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Abstract
In this paper, we propose an alternating linearization bundle method for minimizing
the sum of a nonconvex function and a convex function, both of which are not
necessarily differentiable. The nonconvex function is first locally “convexified” by
imposing a quadratic term, and then a cutting-planes model of the local
convexification function is generated. The convex function is assumed to be “simple”
in the sense that finding its proximal-like point is relatively easy. At each iteration, the
method solves two subproblems in which the functions are alternately represented
by the linearizations of the cutting-planes model and the convex objective function.
It is proved that the sequence of iteration points converges to a stationary point.
Numerical results show the good performance of the method.

Keywords: Bundle method; Alternating linearization; Local convexification; Global
convergence

1 Introduction
In this paper, we consider the structured nonconvex minimization problem

min
x∈Rn

{
F(x) := f (x) + h(x)

}
, (1)

where f : Rn → R is possibly a nonconvex nonsmooth function and h : Rn → (–∞,∞] is
a closed proper convex function.

Problems of the form (1) often appear in practice, such as signal processing, image re-
construction, engineering, optimal control, and so on. Three typical examples are given
below.

Example 1 (Unconstrained transformation of a constrained problem) Consider the con-
strained problem

min
{

f (x) : x ∈ C
}

, (2)
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where f is possibly a nonsmooth nonconvex function and C is a convex subset of Rn.
Problem (2) can be written equivalently as

min
x∈Rn

f (x) + ıC(x), (3)

where ıC is the indicator function of C, i.e., ıC(x) equals 0 on C and infinity elsewhere.
Clearly, problem (3) is a special case of problem (1) with h(x) = ıC(x). We note that the
proximal point of ıC can easily be calculated or even has a closed-form solution if C has
some special structure.

Example 2 (Nonconvex regularization of a convex function) Consider the lq (0 < q < 1)
regularization problem

min
x∈Rn

1
2
‖Ax – b‖2 + λ‖x‖q, (4)

which has many practical applications in compressed sensing and imaging science (see
e.g., [1]), where ‖x‖q = (

∑n
i=1 |xi|q)1/q. The objective function of problem (4) is also the

sum of a convex function and a nonconvex function.

Example 3 (Convex regularization of a nonconvex function) Hare et al. [2] studied the
function of the form

F(x) =
n∑

i=1

∣∣fi(x)
∣∣ +

1
2
‖x‖2, (5)

where fi(x) : Rn →R, i = 1, . . . , n are Ferrier polynomials defined as

fi(x) =
(
ix2

i – 2xi
)

+
n∑

j=1

xj.

It is well known that f (x) =
∑n

i=1 |fi(x)| is a nonconvex nonsmooth function, and h(x) =
1
2‖x‖2 is a simple convex function.

The methods for minimizing the sum of two functions have been well studied during the
past several decades. Different methods are developed based on these two types of func-
tions; see e.g., [3–12]. In particular, Kiwiel [9] proposed an alternating linearization bundle
method for the sum of two convex functions and one of them is “simple” (i.e., minimizing
this function plus a separable convex quadratic function is “easy”). Goldfarb et al. [7] pro-
posed a fast alternating linearization methods for the sum of two convex functions both
of which are “simple”. Li et al. [10] presented a proximal alternating linearization method
for the sum of two nonconvex functions based on the assumption that the proximal point
of the two functions at a given point can easily be calculated. Attouch et al. [3] and Bolte
et al. [4] considered a broad class of nonconvex and nonsmooth minimization problems
that include as a special case minimizing the sum of two nonconvex functions, in which
the proximal alternating minimization technique is used and the Kurdyka–Łojasiewicz
property is assumed.
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In this paper, we consider to minimize the sum of a nonconvex function and a convex
function with the form of (1). In particular, we assume that f is lower-C2 and h is “sim-
ple” in the sense that minimizing h plus a quadratic term is relatively easy. The method
presented in this paper can be viewed as a generalized version of the methods given in [9]
and [13]. On one hand, we generalize the method of [9] from minimizing the sum of two
convex functions to the sum of a nonconvex function and a convex function. On the other
hand, we generalize the method of [13] from minimizing a single nonconvex nonsmooth
function to the sum of two functions.

Our method will produce three sequences of points: {z�}, {y�} and {xk(�)}, where {z�}
is the sequence of proximal points, {y�} is the sequence of trial points, and {xk(�)} is the
sequence of stability centers (i.e., xk(�) ∈ {y�} is the “best” point obtained so far for iteration
�, which will be abbreviated as xk if there is no confusion). More precisely, our method will
alternately solve the following two subproblems:

z�+1 := arg min

{
ϕ̌�(·) + h̄�–1(·) +

1
2
μ�

∥∥· – xk∥∥2
}

, (6)

y�+1 := arg min

{
ϕ̄�(·) + h(·) +

1
2
μ�

∥∥· – xk∥∥2
}

, (7)

where ϕ̌� is a cutting-planes model [14, 15] of the local convexification function of f at
iteration �, which is based on the idea of the redistributed proximal bundle method in
[13] and will be made more precise later; h̄�–1 is a linearization of h at iteration � – 1; ϕ̄� is
a linearization of ϕ̌�; μ� is the proximal parameter. Our convergence analysis shows that,
under suitable assumptions, any accumulation point of the sequence {xk} is a stationary
point of F if there is an infinite number of serious steps; otherwise, the last stability center
is a stationary point of F .

This paper is organized as follows. In Sect. 2, we review some basic definitions and re-
sults required for this work. In Sect. 3, we present the alternating linearization bundle
method for problem (1). Section 4 examines the convergence properties of the algorithm.
Some preliminary numerical results are given in Sect. 5. The Euclidean inner product in
R

n is denoted by 〈x, y〉 = xT y, and the associated norm by ‖ · ‖.

2 Preliminaries
In this section, we recall some basic definitions and results that are closely relevant to our
method, which can be found in [13, 16, 17].

– The limiting subdifferential of f at x̄ is defined by

∂f (x̄) := lim
x→x̄

sup
f (x)→f (x̄)

∂̂f (x),

where ∂̂f (x̄) is the regular subdifferential defined by

∂̂f (x̄) :=
{

g ∈R
n : lim

x→x̄
inf
x �=x̄

f (x) – f (x̄) – 〈g, x – x̄〉
‖x – x̄‖ ≥ 0

}
.

An element g ∈ ∂f (x̄) is called a subgradient of f at x̄.
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– The function f is prox-bounded if there exists R ≥ 0 such that the function
f (·) + 1

2 R‖ · ‖2 is bounded below. The corresponding threshold is the smallest rpb ≥ 0
such that f (·) + 1

2 R‖ · ‖2 is bounded below for all R > rpb.
– The function f is lower-C2 on an open set V if for each x̄ ∈ V there is a neighborhood

V ′ of x̄ upon which a representation f (x) = maxt∈T ft(x) holds, where T is a compact
set and the functions ft are of class C2 on V such that ft , �ft and �2ft depend
continuously on (t, x) ∈ T × V .

– The proximal point mapping of the function f at the point x ∈R
n is defined by

pRf (x) := arg min
ω∈Rn

{
f (ω) +

1
2

R‖ω – x‖2
}

.

Lemma 1 ([16]) Suppose that the function f is lower-C2 on V and x̄ ∈ V . Then there exist
ε > 0, K > 0, and ρ > 0 such that

(i) for any point x0 and parameter R ≥ ρ the function f + 1
2 R‖ · –x0‖2 is convex and

finite valued on the closed ball B̄ε(x̄), and
(ii) the function f is Lipschitz continuous with constant K on B̄ε(x̄).

Theorem 1 ([16]) Suppose that the lower semicontinuous function f is prox-bounded with
threshold rpb and lower-C2 on V . Let x̄ ∈ V and let ε > 0, K > 0 and ρ > 0 be given by
Lemma 1. Then x̄ is a stationary point of f if and only if x̄ = pRf (x̄) for any R > Rx̄ :=
max{4K/ε,ρ, rpb}.

Assumption 1 ([13]) Given x0 ∈R
n and M0 ≥ 0, there exist an open bounded set O and a

function H such that L0 := {x ∈ R
n : f (x) ≤ f (x0) + M0} ⊂O, and H is lower-C2 on O with

H ≡ f on L0.

Theorem 2 ([13]) For a function f satisfying Assumption 1, the following results hold:
(i) The level set L0 is nonempty and compact.

(ii) There exists ρ id > 0 such that, for any ρ ≥ ρ id and any given y ∈L0, the function
f + 1

2ρ‖ · –y‖2 is convex on L0.
(iii) The function f is Lipschitz continuous on L0.

3 The alternating linearization bundle method
3.1 Motivation and framework
The classic proximal point algorithm (see e.g. [18]) for solving problem (1) generates the
new iterate by

y�+1 = arg min

{
f (·) + h(·) +

1
2

R�

∥∥· – y�
∥∥2

}
, (8)

where R� > 0 is the proximal parameter.
However, since f is a nonconvex function, solving problem (8) may not be easy and is

usually as difficult as the original problem (1). Therefore, we will tackle the difficulty via
the following three steps.

1. Generate the local convexification function of the nonconvex function f . Following the
redistribution idea of [13], we split the prox-parameter R� into two dynamic parameters
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η� and μ� which are nonnegative and satisfy R� = η� + μ�. Then the problem (8) (after
replacing y� by xk) can be written as

y�+1 = arg min

{
ϕ�(·) + h(·) +

1
2
μ�

∥∥· – xk∥∥2
}

, (9)

where

ϕ�(·) = f (·) +
1
2
η�

∥∥· – xk∥∥2 (10)

is called the local convexification function of f , since it is convex whenever η� is large
enough (see Theorem 2).

2. Generate the cutting-planes model of ϕ�. Let � be the current iteration index, yi, i ∈
J� ⊆ {0, 1, . . . ,�} be trial points generated in the previous iterations, and gi

f ∈ ∂f (yi). Define
the cutting-planes model of ϕ� by

ϕ̌�(·) = max
i∈J�

{
f
(
yi) +

1
2
η�

∥∥yi – xk∥∥2 +
〈
gi

f + η�

(
yi – xk), · – yi〉

}
, (11)

where gi
f = gf (yi) ∈ ∂f (yi). Therefore, we obtain an approximate version of problem (9) as

follows:

y�+1 := arg min

{
ϕ̌�(·) + h(·) +

1
2
μ�

∥∥· – xk∥∥2
}

. (12)

3. Apply the alternating linearization bundle strategy to solve problem (12). Since prob-
lem (12) may still be difficult, motivating by the idea of the alternating linearization bun-
dle [9], we consider to alternately solve the following two subproblems:

z�+1 := arg min

{
ϕ̌�(·) + h̄�–1(·) +

1
2
μ�

∥∥· – xk∥∥2
}

, (13)

y�+1 := arg min

{
ϕ̄�(·) + h(·) +

1
2
μ�

∥∥· – xk∥∥2
}

. (14)

The above two subproblems are much easier to solve, whose objective functions are alter-
nately represented by linear models of h(·) and ϕ̌�(·), respectively.

3.2 Further description via bundle terminologies
Bundle methods [19–21] are among the most robust and reliable methods to solve gen-
eral nonsmooth optimization problems, which can be considered stabilized variants of
cutting-planes method [14, 15]. In general, for a convex function h, bundle methods store
the trial points yi, i ∈ J� with their function values and subgradients in a bundle of infor-
mation:

⋃

i∈J�

{(
yi, h

(
yi), gi

h ∈ ∂h
(
yi))}, (15)
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and a point xk := xk(�) (called stability center) which is the “best” point obtained so far.
A storage-saving form of (15) (refer to the current stability center xk) is given by

⋃

i∈J�

{(
ei,k

h , gi
h ∈ ∂ei,k

h
h
(
xk))},

where ∂eh is the e-subdifferential of h in convex analysis, and ei,k
h are the linearization

errors of h defined by

ei,k
h = h

(
xk) –

(
h
(
yi) +

〈
gi

h, xk – yi〉). (16)

Following the notations above, the bundle information of the function ϕ�(·) can be writ-
ten as (see also [13]):

⋃

i∈J�

{(
ei,k

f , dk
i ,
k

i , gi
f
)}

with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ei,k
f = f (xk) – (f (yi) + 〈gi

f , xk – yi〉),
dk

i = 1
2‖yi – xk‖2,

gi
f ∈ ∂f (yi),


k
i = yi – xk ,

(17)

where ei,k
f and dk

i are the linearization errors of f and 1
2‖ · –xk‖2, respectively, gi

f is a sub-
gradient of f at yi, and 
k

i is the gradient of 1
2‖ · –xk‖2 at yi. From (17), we know that ei,k

f ,
dk

i and 
k
i depend on the point xk , so they should be updated whenever a new stability

center is generated (details are given below).
By the optimality conditions of subproblem (13), there exists a multiplier vector (α�

i , i ∈
J�) ∈ S� such that

z�+1 = xk –
1
μ�

(∑

i∈J�

α�
i
(
gi

f + η�

k
i
)

+ g�–1
h

)
, (18)

where S� denotes the unit simplex in R
|J�| and g�–1

h = ∇h̄�–1(z�+1).
As iterations go along, the number of elements in the bundle may increase infinitely,

which could lead to serious problems with storage and computation. The subgradient ag-
gregation strategy [22] is the most popular and efficient way to overcome such a difficulty.
We use the notation g–�

η�
to denote the aggregate subgradient, i.e.,

g–�
η�

:=
∑

i∈J�

α�
i
(
gi

f + η�

k
i
) ∈ ∂ϕ̌�

(
z�+1). (19)

Define the strongly active set of subgradients by

Jact
� :=

{
i ∈ J� : α�

i > 0
}

.

Then the corresponding aggregate bundle elements are given by

(
e–�

f , dk
–�,
k

–�, g–�
f

)
:=

∑

i∈J�

α�
i
(
ei,k

f , dk
i ,
k

i , gi
f
)

=
∑

j∈Jact
�

α�
j
(
ej,k

f , dk
j ,
k

j , gj
f
)
. (20)
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Therefore

g–�
η�

=
∑

i∈J�

α�
i
(
gi

f + η�

k
i
)

= g–�
f + η�


k
–� = μ�

(
xk – z�+1) – g�–1

h .

Here, as in [13, 23], we use negative index –� to express the aggregate bundle elements,
hence J� ⊆ {–�, –� + 1, . . . , 0, 1, . . . ,� – 1,�} in general.

By making use of the notations above, the cutting-planes model ϕ̌� in (11) can be rewrit-
ten as:

ϕ̌�(·) = f
(
xk) + max

i∈J�

{
–
(
ei,k

f + η�dk
i
)

+
〈
gi

f + η�

k
i , · – xk 〉}. (21)

Note that, for all j ∈ Jact
� we have

ϕ̌�

(
z�+1) = f

(
xk) – ej,k

f – η�dk
j +

〈
gj

f + η�

k
j , z�+1 – xk 〉, (22)

and the aggregate model of ϕ̌� in J� is

ϕ̃–�(·) = f
(
xk) – e–�,k

f – η�dk
–� +

〈
g–�

f + η�

k
–�, · – xk 〉.

For a new stability center xk+1, the bundle elements can be updated by (see [13])

ei,k+1
f = ei,k

f + f
(
xk+1) –

(
f
(
xk) +

〈
gi

f , xk+1 – xk 〉),

dk+1
i = dk

i +
1
2
∥∥xk+1 – xk∥∥2 +

〈

k

i , xk+1 – xk 〉,


k+1
i = 
k

i + xk – xk+1.

(23)

On the other hand, since f is possibly nonconvex, the linearization errors ei,k
f +η�dk

i , i ∈ J�
may be negative, and therefore the model ϕ̌� is not necessarily a lower approximation to
ϕ�. In the case of ei,k

f + η�dk
i ≥ 0, one has

gi
f + η�


k
i ∈ ∂ei,k

f +η�dk
i
ϕ̌�

(
xk). (24)

In order to ensure that the linearization errors are all nonnegative, the convexification
parameter η� should be adjusted to asymptotically estimate the ideal convexity threshold
ρ id in Theorem 2. Hare et al. [2] suggested a lower bound for η� as follows:

ηmin
� := max

i∈J� ,dk
i >0

–
ei,k

f

dk
i

, (25)

which guarantees that ei,k
f + ηdk

i ≥ 0 for all i ∈ J� whenever η ≥ ηmin
� .

Finally, in our algorithm, we define the predicted descent δ� and the linearization error
ε� as follows:

δ� := f
(
xk) +

1
2
η�

∥∥y�+1 – xk∥∥2 + h
(
xk) –

[
ϕ̄�

(
y�+1) + h

(
y�+1)], (26)
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ε� := F
(
xk) –

[
ϕ̄�

(
xk) + h̄�

(
xk)]. (27)

For a fixed parameter κ ∈ (0, 1), a descent step is taken if

F
(
y�+1) ≤ F

(
xk) – κδ�, (28)

holds, and then update the stability center xk+1 = y�+1. Otherwise, a null step occurs, and
then the aggregate linearization and the new linearization are used to produce a better
model ϕ̌�+1.

3.3 The algorithm
Algorithm 1

Step 0. (Initialization). Select a starting point y0 and set x0 = y0. Set parameters M > 0,
R0 > 0, κ ∈ (0, 1), ε ≥ 0, and � ≥ 1. Initialize the iteration counter � = 0, the descent step
counter k := k(�) = 0 with i0 = 0. Set (μ0,η0) = (R0, 0) and J0 := {0}. Compute f (x0), g0

f ∈
∂f (x0) and the bundle information (e0,0

f , d0
0,�0

0) := (0, 0, 0). Set s–1
h = g0

h ∈ ∂h(x0).
Step 1. Find z�+1 by solving subproblem (13), and set

ϕ̄�(·) = ϕ̌�

(
z�+1) +

〈
s�
ϕ , · – z�+1〉 with s�

ϕ = μ�

(
xk – z�+1) – s�–1

h . (29)

Step 2. Find y�+1 by solving subproblem (14), and set

h̄�(·) = h
(
y�+1) +

〈
s�

h, · – y�+1〉 with s�
h = μ�

(
xk – y�+1) – s�

ϕ . (30)

Step 3. (Stopping criterion). Compute f (y�+1), h(y�+1), g�+1
f ∈ ∂f (y�+1) and g�+1

h ∈ ∂h(y�+1).
If δ� ≤ ε, then STOP. Otherwise, compute the new bundle elements by


k
�+1 := y�+1 – xk , dk

�+1 :=
∥∥
k

�+1
∥∥2/2,

e�+1,k
f := f

(
xk) –

(
f
(
y�+1) +

〈
g�+1

f ,
k
�+1

〉)
.

Select a new index set J�+1 satisfying

J�+1 ⊇ {� + 1, ik} and

⎧
⎨

⎩
either J�+1 ⊇ Jact

� ,

or J�+1 ⊇ {–�}.
(31)

Step 4. (Descent test). If (28) holds, declare a descent step, set k(� + 1) = k + 1, ik+1 =
� + 1, xk+1 = y�+1, and update the bundle elements by (23). Otherwise, declare a null step,
and set k(� + 1) = k(�).

Step 5. (Update η). Update the convexification parameter by

⎧
⎨

⎩
η�+1 := η� if ηmin

�+1 ≤ η�,

η�+1 := �ηmin
�+1 and R�+1 := μ� + η�+1 otherwise.

(32)

Step 6. (Update μ). If F(y�+1) > F(xk) + M, then the objective increase is unacceptable,
let μ�+1 := �μ� and loop to Step 1; otherwise, set μ�+1 := μ�.

Step 7. (Loop). Increase � by 1 and go to Step 1.
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Remark 1 (1) The predicted descent δ� and the linearization error ε� are nonnegative (the
details are given below); (2) in Step 6, if F(y�+1) > F(xk) + M holds, then the current model
is considered as “bad”, so we should become more “conservative”, and therefore increase
the proximal parameter μ by setting μ�+1 = �μ�. In the next section, we will prove that the
number of increasing μ is finite; (3) the parameters μ�,η� in the algorithm will be stable
eventually.

Lemma 2 The predicted descent δ� and the linearization error ε� are nonnegative, and
satisfy

ε� = δ� –
R� + μ�

2μ2
�

∥∥s�
∥∥2, with s� = s�

ϕ + s�
h. (33)

Proof In Step 2, from (30) and (18) we know g�–1
h = s�–1

h , hence

g–�
η�

= μ�

(
xk – z�+1) – g�–1

h = μ�

(
xk – z�+1) – s�–1

h = s�
ϕ . (34)

Next, we prove δ� ≥ 0 and ε� ≥ 0. From (26) and (29) we have

δ� = f
(
xk) +

1
2
η�

∥∥y�+1 – xk∥∥2 + h
(
xk) –

[
ϕ̄�

(
y�+1) + h̄�

(
y�+1)]

= f
(
xk) +

1
2
η�

∥∥y�+1 – xk∥∥2 + h
(
xk) – ϕ̌�

(
z�+1) –

〈
s�
ϕ , y�+1 – z�+1〉 – h

(
y�+1)

= f
(
xk) – ϕ̌�

(
z�+1) –

〈
s�
ϕ , y�+1 – z�+1〉 +

1
2
η�

∥∥y�+1 – xk∥∥2 + h
(
xk) – h

(
y�+1). (35)

Let j = –� in (22) and from (34) we can obtain

f
(
xk) – ϕ̌�

(
z�+1) –

〈
s�
ϕ , y�+1 – z�+1〉

= f
(
xk) –

[
f
(
xk) – e–�

f – η�dk
–� +

〈
g–�

f + η��k
–�, z�+1 – xk 〉] –

〈
s�
ϕ , y�+1 – z�+1〉

= e–�
f + η�dk

–� –
〈
s�
ϕ , z�+1 – xk 〉 –

〈
s�
ϕ , y�+1 – z�+1〉

= e–�
f + η�dk

–� +
〈
s�
ϕ , xk – y�+1〉. (36)

On the other hand, from (30), we have

–h
(
y�+1) = –h

(
y�+1) –

〈
s�

h, xk – y�+1〉 +
〈
s�

h, xk – y�+1〉

= –h̄�

(
xk) +

〈
s�

h, xk – y�+1〉. (37)

Hence, by combining (36), (37) and (30), (35) can be written as

δ� = e–�
f + η�dk

–� +
〈
s�
ϕ , xk – y�+1〉 +

1
2
η�

∥∥y�+1 – xk∥∥2 + h
(
xk) – h̄�

(
xk)

+
〈
s�

h, xk – y�+1〉 (38)

= e–�
f + η�dk

–� +
〈
μ�

(
xk – y�+1), xk – y�+1〉 +

1
2
η�

∥∥y�+1 – xk∥∥2 + h
(
xk) – h̄�

(
xk)

= e–�
f + η�dk

–� +
R� + μ�

2
∥∥y�+1 – xk∥∥2 + h

(
xk) – h̄�

(
xk). (39)
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In Step 5, the update for η� is done to ensure η� ≥ ηmin
� for all iterations, so that e–�

f +η�dk
–� ≥

0. Therefore, the predicted descent δ� ≥ 0 since h is convex.
For ε�, from (27), one has

ε� = F
(
xk) –

[
ϕ̄�

(
xk) + h̄�

(
xk)]

= f
(
xk) + h

(
xk) – ϕ̌�

(
z�+1) –

〈
s�
ϕ , xk – z�+1〉 – h̄�

(
xk)

= f
(
xk) – ϕ̌�

(
z�+1) –

〈
s�
ϕ , xk – z�+1〉 + h

(
xk) – h̄�

(
xk). (40)

Similar to (36), we have

f
(
xk) – ϕ̌�

(
z�+1) –

〈
s�
ϕ , xk – z�+1〉

= f
(
xk) –

[
f
(
xk) – e–�

f – η�dk
–� +

〈
g–�

f + η��k
–�, z�+1 – xk 〉]

–
〈
s�
ϕ , xk – z�+1〉

= e–�
f + η�dk

–� –
〈
s�
ϕ , z�+1 – xk 〉 –

〈
s�
ϕ , xk – z�+1〉

= e–�
f + η�dk

–�. (41)

Thus, we have

ε� = e–�
f + η�dk

–� + h
(
xk) – h̄�

(
xk) ≥ 0. (42)

Equation (33) follows immediately from (39) and (42). �

From (33), We know that δ� ≥ ε�. Therefore, if δ� ≤ ε, then ε� ≤ ε. So, we only use δ� ≤ ε

as the termination criterion in Step 5.

Lemma 3 The vectors s�
ϕ and s�

h of (30) and (29) are in fact subgradients, i.e.,

s�
ϕ ∈ ∂ϕ̌�

(
z�+1) and s�

h ∈ ∂h�

(
y�+1). (43)

Furthermore, we have

ϕ̄� ≤ ϕ̌� and h̄� ≤ h. (44)

Proof Let φ�
f and φ�

h denote the objectives of (13) and (14), respectively, i.e.,

φ�
f (·) := ϕ̌�(·) + h̄�–1(·) +

1
2
μ�

∥∥· – xk∥∥2, (45)

φ�
h(·) := ϕ̄�(·) + h(·) +

1
2
μ�

∥∥· – xk∥∥2. (46)

By (13), (29) and the optimality condition of (45), we have

0 ∈ ∂ϕ̌�

(
z�+1) + s�–1

h + μ�

(
z�+1 – xk) = ∂ϕ̌�

(
z�+1) – s�

ϕ ,
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which implies s�
ϕ ∈ ∂ϕ̌�(z�+1). Similarly, by (14) and the optimality condition of (46), we

obtain

0 ∈ ∂h
(
y�+1) + s�

ϕ + μ�

(
xk – y�+1) = ∂h

(
y�+1) – s�

h,

which implies s�
h ∈ ∂h�(y�+1). So (43) holds.

Equation (44) follows immediately from (43). �

4 Convergence
In this section, we will study the convergence properties of Algorithm 1. Firstly, based on
the objective function of problem (1), we need to slightly modify Assumption 1 as follows.

Assumption 2 Given x0 ∈R
n and M0 ≥ 0, there exist an open bounded set O and a func-

tion H such that L0 := {x ∈ R
n : F(x) ≤ F(x0) + M0} ⊂ O, and H is lower-C2 on O with

H ≡ f on L0.

For convenience, we assume that Assumption 2 holds throughout the rest of convergence
analysis.

In addition, from [24] we know that, if f is a locally Lipschitz continuous function, then
the subgradients of f are locally bounded, i.e.,

{
g�

f
}

is bounded if
{

y�
}

is bounded. (47)

Further, as in [9], it follows that the model subgradients s�
ϕ in (43) satisfy

{
s�
ϕ

}
is bounded if

{
y�

}
is bounded. (48)

Remark 2 Note that (47) implies that {g�
ϕ := g�

f + η���
i } (g�

ϕ ∈ ∂ϕ̌�) is bounded if {y�} is
bounded, since {��

i } in (17) is bounded if {y�} is bounded. Since s�
ϕ ∈ ∂ϕ̌�, then s�

ϕ ∈
conv{gj

ϕ}j∈J� , thus we have ‖s�
ϕ‖ ≤ max�

j=1 ‖gj
ϕ‖, and the model ϕ̌� satisfies condition (48)

automatically when (47) holds.

The following lemma shows the properties of the model function ϕ̌�, whose proof can
be found in [13, 16].

Lemma 4 For the model function ϕ̌� and convexification parameter η�, we have
(i) ϕ̌� is a convex function.

(ii) If η� ≥ ηmin
� , then

ϕ̌�

(
xk) ≤ f

(
xk). (49)

(iii) If η�+1 = η�, and either J�+1 ⊇ Jact
� or J�+1 ⊇ {–�}, then

ϕ̌�+1(·) ≥ ϕ̌�

(
z�+1) +

〈
s�
ϕ , · – z�+1〉

if y�+1 is a null step.
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(iv) If J� ⊇ {�}, then

ϕ̌�(·) ≥ f
(
y�

)
+

1
2
η�

∥∥y� – xk∥∥2 +
〈
g�

f + η�

(
y� – xk), · – y�

〉
,

for some g�
f ∈ ∂f (y�).

(v) If η� ≥ ρ id, then

ϕ̌�(ω) ≤ f (ω) +
1
2
η�

∥∥ω – xk∥∥2 for all ω ∈L0. (50)

From the updating rule in Step 5 of Algorithm 1, the convexification parameter η� is
either unchanged or increasing. The following lemma shows that η� can be fixed in a finite
number of iterations, whose proof can be found in [13].

Lemma 5 There exist an index �1 and a positive constant η > 0 such that

η� ≡ η, for all � ≥ �1.

Lemma 6 Suppose that there exists an integer K such that, for all � ≥ K , only null steps
occur without increasing μ. Then the following results hold:

(i) The sequences

{
φ�

f
(
z�+1) = ϕ̌�

(
z�+1) + h̄�–1

(
z�+1) +

1
2
μ�

∥∥z�+1 – xk∥∥2
}

�≥K
,

{
φ�

h
(
y�+1) = ϕ̄�

(
y�+1) + h

(
y�+1) +

1
2
μ�

∥∥y�+1 – xk∥∥2
}

�≥K

are nondecreasing and convergent.
(ii) The sequences {y�+1} and {z�+1} are bounded, ‖z�+1 – y�+1‖ → 0 and

‖z�+2 – y�+1‖ → 0 as � → ∞.

Proof First, using partial linearizations of the subproblems to show (i) is hold. Fixed � ≥ K .
By the definitions in (13) and (29), we have ϕ̄�(z�+1) = ϕ̌�(z�+1) and

z�+1 = arg min

{
φ̄�

f (·) := ϕ̄�(·) + h̄�–1(·) +
1
2
μ�

∥∥· – xk∥∥2
}

, (51)

from ∇φ̄�
f (z�+1) = 0. Since φ̄�

f is quadratic and φ̄�
f (z�+1) = φ�

f (z�+1), by Taylor’s expansion

φ̄�
f (·) = φ̄�

f
(
z�+1) + ∇φ̄�

f
(
z�+1)(· – z�+1) +

1
2
μ�

∥∥· – z�+1∥∥2

= φ�
f
(
z�+1) +

1
2
μ�

∥∥· – z�+1∥∥2. (52)

Similarly, by the definitions in (14) and (30), we have h̄�(y�+1) = h(y�+1), and

y�+1 = arg min

{
φ̄�

h(·) := ϕ̄�(·) + h̄�(·) +
1
2
μ�

∥∥· – xk∥∥2
}

, (53)
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φ̄�
h(·) = φ�

h
(
y�+1) +

1
2
μ�

∥∥· – y�+1∥∥2. (54)

Next, to bound the objective values of the linearized subproblem (51) and (53) from above,
we use ϕ̄� ≤ ϕ̌� and h̄�–1 ≤ h, h̄� ≤ h of (44) and ϕ̌�(xk) ≤ f (xk) in (ii) of Lemma 4

φ�
f
(
z�+1) +

1
2
μ�

∥∥xk – z�+1∥∥2 = φ̄�
f
(
xk) ≤ ϕ̌�

(
xk) + h

(
xk) ≤ F

(
xk), (55)

φ�
h
(
y�+1) +

1
2
μ�

∥∥xk – y�+1∥∥2 = φ̄�
h
(
xk) ≤ ϕ̌�

(
xk) + h

(
xk) ≤ F

(
xk). (56)

From (14) and (51), we have φ̄�
f ≤ φ�

h. On the other hand, since only null step occurred, so
xk+1 = xk , the algorithm ensures that μ� = μ�+1, and ϕ̄� ≤ ϕ̌�+1 by (iii) of Lemma 4, we can
obtain φ̄�

h ≤ φ�+1
f . By (52) and (54), we see that

φ�
f
(
z�+1) +

1
2
μ�

∥∥y�+1 – z�+1∥∥2 = φ̄�
f
(
y�+1) ≤ φ�

h
(
y�+1), (57)

φ�
h
(
y�+1) +

1
2
μ�

∥∥z�+2 – y�+1∥∥2 = φ̄�
h
(
z�+2) ≤ φ�+1

f
(
z�+2). (58)

In particular, from (57) and (58), we have the relation

φ�
f
(
z�+1) ≤ φ�

h
(
y�+1) ≤ φ�+1

f
(
z�+2)

which implies that {φ�
f (z�+1)}�≥K and {φ�

h(y�+1)}�≥K are nondecreasing sequences. Together
with the bound of F(xk) from (55) and (56), the convergence is established.

For (ii), we have proved the convergence of {φ�
f (z�+1)} and {φ�

h(y�+1)} in (i) when � ≥ K ,
so there must have a common limit, say φ∞ ≤ F(xk), such that

φ�
f
(
z�+1) → φ∞, φ�

h
(
y�+1) → φ∞ (59)

and we have ‖z�+1 – y�+1‖ → 0 and ‖z�+2 – y�+1‖ → 0 from (57) and (58), {y�+1} and {z�+1}
are bounded from (55) and (56). Then the sequences {g�

f } and {s�
ϕ} are bounded by (47)

and (48). �

The following lemma shows that the number of times of increasing μ is finite.

Lemma 7 Suppose that ik ∈ J�, and let N� be the number of times of increasing μ. Then
there exists a positive constant L such that

N� ≤
⌈ ln L2

Mμ0

ln�

⌉
, (60)

where �a� is the smallest integer greater than or equal to a. As a result, there exists an index
�2 such that

μ� = μ̄, for all � ≥ �2.
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Proof Let �r be the index corresponding to the rth time that μ increases, then when �r +
1 ≤ � < �r+1, we have

μ� = �rμ0. (61)

Since ik ∈ J�, from (24), we obtain gik ∈ ∂ϕ̌(xk) by writing i = ik , and it also holds that
gik

f ∈ ∂f (xk) from (21), so ‖gik
f ‖ is bounded. Hence

pμ�
(ϕ̄� + h)

(
xk)

= arg min

{
ϕ̄�(y) + h(y) +

1
2
μ�

∥∥y – xk∥∥2
}

∈
{

y
∣∣ϕ̄�(y) + h(y) +

1
2
μ�

∥∥y – xk∥∥2 ≤ ϕ̄�

(
xk) + h

(
xk)

}

⊆
{

y
∣∣ϕ̄�

(
xk) +

〈
gik

f , y – xk 〉 + h
(
xk) +

〈
gk

h , y – xk 〉

+
1
2
μ�

∥∥y – xk∥∥2 ≤ ϕ̄�

(
xk) + h

(
xk)

}

=
{

y
∣∣〈gik

f , y – xk 〉 +
〈
gk

h , y – xk 〉 +
1
2
μ�

∥∥y – xk∥∥2 ≤ 0
}

=
{

y
∣∣1
2
μ�

∥∥y – xk∥∥2 ≤ –
〈
gik

f + gk
h , y – xk 〉

}

⊆
{

y
∣∣1
2
μ�

∥∥y – xk∥∥2 ≤ ∥∥gik
f + gk

h
∥∥∥∥y – xk∥∥

}

=
{

y
∣∣∥∥y – xk∥∥ ≤ 2‖gik

f ‖ + 2‖gk
h‖

μ�

}
.

When �r + 1 ≤ � < �r+1, if y�+1 is a null step, we know g�
f is bounded from Lemma 6, else

y�+1 is a descent step, and the corresponding subgradient gik(�+1) ∈ ∂f (xk+1) is also bounded.
Therefore, there exists a constant L > 0 such that max{‖gik

f ‖,‖g�+1
f ‖,‖gk

h‖,‖g�+1
h ‖} ≤ L

2 .
Thus we have

y�+1 = pμ�
(ϕ̄� + h)

(
xk) ∈

{
y
∣∣∣
∥∥y – xk∥∥ ≤ 2L

μ�

}
.

This together with (61) shows that

∣∣F
(
y�+1) – F

(
xk)∣∣

=
∣∣f

(
xk) +

〈
g�+1

f , y�+1 – xk 〉 – f
(
xk) + h

(
xk) +

〈
g�+1

h , y�+1 – xk 〉 – h
(
xk)∣∣

≤ ∥∥g�+1
f + g�+1

h
∥∥∥∥y�+1 – xk∥∥

≤ 2 · L
2

· 2L
�rμ0

≤ M.

Thus, if

r ≥ ln L2

Mμ0

ln�
,
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then

f
(
y�+1) ≤ f

(
xk) + M, ∀�r + 1 ≤ � ≤ �r+1.

This means that the number of times N� of increasing μ satisfies (60). The latter part of
the lemma follows immediately from the above result. �

Theorem 3 If δ� = 0 and η� ≥ ρ id, then xk is a stationary point of F .

Proof From (33), we have the relation

δ� = ε� +
R� + μ�

2μ2
�

∥∥s�
∥∥2.

If δ� = 0, then ε� = 0 and s� = 0, and therefore

xk = y�+1 = pμ�
(ϕ̄� + h)

(
xk). (62)

From the last result of Theorem 1, we know that xk is a stationary point of ϕ̄� + h. In
addition, from ε� = 0 in (27), we have

f
(
xk) + h

(
xk) = ϕ̄�

(
xk) + h̄�

(
xk).

This together with h̄�(xk) ≤ h(xk) shows that

f
(
xk) ≤ ϕ̄�

(
xk). (63)

On one hand, for ω ∈L0, if η� ≥ ρ id, we obtain by (62) and (63)

F
(
xk) = f

(
xk) + h

(
xk) ≤ ϕ̄�

(
xk) + h

(
xk) ≤ ϕ̄�(ω) + h(ω) +

1
2
μ�

∥∥ω – xk∥∥2. (64)

From the convexity of ϕ̌� and (50), we have

ϕ̄�(ω) ≤ ϕ̌�(ω) ≤ f (ω) +
1
2
η�

∥∥ω – xk∥∥2.

So, (64) can be written as

F
(
xk) ≤ f (ω) +

1
2
η�

∥∥ω – xk∥∥2 + h(ω) +
1
2
μ�

∥∥ω – xk∥∥2. (65)

On the other hand, for ω /∈L0, from (28) we can obtain

F
(
xk) ≤ F

(
x0) ≤ F

(
x0) + M ≤ F(ω) = F(ω) +

1
2

R�

∥∥ω – xk∥∥2. (66)

Combining (64) and (66), we have

F
(
xk) ≤ F(ω) +

1
2

R�

∥∥ω – xk∥∥2 for all ω ∈R
n.
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Hence

xk = pR�
F
(
xk),

which together with Theorem 1 shows that xk is a stationary point of F . �

We are now in a position to present the main convergence result of our algorithm. As
usual in bundle methods, two cases are considered: the algorithm generates finite number
of descent steps; and the algorithm generates infinite number of descent steps. We set the
stopping parameter ε = 0.

Theorem 4 Let η̄ be stabilized value for the convexification parameter sequence and as-
sume η̄ ≥ ρ id. Then the following mutually exclusive situations hold:

(i) Algorithm 1 generates finite number of descent steps followed by infinitely many null
steps. Let x̄ be the last stability center. Then y�+1 → x̄, and x̄ is a stationary point of
F .

(ii) Algorithm 1 generates an infinite sequence {xk} of stability centers. Then any
accumulation point of {xk} is a stationary point of F .

Proof For (i), without loss of generality, we may assume η� = η, μ� = μ, and R� = R through-
out. As in Lemma 6, for the bounded sequences {y�} and {z�} we showed that ‖y� –z�‖ → 0
and ‖z�+1 – y�‖ → 0 as � → ∞. Therefore y�i → p as i → ∞ implies z�i → p and z�i+1 → p
as i → ∞. For ω ∈L0 near p, by (50) and the convexity of h, we have

F(ω) = f (ω) + h(ω)

≥ ϕ̌�i (ω) –
1
2
η̄‖ω – x̄‖2 + h(ω)

≥ ϕ̄�i (ω) –
1
2
η̄‖ω – x̄‖2 + h̄�i–1(ω)

= ϕ̌�i

(
z�i+1) +

〈
s�i
ϕ ,ω – z�i+1〉 –

1
2
η̄‖ω – x̄‖2 + h

(
y�i

)
+

〈
s�i–1

h ,ω – y�i
〉
. (67)

Let xk = x̄, μ� = μ̄, from (29) and the boundedness of s�
ϕ + s�–1

h = μ(x̄ – z�+1), we know

〈
s�i
ϕ ,ω – z�i+1〉 +

〈
s�i–1

h ,ω – y�i
〉

=
〈
s�i
ϕ ,ω – z�i+1〉 +

〈
s�i–1

h ,ω – z�i+1 + z�i+1 – y�i
〉

= μ̄
〈
x̄ – z�i+1,ω – z�i+1〉 +

〈
s�i–1

h , z�i+1 – y�i
〉
. (68)

Note that

–
1
2
η̄‖ω – x̄‖2 (69)

= –
1
2
η̄
∥∥ω – z�i+1 + z�i+1 – x̄

∥∥2

= –
1
2
η̄
∥∥ω – z�i+1∥∥2 –

1
2
η̄
∥∥z�i+1 – x̄

∥∥2 + η̄
〈
x̄ – z�i+1,ω – z�i+1〉. (70)
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Combining (68) and (70), (67) can be written as

F(ω) = ϕ̌�i

(
z�i+1) –

1
2
η̄
∥∥z�i+1 – x̄

∥∥2 + h
(
y�i

)
+ (η̄ + μ̄)

〈
x̄ – z�i+1,ω – z�i+1〉

+
〈
s�i–1

h , z�i+1 – y�i
〉
–

1
2
η̄
∥∥ω – z�i+1∥∥2.

By Claim (iv) of Lemma 4 written with � = �i for ω = z�i+1, we have the following inequality:

ϕ̌�i

(
z�i+1) –

1
2
η
∥∥z�i+1 – x̄

∥∥2 ≥ f
(
y�i

)
+

1
2
η
∥∥y�i – x̄

∥∥2 –
1
2
η
∥∥z�i+1 – x̄

∥∥2

+
〈
g�i

f + η
(
y�i – x̄

)
, z�i+1 – y�i

〉
.

Then

F(ω) = f (ω) + h(ω)

≥ ϕ̌�i

(
z�i+1) –

1
2
η̄
∥∥z�i+1 – x̄

∥∥2 + h
(
y�i

)
–

1
2
η̄
∥∥ω – z�i+1∥∥2

+ (η̄ + μ̄)
〈
x̄ – z�i+1,ω – z�i+1〉 +

〈
s�i–1

h , z�i+1 – y�i
〉

≥ f
(
y�i

)
+ h

(
y�i

)
+

1
2
η̄
∥∥y�i – x̄

∥∥2 –
1
2
η̄
∥∥z�i+1 – x̄

∥∥2 –
1
2
η̄
∥∥ω – z�i+1∥∥2

+
〈
g�i

f + η̄
(
y�i – x̄

)
, z�i+1 – y�i

〉
+ (η̄ + μ̄)

〈
x̄ – z�i+1,ω – z�i+1〉

+
〈
s�i–1

h , z�i+1 – y�i
〉
.

From s�–1
h = μ(x̄ – z�+1) – s�

ϕ , the bounded sequence {μ(x̄ – z�+1)}, {s�
ϕ}, {g�

f } and {y�}, we
know that {s�–1

h } and {g�i
f + η(y�i – x̄)} are bounded. Taking the limit as i → ∞, and using

the fact that f is continuous at p, we obtain

F(ω) = f (ω) + h(ω)

≥ lim
i→∞ ϕ̌�i

(
z�i+1) –

1
2
η̄‖p – x̄‖2 + h(p) –

1
2
η̄‖ω – p‖2 + R̄〈x̄ – p,ω – p〉

≥ f (p) + h(p) –
1
2
η̄‖ω – p‖2 + R̄〈x̄ – p,ω – p〉

= F(p) –
1
2
η̄‖ω – p‖2 + R̄〈x̄ – p,ω – p〉, (71)

for all ω ∈ L0 near p. Since 1
2η‖ω – p‖2 = o(‖ω – p‖), the last inequality means that

R(x̄–p) ∈ ∂F(p) by Definition 8.3 in [17], which implies p = pR̄F(x̄) by Theorem 1. Since f is
continuous and condition (50) holds at all accumulation points of {y�}, then the entire se-
quence {y�} converges to the proximal point pR̄F(x̄). Furthermore, evaluating the relations
at ω = p shows that the following equation holds for the entire sequence by Theorem 2
in [16]:

lim
i→∞ ϕ̌�i

(
z�i+1) = f (p) +

1
2
η‖p – x̄‖2. (72)
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So as � → ∞, the whole sequence

{
y�

} → p = pR̄F(x̄) with ϕ̌�

(
z�+1) → f (p) +

1
2
η‖p – x̄‖2.

Thus, from (26) we have

δ� = f (x̄) +
1
2
η̄
∥∥y�+1 – x̄

∥∥2 + h(x̄) –
[
ϕ̄�

(
y�+1) + h

(
y�+1)]

= f (x̄) +
1
2
η̄
∥∥y�+1 – x̄

∥∥2 + h(x̄) – ϕ̌�

(
z�+1) –

〈
s�
ϕ , y�+1 – z�+1〉 – h

(
y�+1)

→ f (x̄) +
1
2
η̄‖p – x̄‖2 + h(x̄) – f (p) –

1
2
η̄‖p – x̄‖2 – h(p)

= f (x̄) + h(x̄) – f (p) – h(p)

= F(x̄) – F(p).

Since null step does not satisfy the descent test in Step 4 of the algorithm, we have F(y�+1) >
F(x̄) – κδ�. Taking the limit as � → ∞ gives the relation F(p) ≥ F(x̄) – κ(F(x̄) – F(p)), so
F(x̄) ≤ F(p) because κ ∈ (0, 1). But p = pR̄F(x̄) implies

F(p) + R̄‖p – x̄‖2 ≤ F(x̄),

which shows that x̄ = p. That is, x̄ = pR̄F(x̄), so x̄ is a stationary point of F from Theorem 1.
For (ii), L0 is a compact set, and the sequence {xk} ⊂L0, so it has an accumulation point,

i.e., there exists some infinite set K such that xk → x̂ ∈L0 as K � k → ∞. Since xk+1 = yik+1 ,
let jk = ik+1 – 1 so that xk+1 = pμ̄(ϕ̄jk + h)(xk). The descent test

F
(
xk+1) ≤ F

(
xk) – κδjk

implies that, as k → ∞, either F(xk) ↘ –∞, or δjk → 0. By Assumption 2, F(xk) is bounded
below, therefore, δjk → 0. From (39), this means that

∥∥yjk +1 – xk∥∥, e–jk
f + η̄dk

–jk , h
(
xk) – h̄jk

(
xk)

must converge to 0. By

∥∥zjk +1 – xk∥∥ ≤ ∥∥zjk +1 – yjk +1∥∥ +
∥∥yjk +1 – xk∥∥

and

∥∥zjk +1 – yjk +1∥∥ → 0

in Lemma 6, we have

∥∥zjk +1 – xk∥∥ → 0.
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By (21), ϕ̌jk (zjk +1) – f (xk) → 0 as k → ∞, from (29) we know that

ϕ̄jk
(
yjk +1) = ϕ̌jk

(
zjk +1) +

〈
sjk
ϕ , yjk +1 – zjk +1〉.

Therefore,

ϕ̄jk
(
yjk +1) – f

(
xk) → 0

as k → ∞. Consider now k ∈ K . Since ‖xk+1 – xk‖ = ‖yjk +1 – xk‖ → 0, both xk+1 and xk

converge to xinf as K � k → ∞ with

ϕ̄jk
(
xk+1) → f (x̂).

And from xk+1 = pμ̄(ϕ̄jk + h)(xk), η̄ ≥ ρ id and (50), for all ω ∈L0,

ϕ̄jk
(
xk+1) + h

(
xk+1) +

1
2
μ̄

∥∥xk+1 – xk∥∥2

≤ ϕ̄jk (ω) + h(ω) +
1
2
μ̄

∥∥ω – xk∥∥2

≤ ϕ̌jk (ω) + h(ω) +
1
2
μ̄

∥∥ω – xk∥∥2

≤ f (ω) + h(ω) +
1
2

R̄
∥∥ω – xk∥∥2.

Therefore, taking the limit k ∈ K , we have

f (x̂) + h(x̂) ≤ f (ω) + h(ω) +
1
2

R̄‖ω – x̂‖2, for all ω ∈L0.

On the other hand, xinf ∈L0 and for any ω /∈L0, it follows

F(x̂) ≤ F
(
x0) ≤ F

(
x0) + M < F(ω) < F(ω) +

1
2

R̄‖ω – x̂‖2.

Hence,

F(x̂) ≤ F(ω) +
1
2

R̄‖ω – x̂‖2, for all ω ∈R
n.

Therefore, x̂ = pR̄F(x̂) with R̄ ≥ ρ id, hence x̂ is a stationary point of F from Theorem 1. �

5 Numerical results
This section aims to test the practical effectiveness of Algorithm 1. We tested a set of nine
problems. The first set of seven problems are generalized from the unconstrained versions
in [25] by imposing suitable constraints, the second set of two nonconvex unconstrained
problems are taken from [13, 26] which are the sum of a nonconvex function and a convex
function.

All numerical experiments were implemented by using MATLAB R2014a, and on a
ThinkPad laptop with Windows 7 operating system. The first seven problems have the
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form of (2) with C = {x : ‖x – a‖ ≤ b}, where a ∈ R
n and 0 < b ∈ R are given below. These

problems are transformed to the form of (3) by using the indicator function. The detailed
data for the seven problems are listed below. For simplicity, we use the MATLAB nota-
tions: ones(p,q) and zeros(p,q) denote p-by-q matrices of ones and zeros, respec-
tively.
CB2: f (x) = max{x2

1 + x4
2, (2 – x1)2 + (2 – x2)2, 2ex2–x1}, y0 = (3, 3)T , a = (0, 0)T , b = 1.

CB3: f (x) = max{x4
1 + x2

2, (2 – x1)2 + (2 – x2)2, 2ex2–x1}, y0 = (3, 3)T , a = (3, 3)T , b = 1.
LQ: f (x) = max{–x1 – x2, –x1 – x2 + x2

1 + x2
2 – 1}, y0 = (1, 1)T , a = (1, –1)T , b = 1.

Mifflin1: f (x) = –x1 + 20 max{x2
1 + x2

2 – 1, 0}, y0 = (1.5, 0.5)T , a = (–2, 2)T , b = 1.
Rosen-Suzuki: f (x) = max1≤i≤4 fi(x), y0 = (1, 2.1, –3, –0.9)T , a = (1, 2, 3, 4)T , b = 2, with

f1(x) = x2
1 + x2

2 + 2x2
3 + x2

4 – 5x1 – 5x2 – 21x3 + 7x4,

f2(x) = f1(x) + 10
(
x2

1 + x2
2 + x2

3 + x2
4 + x1 – x2 + x3 – x4 – 8

)
,

f3(x) = f1(x) + 10
(
x2

1 + 2x2
2 + x2

3 + 2x2
4 – x1 – x4 – 10

)
,

f4(x) = f1(x) + 10
(
2x2

1 + x2
2 + x2

3 + 2x1 – x2 – x4 – 5
)
.

Shor: f (x) = max1≤i≤10{di
∑5

j=1(xj – cij)2)}, y0 = zeros(10,1), a = zeros(10,1),
b = 3, d = (1, 5, 10, 2, 4, 3, 1.7, 2.5, 6, 3.5)T ,

C =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 2 1 1 3 0 1 1 0 1
0 1 2 4 2 2 1 0 0 1
0 1 1 1 1 1 1 1 2 2
0 1 1 2 0 0 1 2 1 0
0 3 2 2 1 1 1 1 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

MAXL: f (x) = max1≤i≤20 |xi|, a = (–ones(1,10),ones(1,10))T , b = 4, y0 = (1, 1.1, 3,
1.1, 5, 1.1, 7, 1.1, 9, 1.1, –11, 0.1, –13, 0.1, –15, 0.1, –17, 0.1, –19, 0.1)T .

The second set of two problems are:
Regular: F(x) =

∑n
i=1 |fi(x)| + 1

2‖x‖2, where

fi(x) :=
(
ix2

i – 2xi
)

+
n∑

j=1

xj, i = 1, 2, . . . , n

are the Ferrier polynomials.
L-Mifflin: F(x) = 2(x2

1 + x2
2 – 1) + 1.75|x2

1 + x2
2 – 1|.

The nonconvexity of the above two problems can be seen from Fig. 1.
In the test, the parameters are selected as M = 5, R0 = 10, κ = 0.3, ε = 10–5, � = 2. The

numerical results are reported in Tables 1, 2 and 3. The notations are: the dimension of
problem n; the number of iterations NI; the number of descent steps ND; the number of
function evaluations NF; the approximately optimal solution x∗; the approximately opti-
mal objective value F∗. The comparisons between Algorithm 1 and PPBM (the algorithm
in [27]) for the first seven problems are listed in Table 1. From Table 1, we see that Algo-
rithm 1 performs better than PPBM. In Table 2, we compare our algorithm with Redist-
Prox in [13] for problem Regular with various n. From Table 2, under the same condi-
tions (terminates if NF is more than 300), we see that the approximately optimal values
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Figure 1 The 3D images of Regular and L-Mifflin

Table 1 Numerical results for the first set of seven problems

Problem n Algorithm NI ND NF F∗

CB2 2 Algorithm 1 2 1 2 3.343146
PPBM 2 1 2 3.343146

CB3 2 Algorithm 1 9 4 9 24.479795
PPBM 11 8 11 24.479795

LQ 2 Algorithm 1 15 12 15 –0.999989
PPBM 18 17 18 –0.999996

Mifflin1 2 Algorithm 1 3 2 3 48.153612
PPBM 4 2 4 48.153612

Rosen-Suzuki 4 Algorithm 1 7 6 7 39.715617
PPBM 9 8 9 39.715617

Shor 5 Algorithm 1 5 1 5 50.250278
PPBM 4 1 4 50.250278

MAXL 20 Algorithm 1 19 6 19 0.552786
PPBM 22 2 22 0.552786

Table 2 Numerical results for “Regular” compared with RedistProx

ALBM RedistProx

n F∗ δ∗ NF F∗ δ∗ NF

1 0.000000 0.000001 52 0.500000 0.000010 5
2 0.012188 0.038685 35 0.000188 0.002720 301
3 0.000001 0.000001 88 0.000006 0.002360 90
4 0.000000 0.000001 105 0.000005 0.000682 301
5 0.000000 0.000001 134 7.948708 1.179115 3
6 0.000001 0.000001 220 0.000002 0.000001 289
7 0.000004 0.000007 301 0.008876 0.037044 103
8 0.064289 0.004921 301 0.000043 0.000240 301
9 0.000920 0.003238 301 0.281491 0.020101 301
10 0.004182 0.014245 301 0.426285 0.056585 301

Table 3 Numerical results for “Regular” and “L-Mifflin”

Regular L-Mifflin

x0 x∗ F∗ x∗ F∗

[1, 1] [0.0267, 0.0283] 0.003103 [–0.1362e–009, –0.1362e–009] –0.250000
[–1, –1] [0.0208, 0.0204] 0.001707 [0.2353e–009, 0.2353e–009] –0.250000
[10, 10] [0.0779, 0.1313] 0.089998 [0.4776e–008, 0.4776e–008] –0.250000
[–10, –10] [0.0626, 0.0635] 0.015955 [–0.4817e–008, –0.4817e–008] –0.250000

and accuracies of Algorithm 1 are better than RedistProx. Finally, in Table 3, we report
the approximately optimal solutions and values for problem L-Mifflin with different
starting points.
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25. Lukšan, L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical

Report No. 798, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2000)

http://arxiv.org/abs/arXiv:1105.0276


Tang et al. Journal of Inequalities and Applications  (2018) 2018:101 Page 23 of 23

26. Bagirov, A.M., Karmitsa, N., Mäkelä, M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software.
Springer, Cham (2014)

27. Kiwiel, K.C.: A proximal-projection bundle method for Lagrangian relaxation, including semidefinite programming.
SIAM J. Optim. 17(4), 1015–1034 (2006)


	An alternating linearization bundle method for a class of nonconvex nonsmooth optimization problems
	Abstract
	Keywords

	Introduction
	Preliminaries
	The alternating linearization bundle method
	Motivation and framework
	Further description via bundle terminologies
	The algorithm

	Convergence
	Numerical results
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


