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Abstract
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1 Introduction
Consider the following p-order generalized random coefficient autoregressive model:

Yt = �τ
t Y (t – 1) + εt , (1)

where τ denotes the transpose of a matrix or vector, �t = (�t1, . . . ,�tp)τ is a random coef-
ficient vector, Y (t – 1) = (Yt–1, . . . , Yt–p)τ , and {(�t

εt

)
, t = 0,±1,±2, . . .} is a sequence of i.i.d.

random vectors with E(�t) = φ = (φ1, . . . ,φp), E(εt) = 0, and Var
(
�t
εt

)
=

( Vφ σ�ε

στ
�ε σ 2

ε

)
.

As a generalization of the usual autoregressive model, the random coefficient autore-
gressive (RCAR) model (cf. [1, 2]), the Markovian bilinear model and its generalization,
and the random coefficient exponential autoregressive model (cf. [3–5]), model (1) was
first introduced by Hwang and Basawa [6]. GRCA has become one of the important mod-
els in the nonlinear time series context. In recent years, GRCA has been studied by many
authors. For instance, Hwang and Basawa [7] established the local asymptotic normality
of a class of generalized random coefficient autoregressive processes. Carrasco and Chen
[8] provided the tractable sufficient conditions that simultaneously imply strict stationar-
ity, finiteness of higher-order moments, and β-mixing with geometric decay rates. Zhao
and Wang [9] constructed confidence regions for the parameters of model (1) by using an
empirical likelihood method. Furthermore, Zhao et al. [10] also considered the problem of
testing the constancy of the coefficients in the stationary one-order generalized random
coefficient autoregressive model. In this paper, we consider the variable selection problem
of the GRCA based on the empirical likelihood method.
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Many model selection procedures have been proposed in the statistical literature, in-
cluding the adjusted R2 (see Theil [11]), the AIC (see Akaike [12]), BIC (see Schwarz
[13]), Mallow’S Cp (see Mallows [14]). Other criteria in the literature include Hannan and
Quinn’s criterion [15], Geweke and Meese’s criterion [16], Cavanaugh’s Kullback informa-
tion criterion [17], and the deviance information criterion of Spiegelhalter et al. [18]. Also,
Tsay [19], Hurvich and Tsai [20] and Pötscher [21] have studied model selection methods
in time series models. Recently, the model selection problem has been extended to mo-
ment selection as in Andrews [22], Andrews and Lu [23] and Hong et al. [24]. These model
selection methods are concerned with parsimony, as was stressed in Zellner et al. [25], as
well as accuracy or power in choosing models.

In this paper, we develop an information theoretic approach to variable selection prob-
lem of GRCA. Specifically, instead of parametric likelihood, we use non-parametric em-
pirical likelihood (see Owen [26, 27]) in the information theoretic approach. We propose
an empirical likelihood-based Akaike information criterion (EAIC) and a Bayesian infor-
mation criterion (EBIC).

The paper proceeds as follows. The next section is concerned with the methodology and
the main results. Section 3 is devoted to the proofs of the main results.

Throughout the paper, we use the symbols “
d−→” and “

p−→” to denote convergence in dis-
tribution and convergence in probability, respectively. We abbreviate “almost surely” and
“independent identical distributed” to “a.s.” and “i.i.d.”, respectively. op(1) means a term
which converges to zero in probability. Op(1) means a term which is bounded in proba-
bility. Furthermore, the Kronecker product of the matrices A and B is denoted by A ⊗ B,
and ‖M‖ denotes the L2 norm for vector or matrix M.

2 Methods and main results
In this section, we will first propose the empirical likelihood-based information criteria
for choice of a GRCA, then we investigate the asymptotic properties of the new variable
selection method.

2.1 Empirical likelihood-based information criteria
Hwang and Basawa [6] derived the conditional least-squares estimator φ̂ of φ, which is
given by

φ̂ =

( n∑

t=1

Y (t – 1)Y τ (t – 1)

)–1( n∑

t=1

YtY (t – 1)

)

.

By using the estimating equation of the conditional least-squares estimator, we can obtain
the following score function:

n∑

t=1

(
YtY (t – 1) – Y (t – 1)Y τ (t – 1)φ

)
=

n∑

t=1

Gt(φ),

where Gt(φ) = YtY (t – 1) – Y (t – 1)Y τ (t – 1)φ. Following Owen [26], the empirical likeli-
hood statistic for φ is defined as

l̃(φ) = –2 max∑n
t=1 ptGt (φ)=0

n∑

t=1

log(npt),
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where p1, . . . , pn are all sets of nonnegative numbers summing to 1. By using the Lagrange
multiplier method, let

G =
n∑

t=1

log(npt) – nλτ

n∑

t=1

ptGt(φ) + γ

( n∑

t=1

pt – 1

)

.

After simple algebraic calculation, we have

∂G
∂pt

=
1
pt

– nλτ Gt(φ) + γ , t = 1, . . . , n.

Note that
∑n

t=1 pt = 1 and
∑n

t=1 ptGt(φ) = 0. So we have γ = –n and pt = 1
n(1+λτ Gt (φ)) , which

implies that

l̃(φ) = 2
n∑

t=1

log
(
1 + λτ Gt(φ)

)
, (2)

where λ is the solution of the equation

1
n

n∑

t=1

Gt(φ)
1 + λτ Gt(φ)

= 0. (3)

The definition of l̃(φ) relies on finding a positive pt
′s such that

∑n
t=1 ptGt(φ) = 0 for

each φ. The solution exists if and only if the convex hull of the Gt(φ), t = 1, 2, . . . , n con-
tains zero as an inner point. When the model is correct, the solution exists with probability
tending to 1 as the sample size n → ∞ for φ in a neighborhood of φ0. However, for finite
n and at some φ value, the equation often does not have a solution in pt . To avoid this
problem, we introduce the adjusted empirical likelihood.

Further let Ḡn = n–1 ∑n
t=1 ptGt(φ) and define Gn+1 = –anḠn for some positive constant

an. We adjust the profile empirical log-likelihood ratio function to

l(φ) = –2 max∑n+1
t=1 ptGt (φ)=0

n+1∑

t=1

log
(
(n + 1)pt

)

= 2
n+1∑

t=1

log
{

1 + λ̃τ Gt(φ)
}

(4)

with λ̃ = λ̃(φ) being the solution of

1
n + 1

n+1∑

t=1

Gt(φ)
1 + λτ Gt(φ)

= 0. (5)

Since 0 always lies on the line connecting Ḡn and Gn+1, the adjusted empirical log-
likelihood ratio function is well defined after adding a pseudo-value Gn+1 to the data set.
The adjustment is particularly useful so that a numerical program does not crash simply
because some undesirable φ is assessed.



Zhao et al. Journal of Inequalities and Applications  (2018) 2018:82 Page 4 of 14

A full GRCA assumes that yt relates to �τ
t Y (t – 1) with E(�t) = φ being unknown pa-

rameter of size p. Let s be a subset of {1, 2, . . . , p}, and Y [s](t – 1) and φ[s] be subvec-
tors of Y (t – 1) and φ containing entries in positions specified by s. Consider the pth-
order GRCA specified by E(Gt(φ)) = 0 and a submodel specified by E(G[s]

t (φ[s])) = 0, where
G[s]

t (φ[s]) = YtY [s](t – 1) – Y [s](t – 1)(Y [s](t – 1))τ φ[s]. For a given s, let G[s]
t = YtY [s](t – 1) –

Y [s](t – 1)(Y [s](t – 1))τ φ[s], Ḡ[s]
n = n–1 ∑n

t=1 G[s]
t and G[s]

n+1 = –anḠ[s]
n for some positive con-

stant an. The adjusted empirical log-likelihood ratio becomes

l
(
φ[s]) = –2 max

∑n+1
t=1 ptG[s]

t =0

n+1∑

t=1

log
(
(n + 1)pt

)

= 2
n+1∑

t=1

log
{

1 + λ̃τ G[s]
t

}
(6)

with λ̃ = λ̃(φ) being the solution of

1
n + 1

n+1∑

t=1

G[s]
t

1 + λτ G[s]
t

= 0. (7)

We define the adjusted profile empirical log-likelihood ratio as

l(s) = inf
{

l
(
φ[s]) : φ[s]}. (8)

The empirical likelihood versions of AIC and BIC are then defined as

EAIC = l(s) + 2k, (9)

EBIC = l(s) + k log(n), (10)

where k is the cardinality of s.
After l(s) is evaluated for all s, we select the model with the minimum EAIC or EBIC

value.

2.2 Asymptotic properties
It is well known that under some mild conditions the parametric BIC is consistent for
variable selection while the parametric AIC is not. Similarly, we can prove that, when p is
constant, EBIC is consistent but EAIC is not.

For purposes of illustration, in what follows, we rewrite the model in the following
matrix form (see Hwang and Basawa [6]): let Ut = (εt , 0, 0, . . . , 0)τ are p × 1 vectors,
�̃tj = �tj – φj, j = 1, . . . , p,

B =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

φ1 φ2 · · · φp–1 φp

1 0 · · · 0 0
0 1 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

p×p

, Ct =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

�̃t1 �̃t2 · · · �̃tp

0 0 · · · 0
0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

p×p

.
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Then model (1) can be written as

Y (t) = (B + Ct)Y (t – 1) + Ut . (11)

In order to obtain our theorems, we need the following regularity conditions:
(A1) All the eigenvalues of the matrix E(Ct ⊗Ct) + (B⊗B) are less than unity in modulus.
(A2) EY 6

t < ∞.

Remark 1 As for the condition (A1) and the sufficient condition for E|yt|2m < ∞ (m =
1, 2, . . .), we refer to Hwang and Basawa [6].

Theorem 2.1 Let A = E(Gt(φ0)Gτ
t (φ0)) and B = E((∂Gt(φ)/∂φ)|φ=φ0 ). If (A1) and (A2) hold,

then there exists a sequence of adjusted empirical likelihood estimates φ̃ of φ such that

√
n(φ̃ – φ) → N

(
0,

(
Bτ A–1B

)–1) (12)

and

√
n(λ̃ – λ) → N(0, U), (13)

where U = A–1 – A–1B(Bτ A–1B)–1Bτ A–1.

Note that when a submodel s is a true model, it implies φ
[s̄]
0 = 0. That is, components

of φ0 not in s are zero. Therefore, Yt only relates to the variables in positions specified
by s. The following theorem shows that when φ

[s̄]
0 = 0 is true, then adjusted empirical log-

likelihood ratio statistic has a chi-squared limiting distribution with k fewer degrees of
freedom.

Theorem 2.2 Assume that (A1) and (A2) hold and φ
[s̄]
0 = 0 for a submodel s of size k. Then

when an = op(n 1
2 ), we have l(s) → χ2

p–k in distribution as n → ∞.

When the null hypothesis of φ
[s̄]
0 = 0 is not true, the likelihood ratio go to ∞ as n → ∞.

We state the following theorem in terms of the adjusted empirical likelihood which also
applies to the usual empirical likelihood.

Theorem 2.3 Assume that (A1) and (A2) hold and an = op(n 1
2 ). Then for any φ �= φ0 such

that E(Gt(φ)) �= 0, l(s) → ∞ in probability as n → ∞.

The following theorem indicates that, when p is constant, EBIC is consistent but EAIC
is not.

Theorem 2.4 Assume that (A1) and (A2) hold and if there exists a subset s0 of 1, 2, . . . , p
such that, for any other subset s, E(G[s]

t (φ[s])) = 0 for some φ if and only if s contains s0. Then,
EBIC is consistent and EAIC is not consistent.
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3 Proofs of the main results
In order to prove Theorem 2.1, we first present several lemmas.

Lemma 3.1 Assume that (A1) and (A2) hold. Then A is positive definite and B has rank p.

Proof After simple algebra calculation, we have, for any nonzero vector c = (c1, . . . , cp) ∈
RP ,

cτ Ac = E
(
cτ Gt(φ)Gτ

t (φ)c
)

= E
((

cτ Y (t – 1)
)2

Var
(
Yt|Y (t – 1)

))
.

Note that the conditional distribution of Yt , given Y (t –1), is not a degenerate distribution,
which implies that Var(Yt|Y (t – 1)) > 0 a.s. It follows that (cτ Y (t – 1))2 Var(Yt|Y (t – 1)) ≥ 0
a.s. Therefore, cτ Ac = 0 if and only if cτ Y (t – 1) = 0 a.s. Without loss of generality, suppose
that the first component c1 of c is 1, so Yt–1 = –c2Yt–2 – · · · – cpYt–p, which is contradictory
with the fact that the conditional distribution of Yt–1, given (Yt–2, . . . , Yt–p), is not degen-
erate. Hence cτ Ac > 0. That is, A is positive definite.

Similarly, we can also prove that B has rank p. The proof of Lemma 3.1 is thus com-
plete. �

Lemma 3.2 Assume that (A1) and (A2) hold. Then when an = o(n 1
2 ), we have

sup
φ

∥∥
∥∥
∥

1
n + 1

n+1∑

t=1

Gt(φ)Gτ
t (φ)

∥∥
∥∥
∥

= O(1) (a.s.), (14)

uniformly about φ ∈ {φ|‖φ – φ0‖ ≤ n– 1
3 }.

Proof Note that

sup
φ

∥∥
∥∥
∥

1
n + 1

n+1∑

t=1

Gt(φ)Gτ
t (φ)

∥∥
∥∥
∥

≤ sup
φ

∥∥
∥∥
∥

1
n + 1

n∑

t=1

Gt(φ)Gτ
t (φ)

∥∥
∥∥
∥

+ sup
φ

1
n + 1

a2
n

∥∥
∥∥
∥

1
n

n∑

t=1

Gt(φ)

∥∥
∥∥
∥

2

≤ sup
φ

∥
∥∥
∥∥

1
n + 1

n∑

t=1

Gt(φ)Gτ
t (φ) –

1
n + 1

n∑

t=1

Gt(φ0)Gτ
t (φ0)

∥
∥∥
∥∥

+

∥∥
∥∥∥

1
n + 1

n∑

t=1

Gt(φ0)Gτ
t (φ0)

∥∥
∥∥∥

+ sup
φ

1
n + 1

a2
n

∥∥
∥∥∥

1
n

n∑

t=1

Gt(φ)

∥∥
∥∥∥

2

� Ln1 + Ln2 + Ln3. (15)

First, note that

Ln1 = sup
φ

∥
∥∥
∥∥

1
n + 1

n∑

t=1

(
Y (t – 1)Y τ (t – 1)

(
Y τ (t – 1)(φ – φ0)

))
∥
∥∥
∥∥

≤ 1
n + 1

n∑

t=1

∥∥Y (t – 1)
∥∥3

sup
φ

‖φ – φ0‖.
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By the ergodic theorem, we have

1
n + 1

n∑

t=1

∥∥Y (t – 1)
∥∥3 = O(1) (a.s.). (16)

Further, note that

sup
φ

‖φ – φ0‖ = O(1). (17)

This, together with (16), proves that

Ln1 = O
(
n– 1

3
)

(a.s.). (18)

Again by the ergodic theorem, we can prove that

Ln2 = O(1) (a.s.). (19)

Finally, we prove that

Ln3 = O
(
n– 1

3
)

(a.s.). (20)

Note that

sup
φ

∥
∥∥
∥∥

1
n

n∑

t=1

Gt(φ)

∥
∥∥
∥∥

≤ sup
φ

∥
∥∥
∥∥

1
n

n∑

t=1

(
Gt(φ) – Gτ

t (φ0)
)
∥
∥∥
∥∥

+

∥
∥∥
∥∥

1
n

n∑

t=1

Gt(φ0)

∥
∥∥
∥∥

.

Similar to the proof of (18), we can show that

sup
φ

∥∥∥
∥∥

1
n

n∑

t=1

(
Gt(φ) – Gτ

t (φ0)
)
∥∥∥
∥∥

= O
(
n– 1

3
)

(a.s.). (21)

In what follows, we consider ‖ 1
n
∑n

t=1 Gt(φ0)‖.
Denote the ith component of Gt(φ0) by Gti(φ0). Then {Gti(φ0), 1 ≤ i ≤ p} is a stationary

ergodic martingale difference sequence with E(Gti(φ0)) = 0 and E((Gti(φ0))2) < ∞. By the
law of the iterated logarithm of martingale difference sequence, we have, for 1 ≤ i ≤ p,

1
n

n∑

t=1

Gτ
ti(φ0) = O

(
n– 1

2
(
logn

2
) 1

2
)

(a.s.).

It follows that

1
n

n∑

t=1

Gτ
t (φ0) = O

(
n– 1

2
(
logn

2
) 1

2
)

(a.s.). (22)

Then, by (21) and (22), we have

sup
φ

∥
∥∥
∥∥

1
n

n∑

t=1

Gt(φ)

∥
∥∥
∥∥

= O
(
n– 1

3
)

(a.s.). (23)
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Therefore

Ln3 = O
(
n–1)o

(
n

1
2
)
o
(
n

1
2
)
O

(
n– 1

3
)
O

(
n– 1

3
)

(a.s.)

= o
(
n– 2

3
)

(a.s.). (24)

This, together with (18) and (19), proves Lemma 3.2. �

Lemma 3.3 Assume that (A1) and (A2) hold. Then when an = o(n 1
2 ), we have

max
1≤t≤n+1

sup
φ

∥∥Gt(φ)
∥∥ = o

(
n

1
3
)

(a.s.), (25)

uniformly about φ ∈ {φ|‖φ – φ0‖ ≤ n– 1
3 }.

Proof Note that

max
1≤t≤n+1

sup
φ

∥
∥Gt(φ)

∥
∥ ≤ max

1≤t≤n
sup

φ

∥
∥Gt(φ)

∥
∥ + sup

φ

∥
∥∥∥
∥

an
1
n

n∑

t=1

Gt(φ)

∥
∥∥∥
∥

� Kn1 + Kn2.

From (23), together with an = o(n 1
2 ), it follows immediately that

Kn2 = o
(
n

1
3
)

(a.s.). (26)

The next step in the proof is to show that

Kn1 = o
(
n

1
3
)

(a.s.). (27)

By the Fubini theorem, we have, for any positive integer k,

∞ > E
(

sup
φ

∥∥Gt(φ)
∥∥
)3

=
∫ ∞

0
P
((

sup
φ

∥
∥Gt(φ)

∥
∥
)3

> s
)

ds

=
∞∑

n=1

∫ nk3

(n–1)k3
P
((

sup
φ

∥
∥Gt(φ)

∥
∥
)3

> s
)

ds

≥
∞∑

n=1

∫ nk3

(n–1)k3
P
((

sup
φ

∥
∥Gt(φ)

∥
∥
)3

> nk3
)

ds

=
∞∑

n=1

P
((

sup
φ

∥
∥Gt(φ)

∥
∥
)3

> nk3
)

k3 ds.

Thus, using the ergodic theorem,

∞∑

n=1

P
(

sup
φ

∥∥Gn(φ)
∥∥ > n

1
3 k

)
< ∞. (28)
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By the Borel–Cantelli lemma, we know that

P
(

sup
φ

∥∥Gn(φ)
∥∥ > n

1
3 k i.o.

)
= 0, (29)

so that

sup
φ

∥∥Gn(φ)
∥∥ ≤ n

1
3 k (a.s.). (30)

Take k = 1
m , then there exists Qm with P(Qm) = 0, such that, for any ω ∈ Qc

m,

supφ ‖Gn(φ)‖
n 1

3
≤ 1

m
. (31)

Further, let Q =
⋃∞

m=1 Qm. Then

lim
n→∞

supφ ‖Gn(φ)‖
n 1

3
= 0, (32)

which, together with the fact that P(Q) = 0, implies that

max
1≤t≤n

sup
φ

∥∥Gt(φ)
∥∥ = o

(
n

1
3
)

(a.s.). (33)

The proof is complete. �

Lemma 3.4 Assume that (A1) and (A2) hold. Then when an = o(n 1
2 ), we have

sup
φ

∥
∥λ(φ)

∥
∥ = O

(
n– 1

3
)

(a.s.), (34)

uniformly about φ ∈ {φ|‖φ – φ0‖ ≤ n– 1
3 }.

Proof Write ‖λ(φ)‖ = ρ(φ)θ (φ), where ρ(φ) > 0 and ‖θ (φ)‖ = 1. Further let

Q1,n+1(φ,λ) =
1

n + 1

n+1∑

t=1

Gt(φ)
1 + λτ (φ)Gt(φ)

. (35)

Then

0 =
∥
∥Q1,n+1(φ,λ)

∥
∥

≥
∣∣
∣∣∣

1
n + 1

n+1∑

t=1

θτ (φ)Gt(φ)
1 + λτ (φ)Gt(φ)

∣∣
∣∣∣

≥
∣∣∣
∣∣

1
n + 1

ρ(φ)
n+1∑

t=1

θτ (φ)Gt(φ)Gτ
t (φ)θ (φ)

1 + ρ(φ)θτ (φ)Gt(φ)

∣∣∣
∣∣

–

∣∣∣
∣∣

1
n + 1

n+1∑

t=1

θτ (φ)Gt(φ)

∣∣∣
∣∣

≥ ρ(φ)θτ (φ)( 1
n+1

∑n+1
t=1 Gt(φ)Gτ

t (φ))θ (φ)
max1≤t≤n{1 + ρ(φ)θτ (φ)Gt(φ)} –

∣
∣∣
∣∣

1
n + 1

n+1∑

t=1

θτ (φ)Gt(φ)

∣
∣∣
∣∣
,
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which implies that

ρ(φ)θτ (φ)( 1
n+1

∑n+1
t=1 Gt(φ)Gτ

t (φ))θ (φ)
max1≤t≤n{1 + ρ(φ)θτ (φ)Gt(φ)} ≤

∣∣
∣∣∣

1
n + 1

n+1∑

t=1

θτ (φ)Gt(φ)

∣∣
∣∣∣

≤
∥∥∥
∥∥

1
n + 1

n+1∑

t=1

Gt(φ)

∥∥∥
∥∥

. (36)

Further, by the ergodic theorem, we have

∥∥∥
∥∥

1
n + 1

n+1∑

t=1

Gt(φ0)Gτ
t (φ0) – A

∥∥∥
∥∥

= o(1) (a.s.), (37)

where A = E(Gt(φ0)Gτ
t (φ0)).

Since

0 ≤ sup
φ

∥
∥∥
∥∥

1
n + 1

n+1∑

t=1

Gt(φ)Gτ
t (φ) – A

∥
∥∥
∥∥

≤ sup
φ

∥
∥∥∥
∥

1
n + 1

n+1∑

t=1

Gt(φ)Gτ
t (φ) –

1
n + 1

n+1∑

t=1

Gt(φ0)Gτ
t (φ0)

∥
∥∥∥
∥

+

∥∥
∥∥
∥

1
n + 1

n+1∑

t=1

Gt(φ0)Gτ
t (φ0) – A

∥∥
∥∥
∥

,

we have from (18) and (37)

1
n + 1

n+1∑

t=1

Gt(φ)Gτ
t (φ) = A + o(1) (a.s.), (38)

which implies that

θτ (φ)

(
1

n + 1

n+1∑

t=1

Gt(φ)Gτ
t (φ)

)

θ (φ) ≥ σmin + o(1) (a.s.), (39)

where σmin is the smallest eigenvalue and the largest eigenvalue of A. This, together with
Lemma 3.1 and (36), proves that

sup
φ

∥
∥∥
∥∥

1
n + 1

n+1∑

t=1

Gt(φ)

∥
∥∥
∥∥

≥ sup
φ

ρ(φ)

(

σmin + o(1) –
(

max
1≤t≤n+1

sup
φ

∥
∥Gt(φ)

∥
∥
)(

sup
φ

∥∥
∥∥
∥

1
n + 1

n+1∑

t=1

Gt(φ)

∥∥
∥∥
∥

))

.

Combined with (23) and Lemma 3.3, this establish (34) and completes the proof. �

Lemma 3.5 Assume that (A1) and (A2) hold, and an = o(n
1
2 ). Then, as n → ∞, with

probability 1, l(φ) attains its minimum value at some point φ̃ in the interior of the ball
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‖φ – φ0‖ ≤ n– 1
3 and φ̃ and λ̃ = λ(φ̃) satisfy Q1,n+1(φ̃, λ̃) = 0 and Q2,n+1(φ̃, λ̃) = 0, where

Q1,n+1(φ,λ) is defined in (35) and

Q2n(φ,λ) =
1

n + 1

n+1∑

t=1

1
1 + λτ Gt(φ)

(
∂Gt(φ)

∂φ

)τ

λ. (40)

The proof is similar to the proof of Lemma 1 of Qin and Lawless [28], so we omit the
details.

Proof of Theorem 2.1 In what follows, we omit (φ,λ) in the notation if a function is eval-
uated at (φ0, 0). Expanding Q1,n+1(φ̃, λ̃), Q2,n+1(φ̃, λ̃) at (φ0, 0) leads to

0 = Q1,n+1(φ̃, λ̃) = Q1,n+1 +
{

∂Q1,n+1

∂φ

}
(φ̃ – φ0) +

{
∂Q1,n+1

∂λ

}
λ̃ + op(δn) (41)

and

0 = Q2,n+1(φ̃, λ̃) = Q2,n+1 +
{

∂Q2,n+1

∂φ

}
(φ̃ – φ0) +

{
∂Q2,n+1

∂λ

}
λ̃ + op(δn), (42)

where δn = ‖φ̃ – φ0‖2 + ‖λ̃‖2 = Op(n– 2
3 ).

Note that

∂Q1,n+1

∂φ
=

1
n + 1

n+1∑

t=1

∂Gt

∂φ
= B + op(1), (43)

∂Q1,n+1

∂λ
= –

1
n + 1

n+1∑

t=1

GtGτ
t = –A + op(1), (44)

∂Q2,n+1

∂φ
= 0, (45)

and

∂Q1,n+1

∂λ
=

1
n + 1

n+1∑

t=1

∂Gt

∂φ
= Bτ + op(1). (46)

These, combined with (41) and (42), give

λ̃ = –
{

A–1 – A–1B
(
Bτ A–1B

)–1Bτ A–1}Q1,n+1 + op
(
n– 1

2
)

(47)

and

φ̃ – φ0 =
(
Bτ A–1B

)–1Bτ A–1Q1,n+1 + op
(
n– 1

2
)
. (48)

Further, applying the central limit theorem to Q1,n+1 and using Slustzky’s theorem, we can
prove Theorem 2.1. �
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Proof of Theorem 2.2 Let λ̃ be the Lagrange multiplier corresponding to φ̃[s], the maximum
point of l(φ[s]). With this notation, we may write

l(s) = 2
n+1∑

t=1

log
{

1 + λ̃τ G[s]
t

(
φ̃[s])}. (49)

Note that

λ̃τ G[s]
t

(
φ̃[s]) = λ̃τ G[s]

t + λ̃τ

{
∂G[s]

t

∂φ[s]

}τ (
φ̃[s] – φ

[s]
0

)
+ op(1). (50)

This, together with (49), yields

ł(s) = 2λ̃τ

n+1∑

t=1

G[s]
t + 2λ̃τ

{ n+1∑

t=1

∂G[s]
t

∂φ[s]

}
(
φ̃[s] – φ

[s]
0

)
– λ̃τ

n+1∑

t=1

G[s]
t

(
G[s]

t
)τ + op(1)λ̃

= n–1Qτ
1,n+1

{
A–1 – A–1B

(
Bτ A–1B

)–1Bτ A–1}Q1,n+1 + op(1).

Further note that Q1,n+1 is asymptotic normal with covariance matrix A and {A–1 –
A–1B(Bτ A–1B)–1Bτ A–1}A{A–1 – A–1B(Bτ A–1B)–1Bτ A–1} = {A–1 – A–1B(Bτ A–1B)–1Bτ A–1}.
Therefore, we have ł(s) → χ2(p – k) in distribution as n → ∞. The proof is complete. �

Proof of Theorem 2.3 Since E(Gt(φ)) �= 0, it follows that there exists δ > 0, such that

1
n

n∑

t=1

Gτ
t (φ)

1
n

n∑

t=1

Gt(φ) – δ2 = op(1). (51)

Furthermore, note that E(Gτ
t (φ))2 < ∞. Thus, by a similar method to the proof of (27), we

can prove that

max
1≤t≤n+1

∥
∥Gτ

t (φ)
∥
∥ = op

(
n

1
2
)
. (52)

Let λ̌ = n– 2
3 ( 1

n
∑n

t=1 Gt(φ)) log n. Then

max
1≤t≤n+1

∣
∣λ̌τ Gt(φ)

∣
∣ = op(1). (53)

Thus, with probability going to 1, 1 + λ̌τ Gt(φ) > 0 for i = 1, . . . , n + 1. Using the duality of
the maximization problem and (51)–(53), we have

l(φ) = sup
λ

(

2
n+1∑

t=1

log
{

1 + λτ Gt(φ)
}
)

≥ 2
n+1∑

t=1

log
{

1 + λ̌τ Gt(φ)
}

= 2
n∑

t=1

log
{

1 + λ̌τ Gt(φ)
}

+ op(1) = 2n
1
3 δ2 log(n) + op(1),

which implies that l(s) → ∞ in probability as n → ∞. The proof is complete. �
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Proof of Theorem 2.4. First, we consider EAIC. Consider the situation when s0 is empty.
Let s = {1} which contains a single covariant. Based on expansion in the proof of Theo-
rem 2.2, we can prove that l(s0)– l(s) → χ2

1 , which implies that limn→∞ P(l(s0)– l(s) > 2) > 0.
Therefore, EAIC is not consistent.

Next, we consider EBIC. Suppose s is a model which does not contain s0. Then,
E(G[s]

t (φ[s])) �= 0 for any φ[s]. Therefore, we have l(s) ≥ 2n 1
3 δ2 log(n) + oP(1). This order im-

plies that

P
(
EBIC(s) < EBIC(s0)

) ≤ P
(
l(s) – l(s0) + p log n

) → 0.

That is, EBIC will not select any model s that does not contain s0.
Furthermore, if s contains s0, and k > 0 additional insignificant variables, by Theo-

rem 2.2, we have

l(s0) – l(s) → χ2
k ,

which implies that

P
(
EBIC(s) < EBIC(s0)

)
= P

(
l(s) – l(s0) > k log n

) → 0,

as n → ∞. Thus, the model s will not be selected by EBIC as n → ∞. Because p is finite,
there are only finite number of scompeting against s0, and each of them has o(1) probability
being selection. So EBIC is consistent. The proof is complete. �

4 Conclusions
It should be pointed out that variable selection has always been an important problem for
our statistician. Many variable selection methods have been proposed in the statistical lit-
erature. But for the variable selection method of GRCA, so far it has not been provided by
statistician. In this paper, instead of parametric likelihood, we further propose an Akaike
information criterion (EAIC) and a Bayesian information criterion (EBIC) for the vari-
able selection problem of GRCA based on the empirical likelihood method. Moreover, we
also prove that under some mild conditions the parametric EBIC is consistent, while the
parametric EAIC is not when p is constant.
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