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Abstract
We present a new proof of Hardy’s inequality by giving an Lp version of Carleson’s
inequality.
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1 Introduction
The classical Hardy inequality reads

∫ ∞

0

(
1
x

∫ x

0
f (y) dy

)p

dx ≤
(

p
p – 1

)p ∫ ∞

0
f p(x) dx, (1.1)

where f is a nonnegative measurable function on (0,∞) and p > 1. A weighted modifica-
tion of (1.1) was proved also by Hardy [1]:

∫ ∞

0

(
1
x

∫ x

0
f (y) dy

)p

xα dx ≤
(

p
p – 1 – α

)p ∫ ∞

0
f p(x)xα dx, (1.2)

where f is a nonnegative measurable function on (0,∞) and p > 1, α < p – 1. The constant

(
p

p – 1 – α

)p

is the best possible.
The importance and the usefulness of these inequalities could never have been over-

estimated. Connected with Hardy’s inequality, the following two inequalities frequently
appeared in the literature. See [2, 3], and [4].

Theorem 1.1 (Polya–Knopp inequality)

∫ ∞

0
exp

{
1
x

∫ x

0
ln f (t) dt

}
dx ≤ e

∫ ∞

0
f (x) dx (1.3)

for any measurable f ≥ 0.
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Theorem 1.2 (Carleson’s inequality) Let F(x) be a convex function for x ≥ 0, satisfying
F(0) = 0. If –1 < α < ∞, the following inequality holds true:

∫ ∞

0
xαe–F(x)/x dx ≤ eα+1

∫ ∞

0
xαe–F ′(x) dx. (1.4)

As we shall see in Sect. 3.2, the following can be derived from (1.4) for any measurable
f ≥ 0:

∫ ∞

0
xα exp

{
1
x

∫ x

0
ln f (t) dt

}
dx ≤ eα+1

∫ ∞

0
f (x)xα dx. (1.5)

The discrete version of inequality (1.3) is known as Carleman’s inequality [5]. Equation
(1.3) is a special case of (1.5), and (1.5) can be regarded as a special case of (1.4).

The goal of this note is to complete the following diagram by finding “(2.1)”, which gives
(1.2) in the same manner as (1.4) gives (1.5) as a special case.

(2.1) (1.4)

(1.2) (1.5)

(1.1) (1.3)

p −→ ∞

p −→ ∞

special case

α −→ 0

special case

α −→ 0

This will be done in Sect. 2.1.

2 An inequality of Carleson type
There are a lot of different ideas in the literature for the proof of Hardy’s inequality. With
the special property of the mean 1

x
∫ x

0 f (t) dt, the proof of (1.1) or (1.2) should depend on
the convexity of the function xp, p > 1. See [2] and the references therein.

2.1 Lp version inequality
The following theorem is a straightforward consequence of Minkowski’s inequality which
comes from the convexity. It verifies Hardy’s inequality (1.2) as we shall see in Sect. 3.1.

Theorem 2.1 Let max{1,α + 1} < p < ∞. Let F be a nonnegative increasing concave func-
tion defined on [0,∞) with F(0) = 0. If xα–pF(x)p ∈ L1(0,∞), then

∫ ∞

0

(
F(x)

x

)p

xα dx ≤
(

p
p – 1 – α

)p ∫ ∞

0

[
F ′(x)

]pxα dx. (2.1)

Proof Fix k > 1 for a moment. A simple change of variable shows for A > 0 that

1
kp

∫ A

0
xα–pF(kx)p dx =

1
kα+1

∫ kA

0
xα–pF(x)p dx

≥ 1
kα+1

∫ A

0
xα–pF(x)p dx. (2.2)
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By concavity,

F(kx) ≤ F(x) + (k – 1)xF ′(x) (2.3)

and

0 ≤ F ′(x) ≤ F(x)
x

(2.4)

for almost every x ∈ (0,∞). Inequalities (2.2), (2.3), and Minkowski’s inequality give

{
1

kα+1

∫ A

0
xα–pF(x)p dx

} 1
p

≤
{

1
kp

∫ A

0
xα–pF(kx)p dx

} 1
p

≤ 1
k

{∫ A

0
xα–p[F(x) + (k – 1)xF ′(x)

]p dx
} 1

p

≤ 1
k

[{∫ A

0
xα–pF(x)p dx

} 1
p

+
{∫ A

0
xα–p(k – 1)pxp[F ′(x)

]p dx
} 1

p
]

=
1
k

{∫ A

0
xα–pF(x)p dx

} 1
p

+
k – 1

k

{∫ A

0
xα

[
F ′(x)

]p dx
} 1

p
. (2.5)

By the integrability hypothesis xα–pF(x)p ∈ L1(0,∞) and (2.4), the last two integrals are
bounded. Thus, it follows from (2.5) that

{∫ A

0
xα–pF(x)p dx

} 1
p

≤ C(k)
{∫ A

0
xα

[
F ′(x)

]p dx
} 1

p
, (2.6)

where

C(k) =
k – 1

k
1

k– α+1
p – k–1

.

Note that C(k) → p
p–α–1 as k → 1. Now, letting k → 1 and A → ∞ we have (2.1). �

2.2 Remarks
(1) The point of Theorem 2.1 is

∫ A

0

(
F(x)

x

)p

xα dx ∼
∫ A

0

[
F ′(x)

]pxα dx.

In fact, we have

∫ A

0

[
F ′(x)

]pxα dx ≤
∫ A

0

(
F(x)

x

)p

xα dx ≤
(

p
p – 1 – α

)p ∫ A

0

[
F ′(x)

]pxα dx (2.7)

by (2.4) and (2.6).
(2) The conditions of Theorem 2.1 seem to be rather complicated so that one may

suspect the existence of such a F . We give a simple example: Let α,β be chosen to
be α – p + 1 < 0, 0 < β ≤ p, and α – p + β + 1 > 0. Take F(x) = xβ/p for 0 ≤ x ≤ 1 and
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F(x) = 1 for 1 < x < ∞. Then F is nonnegative increasing concave and F(0) = 0.
A simple calculation shows

∫ ∞

0

(
F(x)

x

)p

xα dx =
∫ 1

0
xα–p+β dx +

∫ ∞

1
xα–p dx =

1
α – p + β + 1

–
1

α – p + 1
,

∫ ∞

0

[
F ′(x)

]pxα dx =
∫ 1

0

(
β

p
x

β
p –1

)p

xα dx =
(

β

p

)p 1
α – p + β + 1

,

whence we have (2.1) (and (2.7) with A = ∞).
On the other hand, the example F(x) = 0 for 0 ≤ x ≤ 1 and F(x) = 1 for 1 < x < ∞

shows that (2.1) fails if the concavity hypothesis is omitted.
(3) Note that a concave function on an interval is absolutely continuous on each closed

subinterval. While absolute continuity (on a closed interval) is equivalent to be an
indefinite integral. So, the concavity of F with F(0) = 0 in Theorem 2.1 implies

F(x) =
∫ x

0
f (y) dy for some f ,

which implies the existence of F ′(x) almost everywhere and f = F ′ decreasing.

3 Relations between inequalities
In this section, we explain the relationship between inequalities (1.1)–(1.5) and (2.1).

3.1 Hardy’s inequality (1.2) follows from (2.1)
It is simple to see that Hardy’s inequality (1.2) follows immediately from our Theorem 2.1.

First assume α = 0 and show (1.1). We may assume f ∈ Lp(0,∞). Let f̃ be the decreasing
rearrangement of f :

f̃ (t) = inf
{
λ ≥ 0 :

∣∣{x : f (x) > λ
}∣∣ < t

}
, 0 ≤ t < ∞.

Then f̃ is decreasing and

∫ ∞

0
f (y) dy =

∫ ∞

0
f̃ (y) dy,

∫ x

0
f (y) dy ≤

∫ x

0
f̃ (y) dy.

Hence it is sufficient to show (1.1) under the hypothesis that f is decreasing. Let f be de-
creasing and F(x) =

∫ x
0 f (y) dy. Then F(0) = 0, F(x) ≥ 0 and F ′(x) = f (x) almost everywhere.

Since F ′ = f is nonnegative decreasing, F is increasing and concave. Thus, applying The-
orem 2.1 with α = 0, we obtain (1.1).

Next, for general f and α, (1.2) follows from (1.1) by a simple change of variable: setting

g(y) = f
(
y

p–1
p–1–α

)
y

α
p–1–α , 0 < y < ∞,

it is straightforward to see

∫ ∞

0

(
1
x

∫ x

0
f (y) dy

)p

xα dx =
(

p – 1
p – 1 – α

)p+1 ∫ ∞

0

(
1
x

∫ x

0
g(y) dy

)p

dx
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and
∫ ∞

0
f (x)pxα dx =

p – 1
p – 1 – α

∫ ∞

0
g(x)p dx,

whence

∫ ∞

0

(
1
x

∫ x

0
f (y) dy

)p

xα dx =
(

p – 1
p – 1 – α

)p+1 ∫ ∞

0

(
1
x

∫ x

0
g(y) dy

)p

dx

≤
(

p – 1
p – 1 – α

)p+1( p
p – 1

)p ∫ ∞

0
g(x)p dx

=
(

p – 1
p – 1 – α

)p+1( p
p – 1

)p p – 1 – α

p – 1

∫ ∞

0
f (x)pxα dx

=
(

p
p – 1 – α

)p ∫ ∞

0
f (x)pxα dx.

3.2 Inequality (1.5) follows from Carleson’s inequality (1.4)
It is also simple to see that inequality (1.5) follows from Carleson’s inequality (1.4).

Let f̃ be the decreasing rearrangement of f , and let F(x) = –
∫ x

0 ln f̃ (y) dy. Then F(0) = 0,
and F ′(x) = – ln f̃ (x) almost everywhere. Since f̃ is decreasing, F ′ is increasing, whence F
is convex by an elementary calculation. Thus, applying Theorem 1.2 with α = 0, we obtain

∫ ∞

0
exp

{
1
x

∫ x

0
ln f (t) dt

}
dx ≤

∫ ∞

0
exp

{
1
x

∫ x

0
ln f̃ (t) dt

}
dx

≤ e
∫ ∞

0
f̃ (x) dx = e

∫ ∞

0
f (x) dx. (3.1)

Next, let g(x) = xαf (x) and g̃ be the decreasing rearrangement of g . Then, by (3.1) with g
in place of f ,

∫ ∞

0
xα exp

{
1
x

∫ x

0
ln f (t) dt

}
dx = eα

∫ ∞

0
exp

{
1
x

∫ x

0
ln

(
tαf (t)

)
dt

}
dx

= eα

∫ ∞

0
exp

{
1
x

∫ x

0
ln g(t) dt

}
dx

≤ eα

∫ ∞

0
exp

{
1
x

∫ x

0
ln g̃(t) dt

}
dx

≤ eα+1
∫ ∞

0
g̃(x) dx = eα+1

∫ ∞

0
f (x)xα dx.

3.3 Remarks
(1) The limit case p → ∞ of (1.1) (replacing f by f

1
p first) represents (1.3), and the same

limit case of (1.2) represents (1.5). We can summarize the relations between
(1.1)∼(1.5) and (2.1) as the diagram at the end of Sect. 1.

(2) Minkowski’s inequality appeared in 1896 [6] (see Minkowski’s posthumous [7]) and
was expanded to the integral form in the context of Lp space in 1910 [8], while
Hardy’s inequality appeared, and was verified and extended in 1920 [9], 2025 [10],
and 1928 [1], respectively.
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4 Conclusion
From the observation that the Polya–Knopp inequality is a limit version of Hardy’s in-
equality and Carleson’s inequality verifies Polya–Knopp inequality as a special case, an
inequality verifying Hardy’s inequality by the same pattern was called for. In Theorem 2.1,
the main result of this article, we give such an inequality: inequality (2.1).

A simple application of Minkowski’s inequality proved Theorem 2.1. In view of Sec-
tion 3.3 Remarks (2), it seems that there should have been an easy proof of Hardy’s in-
equality in terms of Minkowski’s inequality early in the literature.
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