.4).
(ii) If t1, t2 ≥ 0 and s1, s2, r1, . . . , rm > 0 are such that (5.5) and (5.6) hold for some row

stochastic matrix A = (aij) ∈Mm(R), then

0 ≤ Ĥ(m, t1, s1, r) – Ĥ(m, t2, s2, r) –
∫ β

α

G(y)
3α – 2y

α3 dy

≤ 6
(

β1–4p – α1–4p

1 – 4p

) 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (5.12)

where G(y) is defined by (5.8).
(iii) If t1, t2 ≥ 0 and s1, s2 > 0 are such that (5.9) and (5.10) hold for some row stochastic

matrix A = (aij) ∈Mm(R), then

0 ≤ Ĥ(m, t1, s1, 1) – Ĥ(m, t2, s2, 1) –
∫ β

α

G(y)
3α – 2y

α3 dy

≤ 6
(

β1–4p – α1–4p

1 – 4p

) 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
,

where G(y) is defined by (5.11).

Proof (i) Substituting xi by (i+t3)s3 Hm,t3,s3
(i+t1)s1 Hm,t1,s1

, yi by (i+t3)s3 Hn,t3,s3
(i+t2)s2 Hm,t2,s2

, and ai by 1
(i+t3)s3 Hm,t3,s3

and tak-
ing φ(x) = – ln x in (3.9), we get the required result.

(ii) Substituting xi by 1
ri(i+t1)s1 Hm,t1,s1

, yi by 1
ri(i+t2)s2 Hm,t2,s2

, ai by ri > 0 in (3.9) and taking
φ(x) = – ln x, we get the required result.

(iii) Substituting ri = 1 in (5.12), we get the required result. �

At the end, we introduce the Kullback–Leibler divergence for the Zipf–Mandelbrot law.
For more information about the Kullback–Leibler divergence, see [22, 23].

Definition 3 (The Kullback–Leibler divergence for Z–M) Let m ∈N.
(a) For t ≥ 0 and s, r1, . . . , rm > 0, we define

K̂L(m, t, s, r) =
m∑

i=1

1
(i + t)sHm,t,s

ln

(
1

ri(i + t)sHm,t,s

)
.
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Specially, when ri = 1, i = 1, . . . , m, we have

K̂L(m, t, s, 1) =
m∑

i=1

1
(i + t)sHm,t,s

ln

(
1

(i + t)sHm,t,s

)
.

(b) For t, t̃ ≥ 0 and s, s̃ > 0, we define

K̃L(m, t, t̃, s, s̃) =
m∑

i=1

1
(i + t)sHm,t,s

ln

(
(i + t̃)s̃Hm,t̃,s̃

(i + t)sHm,t,s

)
.

Corollary 12 Let p, q be a pair of conjugate exponents, i.e., 1 < p, q < ∞, 1/p + 1/q = 1. Let
G2,1 be defined by (3.8) and m ∈N.

(i) If t1, t2, t3 ≥ 0 and s1, s2, s3 > 0 are such that (5.1) and (5.2) hold for some row
stochastic matrix A = (aij) ∈Mm(R), then

0 ≤ K̃L(m, t1, t3, s1, s3) – K̃L(m, t2, t3, s2, s3) –
∫ β

α

G(y)
2α – y

α2 dy

≤ 2
(

β1–3p – α1–3p

1 – 3p

) 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
,

where G(y) is defined by (5.4).
(ii) If t1, t2 ≥ 0 and s1, s2, r1, . . . , rm > 0 are such that (5.5) and (5.6) hold for some row

stochastic matrix A = (aij) ∈Mm(R), then

0 ≤ K̂L(m, t1, s1, r) – K̂L(m, t2, s2, r) –
∫ β

α

G(y)
2α – y

α2 dy

≤ 2
(

β1–3p – α1–3p

1 – 3p

) 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
, (5.13)

where G(y) is defined by (5.8).
(iii) If t1, t2 ≥ 0 and s1, s2 > 0 are such that (5.9) and (5.10) hold for some row stochastic

matrix A = (aij) ∈Mm(R), then

0 ≤ K̂L(m, t1, s1, 1) – K̂L(m, t2, s2, 1) –
∫ β

α

G(y)
2α – y

α2 dy

≤ 2
(

β1–3p – α1–3p

1 – 3p

) 1
p
(∫ β

α

(∫ β

α

G(y)G2,1(y, u) dy
)q

du
) 1

q
,

where G(y) is defined by (5.11).

Proof (i) Substituting xi by (i+t3)s3 Hm,t3,s3
(i+t1)s1 Hm,t1,s1

, yi by (i+t3)s3 Hn,t3,s3
(i+t2)s2 Hm,t2,s2

, ai by 1
(i+t3)s3 Hm,t3,s3

in (3.9) and
taking φ(x) = x ln x, we get the required result.

(ii) Substituting xi by 1
ri(i+t1)s1 Hm,t1,s1

, yi by 1
ri(i+t2)s2 Hm,t2,s2

, and ai by ri for each i = 1, . . . , m
in (3.9) and taking φ(x) = x ln x, we get the required result.

(iii) Substituting ri = 1, i = 1, . . . , m, in (5.13), we get the required result. �
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6 Conclusions
In this paper we have given generalized results for Sherman’s inequality by considering the
class of convex functions of higher order. We obtained an extended weighted majorization
inequality as well as Jensen’s inequality as special cases directly connected to information
theory. We used the obtained results to derive new estimates for Shannon’s and Rényi’s
entropy, information energy, and some well-known measures between probability distri-
butions. Using the Zipf–Mandelbrot law, we introduced new functionals to derive some
related results.
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7. Budimir, I., Dragomir, S.S., Pečarić, J.: Further reverse results for Jensen’s discrete inequality and applications in

information theory. J. Inequal. Pure Appl. Math. 2(1), 5 (2001)
8. Dragomir, S.S.: A converse of the Jensen inequality for convex mappings of several variables and applications. Acta

Math. Vietnam. 29(1), 77–88 (2004)
9. Dragomir, S.S., Dragomir, N.M., Pranesh, K.: An inequality for logarithms and applications in information theory.

Comput. Math. Appl. 38, 11–17 (1999)
10. Matić, M., Pearce, C.E.M., Pečarić, J.: Improvements of some bounds on entropy measures in information theory. Math.

Inequal. Appl. 1, 295–304 (1998)
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