
Kubiak et al. Journal of Inequalities and Applications  (2018) 2018:92 
https://doi.org/10.1186/s13660-018-1684-0

R E S E A R C H Open Access

Pointwise approximation of modified
conjugate functions by matrix operators of
conjugate Fourier series of 2π/r-periodic
functions
Mateusz Kubiak, Włodzimierz Łenski and Bogdan Szal*

*Correspondence:
B.Szal@wmie.uz.zgora.pl
Faculty of Mathematics, Computer
Science and Econometrics,
University of Zielona Góra, Zielona
Góra, Poland

Abstract
We extend the results of Xh. Z. Krasniqi (Acta Comment. Univ. Tartu Math. 17:89–101,
2013) and the authors (Acta Comment. Univ. Tartu Math. 13:11–24, 2009; Proc. Est.
Acad. Sci. 67:50–60, 2018) to the case when considered function is 2π /r-periodic and
the measure of approximation depends on r-differences of the entries of the
considered matrices.

MSC: 42A24

Keywords: Rate of approximation; Summability of Fourier series

1 Introduction
Let Lp

2π/r (1 ≤ p < ∞) be the class of all 2π/r-periodic real-valued functions, integrable in
the Lebesgue sense with the pth power over Qr = [–π/r,π/r] with the norm

‖f ‖Lp
2π/r

=
∥
∥f (·)∥∥Lp

2π/r
:=

(∫

Qr

∣
∣f (t)

∣
∣
p dt

)1/p

,

where r ∈N. It is clear that Lp
2π/r ⊂ Lp

2π/1 = Lp
2π and for f ∈ Lp

2π/r

‖f ‖Lp
2π

= r1/p‖f ‖Lp
2π/r

.

Taking into account the above relations, we will consider, for f ∈ L1
2π/r , the trigonometric

Fourier series as such a series of f ∈ L1
2π in the following form:

Sf (x) :=
a0(f )

2
+

∞
∑

ν=1

(

aν(f ) cosνx + bν(f ) sinνx
)

with the partial sums Skf and the conjugate one

S̃f (x) :=
∞

∑

ν=1

(

aν(f ) sinνx – bν(f ) cosνx
)
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with the partial sums S̃kf . We also know that if f ∈ L1
2π , then

f̃ (x) := –
1
π

∫ π

0
ψx(t)

1
2

cot
t
2

dt = lim
ε→0+

f̃ (x, ε) = lim
ε→0+

f̃r(x, ε),

where, for r ∈N,

f̃r(x, ε) :=

⎧

⎪⎨

⎪⎩

– 1
π

(
∑[r/2]–1

m=0
∫ 2(m+1)π

r –ε

2mπ
r +ε

+
∫ (2[r/2]+1)π

r
2[r/2]π

r +ε
)ψx(t) 1

2 cot t
2 dt for an odd r,

– 1
π

∑[r/2]–1
m=0

∫ 2(m+1)π
r –ε

2mπ
r +ε

ψx(t) 1
2 cot t

2 dt for an even r,

and

f̃ (x, ε) = f̃1(x, ε) := –
1
π

∫ π

ε

ψx(t)
1
2

cot
t
2

dt,

with

ψx(t) := f (x + t) – f (x – t),

exist for almost all x (cf. [4, Th. (3.1) IV]).
Let A := (an,k) be an infinite matrix of real numbers such that

an,k ≥ 0 when k, n = 0, 1, 2, . . . , lim
n→∞ an,k = 0 and

∞
∑

k=0

an,k = 1,

but A◦ := (an,k)n
k=0, where

an,k = 0 when k > n.

We will use the notations

An,r =
∞

∑

k=0

|an,k – an,k+r|, A◦
n,r =

n
∑

k=0

|an,k – an,k+r|

for r ∈N and

T̃n,Af (x) :=
∞

∑

k=0

an,kS̃kf (x) (n = 0, 1, 2, . . .)

for the A-transformation of S̃f .
In this paper, we will study the estimate of |T̃n,Af (x) – f̃r(x, ε)| by the function of mod-

ulus of continuity type, i.e. a nondecreasing continuous function ω̃ having the following
properties: ω̃(0) = 0, ω̃(δ1 + δ2) ≤ ω̃(δ1) + ω̃(δ2) for any 0 ≤ δ1 ≤ δ2 ≤ δ1 + δ2 ≤ 2π . We will
also consider functions from the subclass Lp

2π/r(ω̃)β of Lp
2π/r for r ∈N:

Lp
2π/r(ω̃)β =

{

f ∈ Lp
2π/r : ω̃β (f , δ)Lp

2π/r
= O

(

ω̃(δ)
)

when δ ∈ [0, 2π ] and β ≥ 0
}

,
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where

ω̃β f (δ)Lp
2π/r

= sup
0≤|t|≤δ

{∣
∣
∣
∣
sin

rt
2

∣
∣
∣
∣

β
∥
∥ψ·(t)

∥
∥

Lp
2π/r

}

.

It is easy to see that ω̃0f (·)Lp
2π/r

= ω̃f (·)Lp
2π/r

is the classical modulus of continuity. Moreover,
it is clear that for β ≥ α ≥ 0

ω̃β f (δ)Lp
2π/r

≤ ω̃αf (δ)Lp
2π/r

and consequently

Lp
2π/r(ω̃)α ⊆ Lp

2π/r(ω̃)β .

The deviation T̃n,Af (x) – f̃r(x, ε) was estimated with r = 1 in [2] and generalized in [1] as
follows:

Theorem A ([1, Theorem 8, p. 95]) If f ∈ Lp
2π (ω̃)β with 1 < p < ∞ and 0 ≤ β < 1 – 1

p , where
ω̃ satisfies the conditions:

{∫ π

π
n+1

(
t–γ |ψx(t)|

ω̃(t)

)p

sinβp t
2

dt
}1/p

= Ox
(

(n + 1)γ
)

(1)

with 0 < γ < β + 1
p and

{∫ π
n+1

0

(
t|ψx(t)|

ω̃(t)

)p

sinβp t
2

dt
}1/p

= Ox
(

(n + 1)–1), (2)

then

∣
∣
∣
∣
T̃n,A◦ f (x) – f̃

(

x,
π

n + 1

)∣
∣
∣
∣

= Ox

(

(n + 1)β+ 1
p +1A◦

n,1ω̃

(
π

n + 1

))

.

The next essential generalizations and improvements in [3, Theorem 1] were given. In
these results f̃r(x, ε) and An,r (with r ∈ N) instead of f̃1(x, ε) = f̃ (x, ε) and A◦

n,1, respectively,
were taken. We can formulate them as follows.

Theorem B ([3, Theorem 1]) If f ∈ Lp
2π , 1 < p < ∞, 0 ≤ β < 1 – 1

p and a function ω̃ of
modulus of continuity type satisfies the conditions:

{∫ π
r(n+1)

0

( t|ψx(t)|| sin rt
2 |β

ω̃(t)

)p

dt
}1/p

= Ox
(

(n + 1)–1) (3)

for r ∈N,

{∫ 2mπ
r + π

r(n+1)

2mπ
r

( |ψx(t)|| sin rt
2 |β

ω̃(t – 2mπ
r )

)p

dt
}1/p

= Ox(1) (4)
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for a natural r ≥ 3, where m ∈ {1, . . . [ r
2 ]} when r is an odd or m ∈ {1, . . . [ r

2 ] – 1} when r is
an even natural number, and

{∫ 2mπ
r + π

r

2mπ
r + π

r(n+1)

( |ψx(t)|| sin rt
2 |β

ω̃(t)(t – 2mπ
r )γ

)p

dt
}1/p

= Ox
(

(n + 1)γ
)

, (5)

for r ∈ N with 0 < γ < β + 1
p , where m ∈ {0, . . . [ r

2 ]} when r is an odd or m ∈ {0, . . . [ r
2 ] – 1}

when r is an even natural number. Moreover, let ω̃ satisfy, for a natural r ≥ 2, the conditions:

{∫ 2(m+1)π
r

2(m+1)π
r – π

r(n+1)

( |ψx(t)|| sin rt
2 |β

ω̃( 2(m+1)π
r – t)

)p

dt
}1/p

= Ox(1), (6)

{∫ 2(m+1)π
r – π

r(n+1)

2(m+1)π
r – π

r

( |ψx(t)|| sin rt
2 |β

ω̃(t)( 2(m+1)π
r – t)γ

)p

dt
}1/p

= Ox
(

(n + 1)γ
)

, (7)

with 0 < γ < β + 1
p , where m ∈ {0, . . . [ r

2 ] – 1}. If a matrix A is such that

∞
∑

k=0

(k + 1)2an,k = O
(

(n + 1)2) (8)

and

[ n
∑

l=0

r+l–1
∑

k=l

an,k

]–1

= O(1) (9)

with r ∈N are true, then

∣
∣
∣
∣
T̃n,Af (x) – f̃r

(

x,
π

r(n + 1)

)∣
∣
∣
∣

= Ox

(

(n + 1)β+ 1
p +1An,rω̃

(
π

n + 1

))

.

Theorem C ([3, Theorem 2]) Let f ∈ Lp
2π , 1 < p < ∞, 0 ≤ β < 1 – 1

p and a function ω̃ of
modulus of continuity type satisfy, for r ∈N, the conditions: (4) and (5) with 0 < γ < β + 1

p ,
where m ∈ {0, . . . [ r

2 ]} when r is an odd or m ∈ {0, . . . [ r
2 ] – 1} when r is an even natural

number. Moreover, let ω̃ satisfy, for a natural r ≥ 2, the conditions (6) and (7) with 0 < γ <
β + 1

p , where m ∈ {0, . . . [ r
2 ] – 1}. If a matrix A is such that

∞
∑

k=0

(k + 1)an,k = O(n + 1), (10)

and (9) with r ∈N are true, then

∣
∣
∣
∣
T̃n,Af (x) – f̃r

(

x,
π

r(n + 1)

)∣
∣
∣
∣

= Ox

(

(n + 1)β+ 1
p +1An,rω̃

(
π

n + 1

))

.

In our theorems we generalize the above results considering 2π/r-periodic functions
and using simpler assumptions.

In the paper
∑b

k=a = 0 when a > b.
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2 Statement of the results
To begin with, we will present the estimates of the quantities

∣
∣
∣
∣
T̃n,Af (x) – f̃r

(

x,
π

r(n + 1)

)∣
∣
∣
∣

and
∥
∥
∥
∥

T̃n,Af (·) – f̃r

(

·, π

r(n + 1)

)∥
∥
∥
∥

Lp
2π/r

.

Finally, we will formulate some remarks and corollaries.

Theorem 1 Suppose that f ∈ Lp
2π/r , 1 < p < ∞, r ∈N, 0 ≤ β < 1 – 1

p and a function ω̃ of the
modulus of continuity type satisfies the conditions:

{∫ π
r(n+1)

0

( t|ψx(t)|| sin rt
2 |β

ω̃(t)

)p

dt
}1/p

= Ox
(

(n + 1)–1), (11)

when r = 1 or

{∫ π
r(n+1)

0

( |ψx(t)|| sin rt
2 |β

ω̃(t)

)p

dt
}1/p

= Ox(1), (12)

when r ≥ 2, and

{∫ π
r

π
r(n+1)

( |ψx(t)|| sin rt
2 |β

ω̃(t)tγ

)p

dt
}1/p

= Ox
(

(n + 1)γ
)

, (13)

for r ∈N with 0 < γ < β + 1
p . If a matrix A is such that (8) and (9) are true, then

∣
∣
∣
∣
T̃n,Af (x) – f̃r

(

x,
π

r(n + 1)

)∣
∣
∣
∣

= Ox

(

(n + 1)β+ 1
p +1An,rω̃

(
π

n + 1

))

.

Theorem 2 Suppose that f ∈ Lp
2π/r , 1 < p < ∞, r ∈N, 0 ≤ β < 1 – 1

p and a function ω̃ of the
modulus of continuity type satisfies the conditions (12) and (13) for r ∈N with 0 < γ < β + 1

p .
If a matrix A is such that (10) and (9) are true, then

∣
∣
∣
∣
T̃n,Af (x) – f̃r

(

x,
π

r(n + 1)

)∣
∣
∣
∣

= Ox

(

(n + 1)β+ 1
p +1An,rω̃

(
π

n + 1

))

.

Remark 1 The Hölder inequality gives

∞
∑

k=0

(k + 1)an,k =
∞

∑

k=0

(k + 1)a1/2
n,k a1/2

n,k ≤
[ ∞
∑

k=0

(k + 1)2an,k

]1/2[ ∞
∑

k=0

an,k

]1/2

=

[ ∞
∑

k=0

(k + 1)2an,k

]1/2

and thus the condition (8) implies (10), but the condition (12) implies (11). Therefore The-
orems 1 and 2 are not comparable.
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Theorem 3 Let f ∈ Lp
2π/r(ω̃)β , 1 < p < ∞, r ∈ N and 0 ≤ β < 1 – 1

p . If a matrix A is such
that (9) and (8) or (10) are true, then

∥
∥
∥
∥

T̃n,Af (·) – f̃r

(

·, π

r(n + 1)

)∥
∥
∥
∥

Lp
2π/r

= Ox

(

(n + 1)β+ 1
p +1An,rω̃

(
π

n + 1

))

.

Corollary 1 Taking r = 1 the conditions (11) and (13) in Theorem 1 reduce to (1) and (2).
Thus we obtain the results from [2] and Theorem A [1, Theorem 8, p. 95], but in the case
of [3] (Theorem B and C) we reduce the assumptions.

Next, using more natural conditions when β > 0 we can formulate, without proofs, the
following theorems.

Theorem 4 Suppose that f ∈ Lp
2π/r , 1 < p < ∞, r ∈ N, 0 < β < 1 – 1

p . Let a function ω̃ of the
modulus of continuity type satisfy the conditions:

{∫ π
r

π
r(n+1)

( t–γ |ψx(t)|| sin rt
2 |β

ω̃(t)

)p

dt
}1/p

= Ox
(

(n + 1)γ – 1
p
)

(14)

for γ ∈ ( 1
p , 1

p + β) and r ∈N (instead of (13)), and

{∫ π
r(n+1)

0

( t|ψx(t)|| sin rt
2 |β

ω̃(t)

)p

dt
}1/p

= Ox
(

(n + 1)–1– 1
p
)

when r = 1 or

{∫ π
r(n+1)

0

( |ψx(t)|| sin rt
2 |β

ω̃(t)

)p

dt
}1/p

= Ox
(

(n + 1)– 1
p
)

(15)

when r ≥ 2 (instead of (11) and (12), respectively). If a matrix A is such that (9) and (8) are
true, then

∣
∣
∣
∣
T̃n,Af (x) – f̃r

(

x,
π

r(n + 1)

)∣
∣
∣
∣

= Ox

(

(n + 1)β+1An,rω̃

(
π

n + 1

))

. (16)

Moreover, if a function ω̃ of the modulus of continuity type and a matrix A satisfy the
following conditions: (14) with r ∈N and γ ∈ ( 1

p , 1
p + β), (15) with r ∈ N, (9) and (10), then

the estimate (16) is also true.

Theorem 5 Let f ∈ Lp
2π/r(ω̃)β with 1 < p < ∞, r ∈N and 0 < β < 1 – 1

p . If a matrix A is such
that (9) and (8) or (10) are true, then

∥
∥
∥
∥

T̃n,Af (·) – f̃r

(

·, π

r(n + 1)

)∥
∥
∥
∥

Lp
2π/r

= Ox

(

(n + 1)β+1An,rω̃

(
π

n + 1

))

.

Remark 2 We note that our extra conditions (9), (8) and (10) for a lower triangular infinite
matrix A◦ always hold.
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Corollary 2 Considering the above remarks and the obvious inequality

An,r ≤ rAn,1 for r ∈N (17)

our results also improve and generalize the mentioned result of Krasniqi [1].

Remark 3 We note that instead of Lp
2π/r(ω̃)β one can consider another subclass of Lp

2π/r
generated by any function of the modulus of continuity type e.g. ω̃x such that

ω̃x(f , δ) = sup
|t|≤δ

∣
∣ψx(t)

∣
∣ ≤ ω̃x(δ)

or

ω̃x(f , δ) =
1
δ

∫ δ

0

∣
∣ψx(t)

∣
∣dt ≤ ω̃x(δ).

3 Auxiliary results
We begin this section by some notations from [5] and [4, Sect. 5 of Chapter II]. Let for
r = 1, 2, . . .

D◦
k,r(t) =

sin (2k+r)t
2

2 sin rt
2

, D̃◦k,r(t) =
cos (2k+r)t

2
2 sin rt

2

and

D̃k,r(t) =
cos rt

2 – cos (2k+r)t
2

2 sin rt
2

=
cos rt

2
2 sin rt

2
– D̃◦k,r(t).

It is clear by [4] that

S̃kf (x) = –
1
π

∫ π

–π

f (x + t)D̃k,1(t) dt

and

T̃n,Af (x) = –
1
π

∫ π

–π

f (x + t)
∞

∑

k=0

an,kD̃k,1(t) dt.

Now, we present a very useful property of the modulus of continuity.

Lemma 1 ([4]) A function ω̃ of modulus of continuity type on the interval [0, 2π ] satisfies
the following condition:

δ–1
2 ω̃(δ2) ≤ 2δ–1

1 ω̃(δ1) for δ2 ≥ δ1 > 0.

Next, we present the following well-known estimates.

Lemma 2 ([4]) If 0 < |t| ≤ π then

∣
∣D̃◦k,1(t)

∣
∣ ≤ π

2|t| ,
∣
∣D̃k,1(t)

∣
∣ ≤ π

|t|
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and, for any real t, we have

∣
∣D◦

k,1(t)
∣
∣ ≤ k +

1
2

,
∣
∣D̃k,1(t)

∣
∣ ≤ 1

2
k(k + 1)|t|, ∣

∣D̃k,1(t)
∣
∣ ≤ k + 1.

Lemma 3 ([5, 6]) Let r ∈ N , l ∈ Z and (an) ⊂C. If t �= 2lπ
r , then for every m ≥ n

m
∑

k=n

ak sin kt = –
m

∑

k=n

(ak – ak+r)D̃◦k,r(t) +
m+r
∑

k=m+1

akD̃◦k,–r(t) –
n+r–1
∑

k=n

akD̃◦k,–r(t),

m
∑

k=n

ak cos kt =
m

∑

k=n

(ak – ak+r)D◦
k,r(t) –

m+r
∑

k=m+1

akD◦
k,–r(t) +

n+r–1
∑

k=n

akD◦
k,–r(t).

We additionally need the following estimate as a consequence of Lemma 3.

Lemma 4 Let r ∈N, l ∈ Z and (an,k) ⊂R
+
0 for n.k ∈N0. If t �= 2lπ

r , then

∣
∣
∣
∣
∣

1
2

∞
∑

k=0

an,k cos
(2k + 1)t

2

∣
∣
∣
∣
∣
≤ 1

2| sin rt
2 |

(

An,r +
r–1
∑

k=0

an,k

)

≤ 1
| sin rt

2 |An,r .

Proof By Lemma 3,

1
2

∞
∑

k=0

an,k cos
(2k + 1)t

2

=
1
2

( ∞
∑

k=0

an,k cos kt cos
t
2

–
∞

∑

k=0

an,k sin kt sin
t
2

)

=
cos t

2
2

( ∞
∑

k=0

(an,k – an,k+r)D◦
k,r(t) +

r–1
∑

k=0

an,kD◦
k,–r(t)

)

–
sin t

2
2

(

–
∞

∑

k=0

(an,k – an,k+r)D̃◦k,r(t) –
r–1
∑

k=0

an,kD̃◦k,–r(t)

)

and our inequalities follow. �

We also need some special conditions which follow from the ones mentioned above.

Lemma 5 Suppose that f ∈ Lp
2π/r , where 1 ≤ p < ∞ and r ∈ N. If the condition (12) holds

with any function ω̃ of the modulus of continuity type and β ≥ 0, then

{∫ 2(m+1)π
r

2(m+1)π
r – π

r(n+1)

( |ψx(t)|
ω̃( 2(m+1)π

r – t)

)p∣
∣
∣
∣
sin

rt
2

∣
∣
∣
∣

βp

dt
} 1

p
= Ox(1),

where m ∈ {0, . . . [ r
2 ] – 1}.

Proof By the substitution t = 2(m+1)π
r – u, we obtain

{∫ 2(m+1)π
r

2(m+1)π
r – π

r(n+1)

( |ψx(t)|
ω̃( 2(m+1)π

r – t)

)p∣
∣
∣
∣
sin

rt
2

∣
∣
∣
∣

βp

dt
}1/p
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=
{∫ π

r(n+1)

0

( |ψx( 2(m+1)π
r – u)|

ω̃(u)

∣
∣
∣
∣
sin

r
2

(
2(m + 1)π

r
– u

)∣
∣
∣
∣

β)p

du
}1/p

=
{∫ π

r(n+1)

0

( |ψx(u)|
ω̃(u)

∣
∣
∣
∣
sin

ru
2

∣
∣
∣
∣

β)p

du
}1/p

.

Hence, by (12) our estimate follows. �

Lemma 6 Suppose that f ∈ Lp
2π/r , where 1 ≤ p < ∞ and r ∈ N. If the condition (12) holds

with any function ω̃ of the modulus of continuity type and β ≥ 0, then

{∫ 2mπ
r + π

r(n+1)

2mπ
r

( |ψx(t)|
ω̃(t – 2mπ

r )

)p∣
∣
∣
∣
sin

rt
2

∣
∣
∣
∣

βp

dt
} 1

p
= Ox(1),

where m ∈ {0, . . . [ r
2 ]}.

Proof By the substitution t = 2mπ
r + u, analogously to the above proof, we obtain

{∫ 2mπ
r + π

r(n+1)

2mπ
r

( |ψx(t)|
ω̃(t – 2mπ

r )

)p∣
∣
∣
∣
sin

rt
2

∣
∣
∣
∣

βp

dt
}1/p

=
{∫ π

r(n+1)

0

( |ψx( 2mπ
r + u)|

ω̃(u)

∣
∣
∣
∣
sin

r
2

(
2mπ

r
+ u

)∣
∣
∣
∣

β)p

du
}1/p

≤
{∫ π

r(n+1)

0

( |ψx(u)|
ω̃(u)

∣
∣
∣
∣
sin

ru
2

∣
∣
∣
∣

β)p

dt
}1/p

= Ox(1)

and we have the desired estimate. �

Now, we formulate another two lemmas without proofs. We can prove them in the same
way as Lemmas 5 and 6, respectively.

Lemma 7 Suppose that f ∈ Lp
2π/r , where 1 ≤ p < ∞ and r ∈ N. If the condition (13) holds

with any function ω̃ of the modulus of continuity type and γ ,β ≥ 0, then

{∫ 2(m+1)π
r – π

r(n+1)

2(m+1)π
r – π

r

( |ψx(t)|| sin rt
2 |β

ω̃(t)( 2(m+1)π
r – t)γ

)p

dt
}1/p

= Ox
(

(n + 1)γ
)

,

where m ∈ {0, . . . [ r
2 ] – 1}.

Lemma 8 Suppose that f ∈ Lp
2π/r , where 1 ≤ p < ∞ and r ∈ N. If the condition (13) holds

with any function ω̃ of the modulus of continuity type and γ ,β ≥ 0, then

{∫ 2mπ
r + π

r

2mπ
r + π

r(n+1)

( |ψx(t)|| sin rt
2 |β

ω̃(t)(t – 2mπ
r )γ

)p

dt
}1/p

= Ox
(

(n + 1)γ
)

,

where m ∈ {0, . . . [ r
2 ]}.
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4 Proofs of theorems
4.1 Proof of Theorem 1
It is clear that for odd r

T̃n,Af (x) – f̃r

(

x,
π

r(n + 1)

)

= –
1
π

∫ π

0
ψx(t)

∞
∑

k=0

an,kD̃k,1(t) dt

+
1
π

([r/2]–1
∑

m=0

∫ 2(m+1)π
r – π

r(n+1)

2mπ
r + π

r(n+1)

+
∫ (2[r/2]+1)π

r

2[r/2]π
r + π

r(n+1)

)

ψx(t)
1
2

cot
t
2

dt

= –
1
π

(
∫ π

r(n+1)

0
+

[r/2]
∑

m=1

∫ 2mπ
r + π

r(n+1)

2mπ
r

+
[r/2]–1
∑

m=0

∫ 2(m+1)π
r

2(m+1)π
r – π

r(n+1)

)

× ψx(t)
∞

∑

k=0

an,kD̃k,1(t) dt

+
1
π

([r/2]
∑

m=0

∫ 2(m+1)π
r

2mπ
r + π

r(n+1)

+
[r/2]–1
∑

m=0

∫ 2(m+1)π
r – π

r(n+1)

(2m+1)π
r

)

ψx(t)
∞

∑

k=0

an,kD̃◦k,1(t) dt

= I0(x) + I1(x) + I2(x) + I3(x) + I4(x)

and for even r

T̃n,Af (x) – f̃r

(

x,
π

r(n + 1)

)

= –
1
π

∫ π

0
ψx(t)

∞
∑

k=0

an,kD̃k,1(t) dt +
1
π

[r/2]–1
∑

m=0

∫ 2(m+1)π
r – π

r(n+1)

2mπ
r + π

r(n+1)

ψx(t)
1
2

cot
t
2

dt

= –
1
π

(
∫ π

r(n+1)

0
+

[r/2]–1
∑

m=1

∫ 2mπ
r + π

r(n+1)

2mπ
r

+
[r/2]–1
∑

m=0

∫ 2(m+1)π
r

2(m+1)π
r – π

r(n+1)

)

× ψx(t)
∞

∑

k=0

an,kD̃k,1(t) dt

+
1
π

([r/2]–1
∑

m=0

∫ (2m+1)π
r

2mπ
r + π

r(n+1)

+
[r/2]–1
∑

m=0

∫ 2(m+1)π
r – π

r(n+1)

(2m+1)π
r

)

× ψx(t)
∞

∑

k=0

an,kD̃◦k,1(t) dt

= I0(x) + I ′
1(x) + I2(x) + I ′

3(x) + I4(x),

whence
∣
∣
∣
∣
T̃n,Af (x) – f̃r

(

x,
π

r(n + 1)

)∣
∣
∣
∣

≤ ∣
∣I0(x)

∣
∣ +

∣
∣I1(x)

∣
∣ +

∣
∣I ′

1(x)
∣
∣ +

∣
∣I2(x)

∣
∣ +

∣
∣I3(x)

∣
∣ +

∣
∣I ′

3(x)
∣
∣ +

∣
∣I4(x)

∣
∣.
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Next, using Lemma 2, (8), the Hölder inequality with p > 1 and q = p
p–1 and (11) when r = 1

or (12) when r ≥ 2 we get

∣
∣I0(x)

∣
∣

= O
(

(n + 1)2)
∫ π

r(n+1)

0
t
∣
∣ψx(t)

∣
∣dt

≤ O
(

(n + 1)2)
{∫ π

r(n+1)

0

(
t|ψx(t)|

ω̃(t)

)p

sinβp rt
2

dt
}1/p{∫ π

r(n+1)

0

(
ω̃(t)

sinβ rt
2

)q

dt
} 1

q

≤ O
(

(n + 1)2)Ox
(

(n + 1)–1)ω̃

(
π

r(n + 1)

){∫ π
r(n+1)

0

(
π

rt

)βq

dt
} 1

q

= Ox
(

(n + 1)
)

ω̃

(
π

r(n + 1)

)(
π

r(n + 1)

) 1
q –β

= Ox
(

(n + 1)β+ 1
p
)

ω̃

(
π

n + 1

)

,

for 0 ≤ β < 1 – 1
p . We note that applying the condition (9) we have

[

(n + 1)An,r
]–1 =

[ n
∑

l=0

An,r

]–1

≤
[ n
∑

l=0

∞
∑

k=l

|an,k – an,k+r|
]–1

≤
[ n
∑

l=0

∣
∣
∣
∣
∣

∞
∑

k=l

(an,k – an,k+r)

∣
∣
∣
∣
∣

]–1

=

[ n
∑

l=0

r+l–1
∑

k=l

an,k

]–1

= O(1),

whence

∣
∣I0(x)

∣
∣ = Ox

(

(n + 1)1+β+ 1
p An,rω̃

(
π

n + 1

))

.

By Lemma 2

∣
∣I1(x)

∣
∣ +

∣
∣I ′

1(x)
∣
∣ +

∣
∣I2(x)

∣
∣

≤ 1
π

([r/2]
∑

m=1

∫ 2mπ
r + π

r(n+1)

2mπ
r

+
[r/2]–1
∑

m=0

∫ 2(m+1)π
r

2(m+1)π
r – π

r(n+1)

)

|ψx(t)|
t

dt

≤ 1
π

([r/2]
∑

m=1

∫ 2mπ
r + π

r(n+1)

2mπ
r

+
[r/2]–1
∑

m=0

∫ 2(m+1)π
r

2(m+1)π
r – π

r(n+1)

)

|ψx(t)|
π/r

dt

and using the Hölder inequality with p > 1 and q = p
p–1

∣
∣I1(x)

∣
∣ +

∣
∣I ′

1(x)
∣
∣ +

∣
∣I2(x)

∣
∣

≤ Ox(1)
[r/2]
∑

m=1

[∫ 2mπ
r + π

r(n+1)

2mπ
r

( |ψx(t)| sinβ rt
2

ω̃(t – 2mπ
r )

)p

dt
] 1

p

×
[∫ 2mπ

r + π
r(n+1)

2mπ
r

(
ω̃(t – 2mπ

r )
sinβ rt

2

)q

dt
] 1

q

+ Ox(1)
[r/2]–1
∑

m=1

[∫ 2(m+1)π
r

2(m+1)π
r – π

r(n+1)

( |ψx(t)| sinβ rt
2

ω̃( 2(m+1)π
r – t)

)p

dt
] 1

p
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×
[∫ 2(m+1)π

r

2(m+1)π
r – π

r(n+1)

(
ω̃( 2(m+1)π

r – t)
sinβ rt

2

)q

dt
] 1

q
.

Hence, by Lemmas 5 and 6 with (12) and (9),

∣
∣I1(x)

∣
∣ +

∣
∣I ′

1(x)
∣
∣ +

∣
∣I2(x)

∣
∣

= Ox(1)ω̃
(

π

r(n + 1)

)[∫ π
r(n+1)

0

(
1

sinβ rt
2

)q

dt
] 1

q

= Ox
(

(n + 1)β– 1
q
)

ω̃

(
π

n + 1

)

= Ox

(

(n + 1)β+ 1
p An,rω̃

(
π

n + 1

))

,

for 0 ≤ β < 1 – 1
p .

In the case of the last integrals, applying Lemma 4 we obtain

∣
∣I3(x)

∣
∣ +

∣
∣I ′

3(x)
∣
∣ +

∣
∣I4(x)

∣
∣

≤ 1
π

([r/2]
∑

m=0

∫ (2m+1)π
r

2mπ
r + π

r(n+1)

+
[r/2]–1
∑

m=0

∫ 2(m+1)π
r – π

r(n+1)

(2m+1)π
r

)

|ψx(t)|
| sin t

2 sin rt
2 |An,r dt.

Using the estimates | sin t
2 | ≥ |t|

π
for t ∈ [0,π ], | sin rt

2 | ≥ rt
π

–2m for t ∈ [ 2mπ
r + π

r(n+1) , (2m+1)π
r ],

where m ∈ {0, . . . , [r/2]} and | sin rt
2 | ≥ 2(m + 1) – rt

π
for t ∈ [ (2m+1)π

r , 2(m+1)π
r – π

r(n+1) ], where
m ∈ {0, . . . , [r/2] – 1}, we obtain

∣
∣I3(x)

∣
∣ +

∣
∣I ′

3(x)
∣
∣ +

∣
∣I4(x)

∣
∣

≤ An,r

[r/2]
∑

m=0

∫ (2m+1)π
r

2mπ
r + π

r(n+1)

|ψx(t)|
rt
π

(t – 2mπ
r )

dt

+ An,r

[r/2]–1
∑

m=0

∫ 2(m+1)π
r – π

r(n+1)

(2m+1)π
r

|ψx(t)|
rt
π

[ 2(m+1)π
r – t]

dt.

By the Hölder inequality with p > 1 and q = p
p–1 we have

∣
∣I3(x)

∣
∣ +

∣
∣I ′

3(x)
∣
∣ +

∣
∣I4(x)

∣
∣

≤ π

r
An,r

[r/2]
∑

m=0

[∫ 2mπ
r + π

r

2mπ
r + π

r(n+1)

( |ψx(t)|
ω̃(t)(t – 2mπ

r )γ

∣
∣
∣
∣
sin

rt
2

∣
∣
∣
∣

β)p

dt
] 1

p

×
[∫ 2mπ

r + π
r

2mπ
r + π

r(n+1)

(
ω̃(t)(t – 2mπ

r )γ

t(t – 2mπ
r )| sin rt

2 |β
)q

dt
] 1

q

+
π

r
An,r

[r/2]–1
∑

m=0

[∫ 2(m+1)π
r – π

r(n+1)

2(m+1)π
r – π

r

( |ψx(t)|
ω̃(t)( 2(m+1)π

r – t)γ

∣
∣
∣
∣
sin

rt
2

∣
∣
∣
∣

β)p

dt
] 1

p

×
[∫ 2(m+1)π

r – π
r(n+1)

2(m+1)π
r – π

r

(
ω̃(t)( 2(m+1)π

r – t)γ

t( 2(m+1)π
r – t)| sin rt

2 |β
)q

dt
] 1

q
.
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Further, using Lemmas 7 and 8 with (13) and Lemma 1 we get

∣
∣I3(x)

∣
∣ +

∣
∣I ′

3(x)
∣
∣ +

∣
∣I4(x)

∣
∣

≤ Ox(1)An,r

[r/2]
∑

m=0

(n + 1)γ
[∫ 2mπ

r + π
r

2mπ
r + π

r(n+1)

(
ω̃(t)(t – 2mπ

r )γ

t(t – 2mπ
r )| sin rt

2 |β
)q

dt
] 1

q

+ Ox(1)An,r

[r/2]–1
∑

m=0

(n + 1)γ
[∫ 2(m+1)π

r – π
r(n+1)

2(m+1)π
r – π

r

(
ω̃(t)( 2(m+1)π

r – t)γ

t( 2(m+1)π
r – t)| sin rt

2 |β
)q

dt
] 1

q

= Ox(1)An,r

[[r/2]
∑

m=0

(n + 1)γ
{∫ π

r

π
r(n+1)

(
ω̃(t + 2mπ

r )tγ –1

(t + 2mπ
r )| sin rt

2 |β
)q

dt
} 1

q

+
[r/2]–1
∑

m=0

(n + 1)γ
{∫ π

r

π
r(n+1)

(
ω̃( 2(m+1)π

r – t)tγ –1

( 2(m+1)π
r – t)| sin rt

2 |β
)q

dt
} 1

q
]

= Ox(1)An,r(n + 1)γ
{∫ π

r

π
r(n+1)

(
ω̃(t)tγ –1

t| sin rt
2 |β

)q

dt
} 1

q

= Ox(1)An,r(n + 1)1+γ ω̃

(
π

r(n + 1)

)(∫ π
r

π
r(n+1)

t(γ –1–β)q dt
) 1

q

= Ox(1)An,r(n + 1)1+γ ω̃

(
π

r(n + 1)

)

(n + 1)1+β–γ – 1
q

= Ox

(

(n + 1)1+β+ 1
p An,rω̃

(
π

(n + 1)

))

for 0 < γ < β + 1
p .

Collecting the partial estimates our statement follows.

4.2 Proof of Theorem 2
The proof is the same as above, but for estimate of |I0(x)| we only used the inequality
|D̃k,1(t)| ≤ k + 1 from Lemma 2, and the condition (10) instead of (8).

4.3 Proof of Theorem 3
We note that for the estimate of ‖T̃n,Af (·) – f̃r(·, π

(n+1) )‖Lp
2π

we need the conditions on ω̃

from the assumptions of Theorems 1 or 2. These conditions always hold with ‖ψ·(t)‖Lp
2π/r

instead of |ψx(t)| and thus the desired result follows.
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