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1 Introduction
The classic “Analytic Inequalities” by Mitrinovic [1] has been hailed all over the world since
it was published in 1970. The influence of this book on the various branches of mathemat-
ics cannot be overestimated and will last forever. As the author says in the introduction of
his book, “The greater part of the results included have been checked, although this could
not, of course, be done for all the results which appear in the book. We hope, however, that
there are not many errors, but the very nature of this book is such that it seems impossible
to expect it to be entirely free of them.” I find some errors in “Analytic Inequalities” and
announce the specific contents.

The following conclusions are on p. 241 in [1].

Proposition 1 ([1, Theorem 3.4.20]) For every t > 0,

t –
3 sin t

2 + cos t
<

1
180

t5, (1.1)

t –
3 sin t

2 + cos t

(
1 +

(1 – cos t)2

9(3 + 2 cos t)

)
<

t7

2100
. (1.2)

It is not difficult to find that these two inequalities above on the common interval (0,π/2)
are wrong. I read carefully the only one citation [2] by Frame in [1] for Theorem 3.4.20,
which was published in the 1944 issue of “The American Mathematical Monthly” in the
form of the report of the Mathematical Seminar. We judge that the object of Frame [2]
is a right triangle, so the t must be the other two acute angles of a right triangle, that is,
t ∈ (0,π/2). We can only find the related contents of (1.1) in [2] is the item “(7)”, but the
one (1.2) at least did not appear in [2].

By using the analytic method, this paper has come to the corresponding conclusions
of (1.1) and (1.2); specifically, these are, in the form of (1.1) and (1.2), the first of two
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inequalities holds for hyperbolic functions, while the second one must be reconstructed,
and reversely for circular functions on the interval (0,π ).

Theorem 1 Let x ∈ (0,π ). Then

x –
3 sin x

2 + cos x
>

1
180

x5 (1.3)

and

x –
3 sin x

2 + cos x

(
1 +

(1 – cos x)2

9(3 + 2 cos x)

)
>

x7

2100
(1.4)

hold, 1/180 and 1/2100 are the best constants in (1.3) and (1.4), respectively.

Theorem 2 Let x > 0. Then

x –
3 sinh x

2 + cosh x
<

1
180

x5 (1.5)

and

x –
3 sinh x

2 + cosh x

(
1 +

(1 – cosh x)2

9(3 + 2 cosh x)

)
< –

(
9.537610179 · 10–5)x7 (1.6)

hold, where 1/180 is the best constant in (1.5).

2 Lemmas
Lemma 1 (Mitrinovic–Adamovic inequality [3]) The inequality

(
sin t

t

)3

> cos t (2.1)

holds for all t ∈ (0,π/2), and the exponent 3 is best possible.

Lemma 2 (Lazarevic’s inequality [4]) Let t �= 0. Then

(
sinh t

t

)3

> cosh t (2.2)

holds, and the exponent 3 is best possible.

Lemma 3 ([5]) Let |x| < π , and B2n be the even-indexed Bernoulli numbers (see [6]), we
have the following power series expansion:

1
sin x

=
1
x

+
∞∑

n=1

22n – 2
(2n)!

|B2n|x2n–1. (2.3)

Lemma 4 ([7]) Let an and bn (n = 0, 1, 2, . . .) be real numbers, and let the power series
A(t) =

∑∞
n=0 antn and B(t) =

∑∞
n=0 bntn be convergent for |t| < R (R ≤ +∞). If bn > 0 for

n = 0, 1, 2, . . . , and if εn = an/bn is strictly increasing (or decreasing) for n = 0, 1, 2, . . . , then
the function A(t)/B(t) is strictly increasing (or decreasing) on (0, R) (R ≤ +∞).
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Lemma 5 ([8]) Let B2n be the even-indexed Bernoulli numbers. Then the double inequality

π2(22n+2 – 1)
(2n + 2)(2n + 1)(22n – 1)

<
|B2n|

|B2n+2| <
π2(22n+1 – 1)

(2n + 2)(2n + 1)(22n–1 – 1)
(2.4)

holds for n = 1, 2, . . . .

Lemma 6 Let B2n be the even-indexed Bernoulli numbers. Then the series

{δn} =
{

n(22n+2 – 2)|B2n+2|
(2n + 2)(22n – 2)|B2n|

}
(2.5)

is increasing for n ≥ 1.

Proof By Lemma 5 we have

δn–1 =
(n – 1)(22n – 2)|B2n|

(2n)(22n–2 – 2)|B2n–2|

<
(n – 1)(22n – 2)
(2n)(22n–2 – 2)

(2n)(2n – 1)(22n–2 – 1)
π2(22n – 1)

,

δn =
n(22n+2 – 2)|B2n+2|

(2n + 2)(22n – 2)|B2n|

>
n(22n+2 – 2)

(2n + 2)(22n – 2)
(2n + 2)(2n + 1)(22n–1 – 1)

π2(22n+1 – 1)
.

In order to prove cn–1 < cn for n ≥ 2 it suffices to show

n(22n+2 – 2)
(2n + 2)(22n – 2)

(2n + 2)(2n + 1)(22n–1 – 1)
π2(22n+1 – 1)

>
(n – 1)(22n – 2)
(2n)(22n–2 – 2)

(2n)(2n – 1)(22n–2 – 1)
π2(22n – 1)

,

that is,

2n(2n + 1)
(
22n – 8

)(
22n – 1

)
> (2n – 2)(2n – 1)

(
22n – 4

)(
22n – 2

)
. (2.6)

Let 2n = m. Then, for m ≥ 4, we show

m(m + 1)
(
2m – 8

)(
2m – 1

)
> (m – 2)(m – 1)

(
2m – 4

)(
2m – 2

)
. (2.7)

Let

um = m(m + 1)
(
2m – 8

)(
2m – 1

)
– (m – 2)(m – 1)

(
2m – 4

)(
2m – 2

)
= 2(2m – 1)22m –

(
3m2 + 27m – 12

)
2m + 32m – 16,

vm = 2 · 2m –
3m2 + 27m – 12

2m – 1
.
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Then

um > 2(2m – 1)22m –
(
3m2 + 27m – 12

)
2m

= (2m – 1)2mvm (2.8)

and

vm+1 – 2vm = 3 · 17m2 + 2m3 + m – 2
(2m – 1)(2m + 1)

> 0 (2.9)

for m ≥ 4.
It follows from (2.9) and v4 = 80/7 > 0 that vm > 0 for m ≥ 4. Therefore, Lemma 6 follows

from (2.6), (2.7) and (2.8). �

Lemma 7 The function

K(t) =
t3 – sin3 t
t3 sin2 t

is increasing on (0,π ). In particular, we have
(i) The double inequality

1 –
π3 – 8

π3 sin2 t <
(

sin t
t

)3

< 1 –
1
2

sin2 t (2.10)

holds for all t ∈ (0,π/2), the constants (π3 – 8)/π3 and 1/2 are best possible.
(ii) The inequality

(
sin t

t

)3

< 1 –
π3 – 8

π3 sin2 t (2.11)

holds for all t ∈ (π/2,π ), and the constant (π3 – 8)/π3 is best possible.

Proof Let

K(t) =
t3 – sin3 t
t3 sin2 t

=
( t

sin t )3 – 1
t3

sin t

:=
A(t)
B(t)

, 0 < t < π .

Then by (2.3) we obtain

1
sin3 t

=
1

sin t
+

1
2

(
1

sin t

)′′

=
1
t

+
∞∑

n=1

22n – 2
(2n)!

|B2n|t2n–1

+
1
t3 +

∞∑
n=2

(22n – 2)(2n – 1)(n – 1)
(2n)!

|B2n|t2n–3
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and

A(t) = t3

(
1
t

+
∞∑

n=1

22n – 2
(2n)!

|B2n|t2n–1

)
– 1

+ t3

(
1
t3 +

∞∑
n=2

(22n – 2)(2n – 1)(n – 1)
(2n)!

|B2n|t2n–3

)

= t2 +
∞∑

n=1

[
(22n – 2)|B2n|

(2n)!
+

(22n+2 – 2)(2n + 1)n|B2n+2|
(2n + 2)!

]
t2n+2

:=
∞∑

n=1

ant2n+2,

B(t) = t3

(
1
t

+
∞∑

n=1

22n – 2
(2n)!

|B2n|t2n–1

)
= t2 +

∞∑
n=1

(22n – 2)|B2n|
(2n)!

t2n+2

:=
∞∑

n=0

bnt2n+2,

where

a0 = 1, an =
(22n – 2)|B2n|

(2n)!
+

(22n+2 – 2)(2n + 1)n|B2n+2|
(2n + 2)!

,

b0 = 1, bn =
(22n – 2)|B2n|

(2n)!
> 0, n ≥ 1.

Since

a0

b0
= 1,

an

bn
= 1 +

n(22n+2 – 2)|B2n+2|
(2n + 2)(22n – 2)|B2n| = 1 + δn, n ≥ 1,

we know a0/b0 < a1/b1, and {an/bn}n≥1 is increasing by Lemma 6. So {an/bn}n≥0 is increas-
ing, and K(t) = A(t)/B(t) is increasing on (0,π ) by Lemma 4. In view of

K
(
0+)

=
1
2

, K
(

π

2

)
=

π3 – 8
π3 , K

(
π–)

= +∞,

this completes the proof of Lemma 6. �

In order to prove (1.6), we need the following lemmas. We introduce a useful auxiliary
function Hf ,g . For –∞ ≤ a < b ≤ ∞, let f and g be differentiable on (a, b) and g ′ �= 0 on
(a, b). Then the function Hf ,g is defined by

Hf ,g :=
f ′

g ′ g – f .

The function Hf ,g has some good properties and plays an important role in the proof of a
monotonicity criterion for the quotient of power series.
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Lemma 8 ([9]) Let C(t) =
∑∞

k=0 cktk and D(t) =
∑∞

k=0 dktk be two real power series con-
verging on (–r, r) (r ≤ +∞) and dk > 0 for all k. Suppose that, for certain m ∈ N, the non-
constant sequence {ak/bk} is increasing (resp. decreasing) for 0 ≤ k ≤ m and decreasing
(resp. increasing) for k ≥ m. Then the function C/D is strictly increasing (resp. decreasing)
on (0, r) if and only if HC,D(r–) ≥ (resp. ≤) 0. Moreover, if HC,D(r–) < (resp. >) 0, then there
exists t0 ∈ (0, r) such that the function C/D is strictly increasing (resp. decreasing) on (0, t0)
and strictly decreasing (resp. increasing) on (t0, r).

Lemma 9 Let

L(t) =
sinh3 t – t3

t3 sinh2 t
, t > 0,

Then the function L(t) has a minimum point t0 = 2.72078 . . . , and

sinh3 t – t3

t3 sinh2 t
≥ L(t0) = 0.35803 . . . := θ .

In particular, we see that the double inequality

(
sinh t

t

)3

≥ 1 + θ sinh2 t (2.12)

holds for all t ∈ (0, +∞), the constant θ is best possible.

Proof Let

L(t) =
( sinh t

t )3 – 1
sinh2 t

=
sinh3 t – t3

t3 sinh2 t
:=

C(t)
D(t)

, 0 < t < +∞.

Then by using the infinite series of sinh x and cosh x we obtain

C(t) = sinh3 t – t3 =
1
4

(sinh 3t – 3 sinh t) – t3 =
∞∑

n=2

32n+1 – 3
4(2n + 1)!

t2n+1 :=
∞∑

n=2

cnt2n+1

and

D(t) = t3 sinh2 t =
1
2

(cosh 2t – 1)t3

=
∞∑

n=2

22n–3

(2n – 2)!
t2n+1 :=

∞∑
n=2

dnt2n+1,

where

cn =
32n+1 – 3
4(2n + 1)!

, dn =
22n–3

(2n – 2)!
> 0, n ≥ 2.

Setting

ζn :=
cn

dn
=

32n+1 – 3
(2n + 1)(2n)(2n – 1)22n–1 , n ≥ 2,
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we have

ζ2 =
1
2

> ζ3 =
13
40

> ζ4 =
205
672

,

and {ζn}n≥4 is increasing since

ζn+1 – ζn =
3
4

(10n2 – 29n – 12)32n + 6n2 + 21n + 12
22nn(2n + 3)(2n + 1)(2n – 1)(n + 1)

> 0

for n ≥ 4. So

ζ2 > ζ3 > ζ4 < ζ5 < ζ6 < · · · .

We compute

HC,D(+∞) = lim
x→+∞

(
C′

D′ D – C
)

= +∞,

and we find that there exists t0 ∈ (0, +∞) such that the function C/D is strictly decreasing
on (0, t0) and strictly increasing on (t0, +∞) by Lemma 8. Let t1 = 2.72078, t2 = 2.72079.
We calculate

L′(t1) = –3.9522 × 10–7 < 0,

L′(t2) = 3.7644 × 10–7 > 0,

and see that there exists t0 ∈ (t1, t2) = (2.72078, 2.72079) ⊂ (0, +∞) such that L′(t0) = 0. So

L(t0) = min
t∈(0,+∞)

L(t) = min
t∈(2.72078,2.72079)

L(t),

and

L(t0) ≥ L(t2) + (t0 – t2)L′(t2) = 0.35803 . . . .

Obviously, L(t) ≥ L(t0) implies (2.12). �

3 The proof of Theorem 1

The proof of the inequality (1.3) Let

F(x) = x –
3 sin x

2 + cos x
–

1
180

x5, 0 < x < π .

Then

F ′(x) = –
1

36(cos x + 2)2

(
x4(cos x + 2)2 – 36(1 – cos x)2)

= –
x2(cos x + 2) + 6(1 – cos x)

36(cos x + 2)2

[
x2(cos x + 2) – 6(1 – cos x)

]
.
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In order to prove F ′(x) > 0 holds for x ∈ (0,π ), it suffices to show

x2(cos x + 2) – 6(1 – cos x) < 0, 0 < x < π . (3.1)

Since

cos x = –
tan2 x

2 – 1
tan2 x

2 + 1
(3.2)

we have

x2(cos x + 2) – 6(1 – cos x) < 0 ⇐⇒ 1 +
3

(tan x
2 )2 <

3
( x

2 )2 . (3.3)

Let x/2 = t. Then (3.3) is equivalent to

1 +
3

tan2 t
<

3
t2 , 0 < t <

π

2
. (3.4)

In fact, when letting

f (t) =
3
t2 – 1 –

3
tan2 t

, 0 < t <
π

2
, (3.5)

then

f
(
0+)

= 1, f
((

π

2

)–)
=

12
π2 – 1 ≈ 0.21585 > 0. (3.6)

By Lemma 1, we have

f ′(t) = –
6

sin3 t

[(
sin t

t

)3

– cos t
]

< 0, 0 < t <
π

2
, (3.7)

which implies

f (t) ≥ min
t∈(0,π/2)

f (t) = f
((

π

2

)–)
=

12
π2 – 1 > 0, 0 < t <

π

2
. (3.8)

So F ′(x) > 0 holds for x ∈ (0,π ), and

F(x) = x –
3 sin x

2 + cos x
–

1
180

x5 > F(0) = 0, 0 < x < π . (3.9)

Since

lim
x→0+

x – 3 sin x
2+cos x
x5 =

1
180

,

this completes the proof of the inequality (1.3). �

The proof of the inequality (1.4) Let

G(x) = x –
3 sin x

2 + cos x

(
1 +

(1 – cos x)2

9(3 + 2 cos x)

)
–

x7

2100
, 0 < x < π .
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Then G(0+) = 0, and

G′(x) = –
1

300(2 cos x + 3)2

[
x6(2 cos x + 3)2 – 200(1 – cos x)3]. (3.10)

In order to prove G′(x) > 0 holds for x ∈ (0,π ), it suffices to prove

x6 < 200
(1 – cos x)3

(2 cos x + 3)2 , 0 < x < π . (3.11)

Via (3.2) we have

2 cos x + 3 =
tan2 x

2 + 5
tan2 x

2 + 1
, 1 – cos x = 2

tan2 x
2

tan2 x
2 + 1

,

and (3.11) is equivalent to

x6 <
( 40 tan3 x

2
(sec x

2 )(sec2 x
2 + 4)

)2

. (3.12)

So (3.12) holds for x ∈ (0,π ) when proving

x3 <
40 tan3 x

2
(sec x

2 )(sec2 x
2 + 4)

, 0 < x < π , (3.13)

or
(

x
2

)3

<
5 tan3 x

2
(sec x

2 )(sec2 x
2 + 4)

, 0 < x < π . (3.14)

Let x/2 = t. Then t ∈ (0,π/2), and (3.14) is equivalent to

t3 <
5 tan3 t

(sec t)(sec2 t + 4)
=

5 sin3 t
4 cos2 t + 1

, (3.15)

or
(

sin t
t

)3

>
4 cos2 t + 1

5
= 1 –

4
5

sin2 t. (3.16)

In fact, by Lemma 7 we have

(
sin t

t

)3

> 1 –
π3 – 8

π3 sin2 t > 1 –
4
5

sin2 t (3.17)

for all t ∈ (0,π/2) due to 4/5 > (π3 – 8)/π3 = 0.74199 . . . .
Since

lim
x→0+

x – 3 sin x
2+cos x (1 + (1–cos x)2

9(3+2 cos x) )
x7 =

1
2100

,

this completes the proof of the inequality (1.4). �

So the proof of Theorem 1 is complete.
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4 The proof of Theorem 2
The proof of the inequality (1.5) Let

S(x) = x –
3 sinh x

2 + cosh x
–

1
180

x5, 0 < x < +∞.

Then

S′(x) = –
x4(cosh x + 2)2 – 36(cosh x – 1)2

36(cosh x + 2)2

= –
x2(cosh x + 2) + 6(cosh x – 1)

36(cos x + 2)2

[
x2(cosh x + 2) – 6(cosh x – 1)

]
.

In order to prove that S′(x) < 0 holds for x ∈ (0, +∞), it suffices to show

x2(cosh x + 2) – 6(cosh x – 1) > 0, 0 < x < +∞. (4.1)

Since

cosh x = –
tanh2 x

2 + 1
tanh2 x

2 – 1
(4.2)

we have

x2(cosh x + 2) – 6(cosh x – 1) > 0 ⇐⇒ 1 +
3

(tanh x
2 )2 >

3
( x

2 )2 . (4.3)

Let x/2 = t. Then (4.3) is equivalent to

1 +
3

tanh2 t
>

3
t2 , 0 < t < +∞. (4.4)

In fact, when letting

s(t) =
3

tanh2 t
– 1 –

3
t2 , 0 < t < +∞, (4.5)

we have

s
(
0+)

= 1, s(+∞) = 2. (4.6)

By Lemma 2 we can obtain

s′(t) =
6

sinh3 t

((
sinh t

t

)3

– cosh t
)

> 0, 0 < t < +∞, (4.7)

which implies

s(t) ≥ min
t∈(0,+∞)

s(t) = s
(
0+)

= 1 > 0, 0 < t < +∞. (4.8)
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So S′(x) < 0 holds for x ∈ (0, +∞), and

S(x) = x –
3 sinh x

2 + cosh x
–

1
180

x5 < S(0) = 0, 0 < x < +∞. (4.9)

Since

lim
x→0+

x – 3 sinh x
2+cosh x
x5 =

1
180

,

this completes the proof of the inequality (1.5). �

The proof of the inequality (1.6) Let p = 9.537610179 · 10–5, and

H(x) = x –
3 sinh x

2 + cosh x

(
1 +

(1 – cosh x)2

9(3 + 2 cosh x)

)
+ px7, 0 < x < +∞.

Then H(0+) = 0, and

H ′(x) =
21px6(2 cosh x + 3)2 – 2(cosh x – 1)3

3(2 cosh x + 3)2 .

We have

H ′(x) > 0 ⇐⇒ p <
2(cosh x – 1)3

21x6(2 cosh x + 3)2

⇐⇒ x6 <
998.553028(cosh x – 1)3

(2 cosh x + 3)2

=
998.553028(2 tanh2 x

2
1–tanh2 x

2
)3

( 5–tanh2 x
2

1–tanh2 x
2

)2
=

7988.424224 cosh2 x
2 tanh6 x

2

(5 – tanh2 x
2 )2

⇐⇒ x3 < 89.37798512
cosh x

2 tanh3 x
2

5 – tanh2 x
2

= 89.37798512
sinh3 x

2

5 cosh2 x – sinh2 x
2

⇐⇒
(

sin t
t

)3

>
5 + 4 sinh2 t

11.17224814
,

where t = x/2 > 0. In fact, by (2.12) in Lemma 9 we have

(
sinh t

t

)3

> 1 + 0.35803 sinh2 t >
5 + 4 sinh2 t

11.17224814
.

The last inequality holds for t ∈ (0, +∞) due to

11.17224814
(
1 + 0.35803 sinh2 t

)
–

(
5 + 4 sinh2 t

)
= 1.5642 × 10–9 cosh 2t + 6.17224814 > 0.

Therefore H ′(x) > 0, and H(x) > H(0+) = 0 holds for x ∈ (0, +∞).
So the proof of Theorem 2 is complete. �
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5 Remarks
Remark 1 The inequalities (1.3) and (1.4) are obviously better than the famous Cusa–
Huygens inequality (see [10–13]):

sin x
x

<
2 + cos x

3
, 0 < x <

π

2
. (5.1)

Remark 2 Mortici [14] strengthened (5.1) to

sin x
x

<
2 + cos x

3
–

1
180

x4 +
1

3780
x6, 0 < x <

π

2
. (5.2)

It is in Frame [2] that the following double inequality was also given:

2 + cos x – x2

π2

3 – x2

π2

<
sin x

x
<

2 + cos x – x2

10

3 – x2
10

, 0 < x < π , (5.3)

or

2 + cos x
3

–
x(x – sin x)

3π2 <
sin x

x
<

2 + cos x
3

–
x(x – sin x)

30
, 0 < x < π . (5.4)

In order to compare the three inequalities (1.4), (5.2), and the right hand side of (5.4), we
rewrite (1.4) as

sin x
x

<
1 – x6

2100

1 + (1–cos x)2

9(3+2 cos x)

2 + cos x
3

. (5.5)

(i) We first compare two inequalities (5.5) and (5.2) on the same interval (0,π/2). We
compute

(
1 +

(1 – cos x)2

9(3 + 2 cos x)

)(
2 + cos x

3
–

1
180

x4 +
1

3780
x6

)
–

(
1 –

x6

2100

)
2 + cos x

3

=
1

170,100
cos x + 2

2 cos x + 3
i(x),

where

i(x) = –12,600 cos x – 105x4 cos x + 59x6 cos x – 1470x4 + 151x6 + 6300 cos2 x + 6300.

Numerical results show that i(x) > 0 for all x ∈ (0, 0.0040) and i(x) < 0 for all x ∈
(0.0040,π/2). That is, the upper estimate in (5.5) is smaller than the one in (5.2) on the
interval (0, 0.0040), meanwhile the upper estimate in (5.2) is smaller than the one in (5.5)
on the interval (0.0040,π/2). So these two inequalities (1.4) and (5.2) are not included in
each other.

(ii) Then we compare the two inequalities (5.5) and the right hand side of (5.4) on the
same interval (0,π ). Let us check the function

x6

2100
2 + cos x

3
+

(1 – cos x)2

9(3 + 2 cos x)
2 + cos x

3
–

x(x – sin x)
30

(
1 +

(1 – cos x)2

9(3 + 2 cos x)

)

=
1

18,900
cos x + 2

2 cos x + 3
j(x),
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where

j(x) = –1400 cos x – 70x2 cos x + 6x6 cos x + 980x sin x – 980x2 + 9x6

+ 700 cos2 x + 70x cos x sin x + 700.

Numerical results show that j(x) > 0 for all x ∈ (0, 0.4878) and i(x) < 0 for all x ∈ (0.4878,π ).
That is, the upper estimate in (5.5) is smaller than the one in the right hand side of (5.4)
on the interval (0, 0.4878), meanwhile the upper estimate in the right hand side of (5.4) is
smaller than the one in (5.5) on the interval (0.4878,π ). So these two inequalities (1.4) and
the right hand side of (5.4) are not included in each other.

In a word, inequality (1.4) is not contained in the other improved Cusa–Huygens in-
equalities showed in [14] and [2] and is stronger than those ones near x = 0.

Remark 3 Using the methods in [15–17] and in [18], one can directly prove the inequalities
(1.3) and (1.4), (1.5) and (1.6), respectively. A different approach based on the power series
expansions, to proving, refinements and generalizations of inequalities of the similar type
can be found in [19].

6 Conclusions
In the present study, we find that there are two wrong inequalities for circular functions
in the famous monograph “Analytic Inequalities” by Mitrinovic, and we reestablish two
inequalities on this topic and create two corresponding inequalities for hyperbolic func-
tions. These new inequalities are the generalization of the famous Cusa–Huygens inequal-
ity, one of them is not contained in other improved Cusa–Huygens inequalities showed in
[14] and [2] and is stronger than the ones near x = 0.
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