Xia Journal of Inequalities and Applications (2018) 2018:93 ® Journal of Inequalities and Applications
https://doi.org/10.1186/513660-018-1689-8 a SpringerOpen Journal

RESEARCH Open Access

Variation and oscillation for the

multilinear singular integrals satisfying
Hormander type conditions

Yinhong Xia"

“Correspondence:
xiayh03@163.com Abstract

School of Mathematics and . . . .
Statistics, Huanghuai University, Suppose that the kernel K satisfies a certain Hormander type condition. Let b be a

Zhumadian, PR. China function satisfying D*b € BMO(R?") for || = m, and let T° = {Tf}@o be a family of
multilinear singular integral operators, i.e,,

Rm+1(b;x.y)
o= [ Iy
[x=y|>€ |X —YI

The main purpose of this paper is to establish the weighted [P-boundedness of the
variation operator and the oscillation operator for T°.
MSC: 42B25;42B20;47G10

Keywords: Variation operator; Oscillation operator; Multilinear operator; Hérmander
condition; Singular integral; BMO

1 Introduction and results

Let K be a singular kernel in R” and satisfy

C
|K(x)| < PL for |x| > 0, (1)
X n

where C is a fixed constant. Consider the family of operators 7' = {T}.o, where

Tof(x) = / K(x - 9)f () dy. @)

[x=y|>€

The p-variation operator is defined by

€\

00 1/p
Va(T)H@) = sup <Z| T, f () - Tef(x)|”) :
i i=1
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where the supremum is taken over all sequences of real numbers {¢;} decreasing to zero.
The oscillation operator is defined by

oo

1/2
O(T)()(x) = (Z sup !Temf(x)—nf(x)yz) :

=1 L+l =€ir1<€i=t;

where {¢;} is a fixed sequence which decreases to zero.

Variation and oscillation can be used to measure the speed of convergence of certain
convergent families of operators. The operators of variation and oscillation have attracted
many researchers’ attention in probability, ergodic theory, and harmonic analysis. Bour-
gain [1] obtained variation inequality for the ergodic averages of a dynamic system, his
work has launched a new research direction in harmonic analysis. Campbell, Jones, Rein-
hold, and Wierdl in [2] established the L”-boundedness of variation operator and oscilla-
tion operator for the Hilbert transform. Recently, many other publications have enriched
this research direction [3-7].

Let 1 <r < oo,m e NU {0}. We say that the kernel K satisfies the H, ,,-Hormander
condition if there exist the constants ¢ > 1 and C, ,,, > 0 such that, forally € R” and R > c|x|,

og} . 1 1/r
K" (25R)" K@=y -K-n)|"dy) < Crm
; (2'R) ((2kR)” /2/<R<y<2k+1k| =) = K| y) o
if r < 00, and
o0
Zk”’ (ZI‘R)n sup ‘K(x -9) —K(—y)| <Cx
k=1 2 R<|y|<2k+1R

in the case r = co.

We notice that H, is L"-Hormander condition, which was studied in depth in [8].

Let K satisfy (1) and H,,;-Hormander condition, and let T, = {7, j}c»0, where T, is the
commutator of T, and b,

Taf )= (o) = BO)K =) )
x—y| e
Suppose r > 1,p > 2, and b € BMO(R"). Zhang and Wu proved in [9] that, if V,(T) and
O(T) are bounded on LP°(R") for some py > 1, then V,(T}) and O(T}) are bounded on
LP(R", w) for any max{r’, po} < p < 00, ® € Ap/maxirpo} R").

Given m is a positive integer, and b is a function on R”. Let R,,.1(b;x,) be the m + 1th
Taylor series remainder of b at x expander about y, i.e.,

Ry (B69) = b@) = 3 L Db —y)"

loe|<m

We consider the family of operators T? = {T?}.., where T? are the multilinear singular
integral operators of T, as follows:

Tf () = f Bt B59) i)y, @)

[x—y|>€ |x _y|m
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Note that when m = 0, T? is just the commutator of T, and b. However, when m > 0, T?
is a non-trivial generation of the commutator. It is well known that multilinear operators
have been widely studied by many authors (see [10-14]).

In [15], Hu and Wang established the weighted (L7, L?) inequalities of the variation and
oscillation operators for the multilinear Calderén—Zygmund singular integral with a Lip-
schitz function in R. In this paper, if K satisfies (1) and H, ;-Hormander condition, we will
study the bounded behaviors of variation and oscillation operators for the family of the
multilinear singular integrals defined by (4) in L (R", w(x) dx) when D*b € BMO(R") for
|| = m. Our main results can be formulated as follows.

Theorem 1 Let K satisfy (1), p > 2, and let T = {T}eso and T? = {Tf}oo be given by (2)
and (4), respectively. Suppose that K € H,.1,V,(T), and O(T) are bounded on L**(R") for
some py > 1, and D*b € BMO(R") for |a| = m, then Vp(Tb) and O(T®) are bounded on
LP(R", w) for any max{r', po} < p < 00, ® € Ap/maxir po}R").

Corollary 1 ([9]) Let K satisfy (1), p > 2,and let T = {Tc}es0 and Ty = {Te p}es0 be given by
(2) and (3), respectively. Suppose that K € H,.1,V,(T) and O(T) are bounded on LP°(R")
for some py > 1, and b € BMO(R"), then V,(T}) and O(T}) are bounded on L?(R", w) for
any max{r’,po} < p < 00, € Ap/max{r,po} (R").

In this paper, we shall use the symbol A < B to indicate that there exists a universal
positive constant C, independent of all important parameters, such that A < CB. A = B
means that A < Band B S A.

2 Some preliminaries

2.1 A,(R") weight

A weight w belongs to A,(R") for 1 < p < oo if there exists a constant C such that, for every
ball B C R”,

1 1 o\
(E/Bw(x)dx> (ﬁ/sjw(x)l P dx) <C,

where p' is the dual of p such that 1/p + 1/p’ = 1. A weight o belongs to A;(R") if
1 .
— / w(y)dy < C -essinfw(x) for every ball BC R”.
|B| B xeB

2.2 Function of BMO(R")
Following [16], a locally integrable function b is said to be in BMO(R") if

1
sup —/|b(x)—b3’dx= 6]l < o0,
Bcr |Bl Jp

where

1
ba = i /Bb(y)dy.

The function of BMO(RR”) has the following property.
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Lemma 1 Suppose b € BMO(R"), By = 2B,k e N U {0}. Then, for 1 < p < oo,

1 1/p
(ﬁ/‘b(x)—bgk’pdx) S kD]
B

2.3 Maximal function
The Hardy-Littlewood maximal operator is defined by

1
M(f)(w) = sup 1o fBlf(y)l dy.

We also define the maximal function

1 . 1/r
Mr(f)(x)=it;£>(®/3[f(y)| dy)

for 1 < r < oo. It is well known that M, is bounded on L?(R"”,w) for r < p < 00 and w €
A,(R") (see [17]).

2.4 Taylor series remainder
By definition, it is obvious that

1
Roni1(Bi6,5) = R(b3,9) = ) — D b() = y)".

la|=m
The following lemma gives an estimate on Taylor series remainder.

Lemma 2 ([11]) Let b be a function on R" with mth order derivatives in L1(R) for some
q > n. Then

1/q
Rattiz] St 3 pbaf'z)

| = |Q(x,}/)| Qxy)

where Q(x,y) is the cube centered at x and having diameter 5/n|x — y|.
2.5 Variation and oscillation operators

Following [2],let ® = {8 : B = {€;},€; € R,¢; \( 0}. We denote by F, the mixed norm space
of two variable functions g(i, 8) such that

1/p
g, = s%p(2|g(i,/3)|'°> )

We also consider the F,-valued operator V(T') : f — V(T)f by

VTY () = { e f @)~ Tof @) o

This implies that

V(T @) = [V @), -
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On the other hand, we consider the operator

oo 1/2
O'(Tf)(x) = (Z sup |Tti+1f(x)—T5_j(x)|2> .

=1 lir1<8i<t;

It is easy to check that
O'(Tf) = O(If).

We denote by E the mixed norm Banach space of two-variable function / defined on R x N
such that

2 1/2
Il = (Z(sup|h(s,i)|) ) < o0.

1

For a fixed decreasing sequence {¢;} with ¢; \( 0, let J; = (¢,1,¢;] and define the E-valued
operator U(T) : f — U(T)f given by

U0 = (T 6= T o= { [ K1)

i1 <lx—yl<s} sejjieN

Then
O(INH) = |UTY W) = {Tof @) = TF @)} ienl

s
{tiv1<la—yl<s} sejjieN

Let B be a Banach space and ¢ be a B-valued function, we define the sharp maximal

E

operator as follows:

1

ft _
¢*(x) = sup /
xel U1 Jr

Then

1
o0)- T /1 o) dz| dy.

B

MV, (TF)) < 2(V(T)f) ()

and

MF(O(T)) < 2U(T)f) ().
Finally, let us recall some results about the boundedness of V,(T") and O(T).

Lemma 3 ([9]) Let K satisfy (1), p >2, T = {T¢}es0 be given by (2). Suppose that K satisfies
(1) and K € H,o-Hormander condition, V,(T) and O(T) are bounded on L*°(R") for some
1 < pg < 00. Then V,(T) and O(T) are bounded on L¥ (R") for any max{r’,po} < p < c0.
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3 Proof of Theorem 1
By the fact that M; is bounded on L?(R",w) for 1 < s < p < oo and w € A,(R"), we need to

prove
MV, (T")f (%) S HZ | Db M (f) () (5)
and
MO (T")f (%) S ; |D°B| M (f) ) ©)
et

for any s > max{r’, po}.

We will only need to prove (5), since (6) can be obtained by a similar argument. To
prove (5), it suffices to prove that for any fixed xy € R” and some F,-valued constant c;,
such that for every ball B = B(xy, /) with radius /, centered at xy, the following inequality

E / V(T @ i ,dx < 3 [P M) ko)

la|=m

holds.
We writef =f1 +f2 =f)(103 +fX]R”\1()B~ Then

m+ b ’
V(T”)f(x)={ / RniBi%9) y)f(y)dy}
{€ir1<lx—yl<e} |x _y| B={ei}e®
_ v<T><"|’“—’”"ﬁ)(x> V() ().

Let x; be a point at the boundary of 2B, and let

Rm+ b; »
a-{f B OB s -y} =i
{eir1<lx1-yl<ei} B={e€i}e®

loer — y|™

Then

1
= vty -al,

( me1 (D5 %, - fl>(x)

f [V(T") ()~ V(T o)) s

dx

Fp

IBI

]
=M1 +M2.

Foranyx € B,k € Z,let Ex = {y: 25 - 3] < |y —x| < 25*1. 3}, let Fy = {y: |y — x| < 2F*1 . 31},
and let

bi(z)=b(@) - Y O%(D”‘b)sz

let|=m
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By [11] we have R,,,.1(b; %, y) = Ry11(bi; %, y) for any y € Ei. From Lemma 3, we know V,(T)

is bounded on L*(R") for max{r’, po} < u < s. Then, using Holder’s inequality, we deduce

u 1/u
dx)
Fp
1/u
| | {y:ly—x|<111} | >

(3
(]
(|1| 3 (% 150 )0
(

V(T)< ’T”fbl’,i’ ')ﬁ)

1 m+l(b1 )_y)

1/u
dy)
u 1/u
dy)

W:ly—1<118} | __

1 (bk, ,y)
|B] {y:ly—x|<111) (kzoo ly - Ek(y)

_|m

Z Z “br()xe () - )a>f(Y)

(|B| 2 /E )W

) 1 ) u 1/u
Yy (ﬁ /{y:|y—x|<1ll}((k§o|D bk(Y)|XEk(y)) lf@)|> dy)

|t|=m

bk: ;y
ly—

= Mu +M12.

For any y € Ey, by Lemma 2 and Lemma 1,

1 1/q
R(bi;x,9)| <l —y™ D%b "d)
|Rn(bis%,9)| S 1o -y |O;n(|Q(x’y)| Q(x,y)| (2)|"dz

1 1/q
< _ M - o _ ] q
e %n((ﬁ%-:aoz)" /z_xmk.soz‘D e = (D7) dz)

Sle=y™ Y| Db

loe|=m

Then we have

1/u

s D1l (i 3 [ pore)

la|=m

S ool (i [ rola)

|or|=m

> 10| M) o).

la|=m

A
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By D*bi(y) = D*b(y) — (D“b)F,, applying Holder’s inequality and Lemma 2, we get

oz ([ yora) (S 5 [ lowo-wn,ma) )

|a|=m k=—00

1/u
d F, 1-uls
s Tl (G ([ yors)” L im)
1 s 1/s
< Db|| | — d < D*b| M, .
< S 1ol (i [ yora) < X Il
We now estimate M,. We write
[V(T*)Aw) - V(T )o@,
:H{/ M}((x VhH®) dy
{€iv1<lx—yl<e;} |x _y|
_/ M[((xl—y)fz(y)dy}
leinn<inylee) 11 =yI" p=teneo I,

Ryi1(b;x,
ST G
feii<lyi<e \ %=l
Ry (b;x ’ )
- 2O e, —y))/z(Y) dy}
%1 — ¥ -lejeo IF,
+ { /R ) (Xtein<tvyi<ent ) = Xieto <l o1<en 0))
m b H
Lxl)]((xl WAY) dy}
b1 — 1™ p-teneo lIF,
= Nl + NQ.

By Minkowski’s inequality and ||{€;;1 < [ — y| < €} p=(;)c0 |F, < 1, we obtain

N1§/ ||{X{t,'+1<|x—y\<s]}ﬂ:[ei}e@)”Fp
]er

Ry (b;x, Rins1 (b33,
Runi®id) ey Ruaisid) o lis 1y
|x—y| |x _.y|
Rypi1 (b, m1(B3%1,y
5/ Lmy) K(x - )_1(71)1((961 -9|lLW)|dy
re| e -l o1 — y|™
m+1 bk;x: ) Rm+1(bk;x1’y)>
_ K(x-y) )| d
( lx —y|™ 1 —y|™ Mol

M‘!Mﬂc—ﬁ - K1 = 9)[|p0)|dy
lxp —y|™

+/n

Z/ | — |m |Rm(bk;x;y) - Rm(bk;xl,y) |I((x —y)| lf(y)| dy
=1 Ex

Page 8 of 15
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- 1
+2:: Ek|Rm(bk;x1’y)|‘|x_y|m - |K(x y)|lf(y)|dy

%1 yl’”

d
- e K-y

+Z/Z Db

Ex lat|=m
g
(10B)

=N11 +N12 +N13 +N14.

m+ b ’
#"K&c y) = K(x, — Hf(y)’dy

Applying the formula ([11] p. 448), we have

(96—961)'S

Robis 6.9) = Ru(bis,0) = Rulbszo) + 3, =

0<|B|<m

Then, by Lemmas 1 and 2, we have

1 1/q
| (by xx1)| | — o1 Z (Q(x,xl) </Q(x,x1)‘ k ( k)Fk|

la|=m

S R

loe|=m

and

’Rm—ﬂ(Dﬁbk;XI:yH ,S |x—)’|m7ﬂ Z ”Dab”*

la|=m

So

Rt ~Ratiin| S 100l (ks 3 Plamyi?)

|a|=m 0<|Bl<m
Skllx—y"t Y| D]
lae|=m

By (1) we have

[K(x =) S ey
Then

Ni- Z / — Rulbis) - Rt DK G-I 0)|

$ T X [ ol

lae|=m

szwm;wﬂﬂmu

loe|=m

< Y 10b] M),

lae|=m

Ryu_p(DP by x1,9).

Page 9 of 15
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For y € Ex,x € B and x; being a point at the boundary of 2B, we get |x; — y| = |x — y|.
Thus

1 1

e —ylm oy -yl

o l-ml l

~ |x_y|m+1 ~ |x_y|m+1

and

’Rm(bk;xlry)’ 5 |x_y|m Z ”D"lb”*

|a|=m
Then
No< Y D, Z/ ON_ < 5™ Db () wo).
o= ERE lal=m
As for Ni3, due to
-y -9 -l
o=yl e =y |~ e -yl

for || = m, and D*bi(y) = D*b(y) — (D“b), , we have

Nu$ 3 [ PO Y (b - (D) |
k=1

X — n+l
k yl la|=m

— 1
<3 iy L Vol X ko (or0) |y

k=1 la|=m

A

00 1 1 B 1/s 1 ) . g 1/s'
S o [yora) (g [ 1o -wra, o)

|ot|=m

N

> ID7a] M) (xo)z o

la|=m

> D76 Miff) o)

la|=m

A

Let us estimate N4 now. For y € (10B)¢, we have |y —x1| > |y — x0| — |xo — x1| > 8/. For
k=1,2,...,let By = {y: 2K - 31 < |y — 1| < 2F*1 . 3]}, let Fy = {y : |y — 1| < 2€*1 - 31}, and let

bi(2)=b(x) - Y $(D°‘b)?kz’”.
loe|l=m

Note that Q(x,y) C 24/nQ(x1,), then forx € B,y € E( we have

1
124/nQ(x1,9)| J2/7Qx1.9)

Sl —y" Y | Db,

la|=m

" 1/q
|D“bk(z)|qdz>

|Rin(Bis%,9)| S 12 = y1™ Z (

loe|=m
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So

| Ryt (i x,9)| S 121 —yl’”( > o), + > [D*b0y) - (Dab)frk’)'

|a|=m |la|=m

Then

Niu$ Y |D°b], Z/ [K(x =) = K@ =)|[f )] dy

|a|=m
e X [ 10800 - (00 [kt s - )]
k=1 |a|=m

= Nya1 + Nigo.

Taking R = 3/, then |x — x1| < R. By Holder’s inequality and K € H,,; C H,, we have

1/7

N S Y|, Z(/ [K(x—y) ~ K(x, - )| dy) /r(/gk[f(y)r’dy)

la|=m

1/r
< ZHDO‘b” sz 31) (2,( 3 ). \Kx y) - K(xl-y)]’dy)

la|=m

1 y 1/7
X((zk.gl)n Eklf(y)} dy)
< Y D] Mo S 3 Db M) ko)

la|=m |or|=m

and

og) 1 1/r
Nip $ Y (2°-31) < T3 / |K(x—y) = K(x1 - )| dy)
k=1

1 y 1/7
x Z(W | [(D*bG) = (D“b)z, )f )] dy)

la|=m
< > ||| Mi(f)(xo).

loe|=m

Finally, let us estimate N;. Note that the integral

/ (X{ei+1<|x—y|<€i}(y) - X{ei+1<\x1—y\<6i}(y)) Mmm_y)[((xl - 0L dy
R” %1 — 1
will only be non-zero if either Xy, <jx—yi<e;} () = 1 and x(e,,, <x1—yi<;}(¥) = O or vice versa.
That means the integral will only be non-zero in the following cases:

(i) €1 <lx—yl <€ and x —y| < €15

(i) €1 <lx—yl <€ and v -yl = €;
(ili) €41 < %1 —yl <€ and |x—y| < €15

V)

(i

€1 <|x1 -yl <eand |x -yl > €.
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In case (i) we observe that €;,; < |[x —y| < |1 — x| + |x1 — y| < 3] + €41 as |x — x| < L.
Similarly, in case (iii) we have €;,1 < [x1 — y| < 3] + €41 as |x — xo| < [. In case (ii) we have
€; < |x1 —y| <3l + €;, and in case (iv) we have €; < |x — y| < 3] + €;. By (1) we have

m+l(b xl’y)

[t R —") o1 50) )

-y
S /R ) X{e,v+1<|x—y<ei}(y)X{ei+1<x—y<31+€i+1}(y)‘ T;i(f;;zy) IxL?Ey;I"
+ /R tesa<l-yi<en ) Xei< x1-yl<31+ft}(y)’ mH(f yx|1m . le?fyj)lll”
+/R Xteinr<lx1-yi<e) ) X ez <lr—yi<3lressn) (y)‘ e b;;y) le];zfyj)’zn
+/]R” x{ei+1<xl—y|<e,»}U)X{ei<|x—yl<31+ei}()’)‘ T;i(f;;;y) |x[?5y))/||"

=P1 +P2 +P3+P4.

It is easy to check that |x — y| > 9/, |x; — y| > 8/, and %|x -y < |xp -y < §|x —y| for
x € B,y € (10B); moreover, if 3/ > €;,1,i € N, we have

{y€ (10B)° 1 €1 < [x—y| <3l + €1} C{ye (10B) : |x—y| <6l} =
and
{y € (10B)  : €41 < |x1 —y| <31+ ei+1} C {y € (10B)°: |x —y| < 6l} = ¢;

this means Py = P3 = 0. Similarly, P, = P, = 0 for 3/ > ¢;,i € N. By Holder’s inequality with
t satisfying 1 < ¢ < {/min(r, p), we get

1 b X1,
Pl 5 </ X{€z+1<|x_y|<€l (:y)‘ =
R”

e — yl’”

" RO

e —y|"

Lol

e — )™

1/t
dy> [B1+ €11)" - (€)',

m+l(b xlry)
x -y

l/t

1t
dy> [(31 +€)" = ()" ]

P2 5 (/ Xlei1<lx y|<€,}(y)‘
R”

(b;x1,9) | )l " e
P; < (/ X{e,-+1<|x1—y|<€i}(y)‘ il _ ;y lszy p” dy [(3l+ €ir1)" — (€i41) ]w
" %1 — 1l %1 —y1
and
m1 (B3%1, lf20/)|t Ve e
Py S / < < +1 d 3+ €; "_ €; " .
4 < o Xleip1<ler—yl<e;} (Y)‘ I _y|m ey — g7 Y [( )" = (€:) ]

Note that for 3/ < €;,1, we have (3/ + €;,1)" — (€51)" < (€i41)" ! Then

(Bl +€i1)" — (€141)"

Rm+1(b;x1,y)
<
hs (€141)n- 1 (/H‘{" Xiera <li-yl<ey ()

t t 1/t
O )

ey =y |l =y
/ Biany) | 1BON o\
1/¢ m+1 1Y 2
<l <f X{e,+1<|x—y|<€,}(y)’ o — ) P dy| .
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Similarly, we have

t

1/¢ (B3 x1,y)
P, S <A X{max{ej,1,2 4€z}<|x—y|<e,}(y)‘

LoV )”f,

y|m |x1 _y|n+t—1
t t 1/t
vt i1 (D3 %1, 9) o)l
Pysl </ Xieia<ln y|<e,1(y)‘ Wl | =y d

and

(b;x1,9)|'
< 1/¢ m+1 1
P4 ~ ! X{max{éul )11 51}<‘x1_3"<51}(y y|m

|x1 _y|n+t—1

RO )’
Then

Ny = ” {./l;" (X{5i+l<|x—}’|<5i}(y) - X{5i+l<|x1—}"<€i}(y))

Riyi1(b; xh)’)
X WK(M L) dy}

B={eile®

Ep
1(b3x1,)
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This completes the proof of Theorem 1.
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4 Conclusion

In this paper, we have established the weighted L”-boundedness of variation and oscilla-
tion operators for a family of multilinear singular integrals with kernels satisfying certain
Hoérmander type conditions. These results extend the corresponding work in [9] and [15].
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