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Abstract
In this work, some strong convergence theorems are established for weighted sums
of coordinatewise negatively associated random vectors in Hilbert spaces. The results
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corresponding one of Ko (J. Inequal. Appl. 2017:290, 2017).
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1 Introduction
The concept of the complete convergence was first introduced by Hsu and Robbins [3] to
prove that the arithmetic mean of independent and identically distributed (i.i.d.) random
variables converges completely to the expectation of the random variables. Later on, Baum
and Katz [4] generalized and extended this fundamental theorem as follows.

Theorem A Let α and r be real numbers such that r > 1, α > 1/2 and αr > 1 and let {Xn, n ≥
1} be a sequence of i.i.d. random variables with zero mean. Then the following statements
are equivalent:

(a) E|X1|r < ∞;
(b)

∑∞
n=1 nαr–2

P(|∑n
k=1 Xk| > εnα) < ∞;

(c)
∑∞

n=1 nαr–2
P(supk≥n k–α|∑k

i=1 Xi| > ε) < ∞.

Since the independence assumption is not reasonable in the real practice of applications
in many statistical problems. This result has been extended to many classes of dependent
random variables. A classical extension of independence is negative association, which
was introduced by Joag-Dev and Proschan [5] as follows.

Definition 1.1 A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively
associated (NA) if for every pair of disjoint subsets A and B of {1, 2, . . . , n} and any real
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coordinatewise nondecreasing (or nonincreasing) functions f1 on R
A and f2 on R

B,

Cov
(
f1(Xi, i ∈ A), f2(Xj, j ∈ B)

) ≤ 0,

whenever the covariance above exists. An infinite family of random variables is NA if every
finite subfamily is NA.

There are many results based on NA random variables, we refer to Shao [6], Kucz-
maszewska [7], Baek et al. [8], Kuczmaszewska and Lagodowski [9].

Let H be a real separable Hilbert space with the norm ‖ ·‖ generated by an inner product
〈·, ·〉. Denote X(j) = 〈X, e(j)〉, where {e(j), j ≥ 1} is an orthonormal basis in H , and X is an H-
valued random vector. Ko et al. [10] introduced the following concept of H-valued NA
sequence.

Definition 1.2 A sequence {Xn, n ≥ 1} of H-valued random vectors is said to be NA if
there exists an orthonormal basis {e(j), j ≥ 1} in H such that, for any d ≥ 1, the sequence
{(X(1)

n , X(2)
n , . . . , X(d)

n ), n ≥ 1} of Rd-valued random vectors is NA.

Ko et al. [10] and Thanh [11], respectively, obtained the almost sure convergence for NA
random vectors in Hilbert space. Miao [12] established the Hajeck–Renyi inequality for
H-valued NA random vectors.

Huan et al. [1] introduced the concept of coordinatewise negative association for ran-
dom vectors in Hilbert space as follows, which is more general than that of Definition 1.2.

Definition 1.3 If for each j ≥ 1, the sequence {X(j)
n , n ≥ 1} of random variables is NA,

where X(j)
n = 〈Xn, e(j)〉, then the sequence {Xn, n ≥ 1} of H-valued random vectors is said to

be coordinatewise negatively associated (CNA).

Obviously, if a sequence of random vectors in Hilbert space is NA, it is CNA. However,
generally speaking, the reverse is not true. One can see in Example 1.4 of Huan et al. [1].

Huan et al. [1] extended Theorem A from independence to the case of CNA random vec-
tors in Hilbert space. Huan [13] extended this complete convergence result for H-valued
CNA random vectors to the case of 1 < r < 2 and αr = 1. However, the interesting case
r = 1, αr = 1 was not considered in these papers. Recently, Ko [2] extended the results of
Huan et al. [1] from the complete convergence to the complete moment convergence as
follows. For more details as regards the complete moment convergence, one can refer to
Ko [2] and the references therein.

Theorem B Let 1 ≤ r < 2 and αr > 1. Let {Xn, n ≥ 1} be a sequence of zero mean H-valued
CNA random vectors. If {Xn, n ≥ 1} is coordinatewise weakly upper bounded by a random
vector X satisfying

∑∞
j=1 E|X(j)|r < ∞, then

∞∑

n=1

nαr–α–2
E

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

Xi

∥
∥
∥
∥
∥

– εnα

)

+

< ∞.

However, there are some mistakes in the proof of the result in the case r = 1. In specific,
the formulas

∫ u
1 yr–2 dy ≤ Cur–1 of Eq. (2.7) and

∑m
n=1 nαr–1–α ≤ Cmαr–α of Eq. (2.9) in Ko
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[2] are wrong when r = 1, the same problem also occurs in the proof of I222 (see the proof
of Lemma 2.5 in Ko [2]). Moreover, the interesting case αr = 1 was not considered in this
paper.

In this paper, the results of the complete convergence and the complete moment conver-
gence are established for CNA random vectors in Hilbert spaces. The results are focused
on the weighted sums, which is more general than partial sums. The interesting case αr = 1
is also considered in this article. Moreover, the results of the complete moment conver-
gence are considered with the exponent 0 < q < 2 while in Theorem B only the case q = 1
was obtained.

Recall that if n–1 ∑n
i=1 P(|X(j)

i | > x) ≤ CP(|X(j)| > x) for all j ≥ 1, n ≥ 1 and x ≥ 0, then
the sequence {Xn, n ≥ 1} is said to be coordinatewise weakly upper bounded by X, where
X(j)

n = 〈X, e(j)〉 and X(j) = 〈X, e(j)〉. Throughout the paper, let C be a positive constant whose
value may vary in different places. Let log x = ln max(x, e) and I(·) be the indicator function.

2 Preliminaries
In this section, we state some lemmas which will be used in the proofs of our main results.

Lemma 2.1 (Huan et al. [1]) Let {Xn, n ≥ 1} be a sequence of H-valued CNA random vec-
tors with zero means and E‖Xn‖2 < ∞ for all n ≥ 1. Then

E max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

Xi

∥
∥
∥
∥
∥

2

≤ 2
n∑

i=1

E‖Xi‖2.

Lemma 2.2 (Kuczmaszewska [7]) Let {Zn, n ≥ 1} be a sequence of random variables
weakly dominated by a random variable Z, that is, n–1 ∑n

i=1 P(|Zi| > x) ≤ CP(|Z| > x) for
any x ≥ 0. Then, for any a > 0 and b > 0, there exist some positive constants C1 and C2 such
that

n–1
n∑

i=1

E|Zi|aI
(|Zi| > b

) ≤ C1E|Z|aI
(|Z| > b

)
;

n–1
n∑

i=1

E|Xi|aI
(|Zi| ≤ b

) ≤ C2
[
E|Z|aI

(|Z| ≤ b
)

+ ba
P
(|Z| > b

)]
.

Lemma 2.3 Let 1 ≤ r < 2 and αr ≥ 1. Let {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of real num-
bers such that

∑n
i=1 a2

ni = O(n). Let {Xn, n ≥ 1} be a sequence of zero mean H-valued CNA
random vectors. Suppose that {Xn, n ≥ 1} is coordinatewise weakly upper bounded by a
random vector X. Assume that one of the following assumptions holds:

(i)
∑∞

j=1 E|X(j)|r < ∞ if 0 < q < r;
(ii)

∑∞
j=1 E|X(j)|r log |X(j)| < ∞ if q = r;

(iii)
∑∞

j=1 E|X(j)|q < ∞ if r < q < 2.
Then

∞∑

n=1

nαr–αq–2
∫ ∞

nαq
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

> t1/q

)

dt < ∞.
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Proof Without loss of generality, we may assume that ani ≥ 0 for each 1 ≤ i ≤ n, n ≥ 1. For
any t > 0 and each j ≥ 1, denote

Y (j)
i = –t1/qI

(
X(j)

i < –t1/q) + X(j)
i I

(∣
∣X(j)

i
∣
∣ ≤ t1/q) + t1/qI

(
X(j)

i > t1/q);

Z(j)
i = X(j)

i – Y (j)
i =

(
X(j)

i + t1/q)I
(
X(j)

i < –t1/q) +
(
X(j)

i – t1/q)I
(
X(j)

i > t1/q);

Yi =
∞∑

j=1

Y (j)
i ej and Zi =

∞∑

j=1

Z(j)
i ej.

It is easy to obtain

∞∑

n=1

nαr–αq–2
∫ ∞

nαq
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

> t1/q

)

dt

=
∞∑

n=1

nαr–αq–2
∫ ∞

nαq
P

(

max
1≤i≤n

∥
∥
∥
∥
∥

k∑

i=1

ani

∞∑

j=1

X(j)
i ej

∥
∥
∥
∥
∥

> t1/q

)

dt

≤
∞∑

n=1

nαr–αq–2
∫ ∞

nαq
P

(
max

1≤k≤n
max
j≥1

∣
∣X(j)

i
∣
∣ > t1/q

)
dt

+
∞∑

n=1

nαr–αq–2
∫ ∞

nαq
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

ani

∞∑

j=1

Y (j)
i ej

∥
∥
∥
∥
∥

> t1/q

)

dt

≤
∞∑

n=1

nαr–αq–2
∫ ∞

nαq

∞∑

j=1

n∑

i=1

P
(∣
∣X(j)

i
∣
∣ > t1/q)dt

+
∞∑

n=1

nαr–αq–2
∫ ∞

nαq
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniYi

∥
∥
∥
∥
∥

> t1/q

)

dt

:= J1 + J2.

By Lemma 2.2, we derive that

J1 ≤ C
∞∑

j=1

∞∑

n=1

nαr–αq–1
∫ ∞

nαq
P
(∣
∣X(j)∣∣ > t1/q)dt

≤ C
∞∑

j=1

∞∑

n=1

nαr–αq–1
E

∣
∣X(j)∣∣qI

(∣
∣X(j)∣∣ > nα

)

= C
∞∑

j=1

∞∑

m=1

E
∣
∣X(j)∣∣qI

(
mα <

∣
∣X(j)∣∣ ≤ (m + 1)α

) m∑

n=1

nαr–αq–1.

Therefore, if q < r,

J1 ≤ C
∞∑

j=1

∞∑

m=1

mαr–αq
E

∣
∣X(j)∣∣qI

(
mα <

∣
∣X(j)∣∣ ≤ (m + 1)α

) ≤ C
∞∑

j=1

E
∣
∣X(j)∣∣r < ∞;
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if q = r,

J1 ≤ C
∞∑

j=1

∞∑

m=1

log mE
∣
∣X(j)∣∣rI

(
mα <

∣
∣X(j)∣∣ ≤ (m + 1)α

) ≤ C
∞∑

j=1

E
∣
∣X(j)∣∣r

log
∣
∣X(j)∣∣ < ∞;

and if r < q < 2,

J1 ≤ C
∞∑

j=1

∞∑

m=1

E
∣
∣X(j)∣∣qI

(
mα <

∣
∣X(j)∣∣ ≤ (m + 1)α

) ≤ C
∞∑

j=1

E
∣
∣X(j)∣∣q < ∞.

To estimate J2, we first show that

sup
t≥nαq

t–1/q max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniEYi

∥
∥
∥
∥
∥

→ 0 as n → ∞.

Actually, noting by the Hölder inequality that
∑n

i=1 ani = O(n), we have by the zero mean
assumption

sup
t≥nαq

t–1/q max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniEYi

∥
∥
∥
∥
∥

= sup
t≥nαq

t–1/q max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniEZi

∥
∥
∥
∥
∥

≤ n–α sup
t≥nαq

∞∑

j=1

n∑

i=1

aniE
∣
∣X(j)

i
∣
∣I

(∣
∣X(j)

i
∣
∣ > t1/q)

≤ n–α

∞∑

j=1

n∑

i=1

aniE
∣
∣X(j)

i
∣
∣I

(∣
∣X(j)

i
∣
∣ > nα

)

≤ Cn1–α

∞∑

j=1

E
∣
∣X(j)∣∣I

(∣
∣X(j)∣∣ > nα

)

≤ Cn1–αr
∞∑

j=1

E
∣
∣X(j)∣∣rI

(∣
∣X(j)∣∣ > nα

) → 0 as n → ∞,

provided that αr > 1. If αr = 1, the conclusion above remains true by the dominated con-
vergence theorem. Therefore, when n is large enough, for any t ≥ nαq,

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniEYi

∥
∥
∥
∥
∥

≤ t1/q/2. (1)

Since {aniY
(j)
i , 1 ≤ i ≤ n, n ≥ 1} is NA for any j ≥ 1, {ani(Yi –EYi), 1 ≤ i ≤ n, n ≥ 1} is CNA.

Hence, by the Markov inequality, Lemmas 2.1 and 2.2,
∑n

i=1 a2
ni = O(n) and (1),

J2 ≤ C
∞∑

n=1

nαr–αq–2
∫ ∞

nαq
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

ani(Yi – EYi)

∥
∥
∥
∥
∥

> t1/q/2

)

dt

≤ C
∞∑

n=1

nαr–αq–2
∫ ∞

nαq
t–2/q

E

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

ani(Yi – EYi)

∥
∥
∥
∥
∥

)2

dt
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≤ C
∞∑

n=1

nαr–αq–2
∫ ∞

nαq
t–2/q

n∑

i=1

a2
niE‖Yi – EYi‖2 dt

≤ C
∞∑

n=1

nαr–αq–2
∫ ∞

nαq
t–2/q

n∑

i=1

a2
niE‖Yi‖2 dt

≤ C
∞∑

j=1

∞∑

n=1

nαr–αq–2
∫ ∞

nαq
t–2/q

n∑

i=1

a2
niE

∣
∣Y (j)

i
∣
∣2 dt

≤ C
∞∑

j=1

∞∑

n=1

nαr–αq–2
∫ ∞

nαq

n∑

i=1

a2
niP

(∣
∣X(j)∣∣ > t1/q)dt

+ C
∞∑

j=1

∞∑

n=1

nαr–αq–2
∫ ∞

nαq
t–2/q

n∑

i=1

a2
niE

∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ t1/q)dt

≤ C
∞∑

j=1

∞∑

n=1

nαr–αq–1
∫ ∞

nαq
P
(∣
∣X(j)∣∣ > t1/q)dt

+ C
∞∑

j=1

∞∑

n=1

nαr–αq–1
∫ ∞

nαq
t–2/q

E
∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ t1/q)dt

=: J21 + J22.

Similar to the proof of J1 < ∞, we have J21 < ∞. Finally, we will estimate J22. By some
standard calculation, we have

J22 ≤ C
∞∑

j=1

∞∑

n=1

nαr–αq–1
∞∑

m=n

∫ (m+1)αq

mαq
t–2/q

E
∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ t1/q)dt

≤ C
∞∑

j=1

∞∑

n=1

nαr–αq–1
∞∑

m=n
mαq–2α–1

E
∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ (m + 1)α

)

= C
∞∑

j=1

∞∑

m=1

mαq–2α–1
E

∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ (m + 1)α

) m∑

n=1

nαr–αq–1.

Since the upper bound of
∑m

n=1 nαr–αq–1 is different by choosing different values of q, we
consider the following three cases. If q < r, we have

J22 ≤ C
∞∑

j=1

∞∑

m=1

mαr–2α–1
E

∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ (m + 1)α

)

≤ C
∞∑

j=1

∞∑

m=1

mαr–2α–1
E

∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ 1

)

+ C
∞∑

j=1

∞∑

m=1

mαr–2α–1
m∑

l=1

E
∣
∣X(j)∣∣2I

(
lα <

∣
∣X(j)∣∣ ≤ (l + 1)α

)

≤ C
∞∑

j=1

E
∣
∣X(j)∣∣r + C

∞∑

j=1

∞∑

l=1

E
∣
∣X(j)∣∣2I

(
lα <

∣
∣X(j)∣∣ ≤ (l + 1)α

) ∞∑

m=l

mαr–2α–1
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≤ C
∞∑

j=1

E
∣
∣X(j)∣∣r + C

∞∑

j=1

∞∑

l=1

lαr–2α
E

∣
∣X(j)∣∣2I

(
lα <

∣
∣X(j)∣∣ ≤ (l + 1)α

)

≤ C
∞∑

j=1

E
∣
∣X(j)∣∣r < ∞;

if q = r, we have

J22 ≤ C
∞∑

j=1

∞∑

m=1

mαr–2α–1 log mE
∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ (m + 1)α

)

≤ C
∞∑

j=1

∞∑

m=1

mαr–2α–1 log mE
∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ 1

)

+ C
∞∑

j=1

∞∑

m=1

mαr–2α–1 log m
m∑

l=1

E
∣
∣X(j)∣∣2I

(
lα <

∣
∣X(j)∣∣ ≤ (l + 1)α

)

≤ C
∞∑

j=1

E
∣
∣X(j)∣∣r + C

∞∑

j=1

∞∑

l=1

E
∣
∣X(j)∣∣2I

(
lα <

∣
∣X(j)∣∣ ≤ (l + 1)α

) ∞∑

m=l

mαr–2α–1 log m

≤ C
∞∑

j=1

E
∣
∣X(j)∣∣r + C

∞∑

j=1

∞∑

l=1

lαr–2α log lE
∣
∣X(j)∣∣2I

(
lα <

∣
∣X(j)∣∣ ≤ (l + 1)α

)

≤ C
∞∑

j=1

E
∣
∣X(j)∣∣r + C

∞∑

j=1

E
∣
∣X(j)∣∣r

log
∣
∣X(j)∣∣ < ∞;

and if r < q < 2, we have

J22 ≤ C
∞∑

j=1

∞∑

m=1

mαq–2α–1
E

∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ (m + 1)α

)

≤ C
∞∑

j=1

∞∑

m=1

mαq–2α–1
E

∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ 1

)

+ C
∞∑

j=1

∞∑

m=1

mαq–2α–1
m∑

l=1

E
∣
∣X(j)∣∣2I

(
lα <

∣
∣X(j)∣∣ ≤ (l + 1)α

)

≤ C
∞∑

j=1

E
∣
∣X(j)∣∣q + C

∞∑

j=1

∞∑

l=1

E
∣
∣X(j)∣∣2I

(
lα <

∣
∣X(j)∣∣ ≤ (l + 1)α

) ∞∑

m=l

mαq–2α–1

≤ C
∞∑

j=1

E
∣
∣X(j)∣∣q + C

∞∑

j=1

∞∑

l=1

lαq–2α
E

∣
∣X(j)∣∣2I

(
lα <

∣
∣X(j)∣∣ ≤ (l + 1)α

)

≤ C
∞∑

j=1

E
∣
∣X(j)∣∣q < ∞.

Consequently, the proof of the lemma is completed. �

3 Main results and discussion
In this section, we will present the main results and their proofs as follows.
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Theorem 3.1 Let 1 ≤ r < 2 and αr ≥ 1. Let {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of real num-
bers such that

∑n
i=1 a2

ni = O(n). Let {Xn, n ≥ 1} be sequence of zero mean H-valued CNA
random vectors. If {Xn, n ≥ 1} is coordinatewise weakly upper bounded by a random vector
X, then

∑∞
j=1 E|X(j)|r < ∞ implies for any ε > 0 that

∞∑

n=1

nαr–2
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

> εnα

)

< ∞.

Proof Without loss of generality, we may assume that ani ≥ 0 for each 1 ≤ i ≤ n, n ≥ 1. For
each n ≥ 1 and each j ≥ 1, denote

U (j)
i = –nαI

(
X(j)

i < –nα
)

+ X(j)
i I

(∣
∣X(j)

i
∣
∣ ≤ nα

)
+ nαI

(
X(j)

i > nα
)
;

V (j)
i = X(j)

i – V (j)
i =

(
X(j)

i + nα
)
I
(
X(j)

i < –nα
)

+
(
X(j)

i – nα
)
I
(
X(j)

i > nα
)
;

Ui =
∞∑

j=1

U (j)
i ej and Vi =

∞∑

j=1

V (j)
i ej.

It is easy to obtain

∞∑

n=1

nαr–2
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

> εnα

)

=
∞∑

n=1

nαr–2
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

ani

∞∑

j=1

X(j)
i ej

∥
∥
∥
∥
∥

> εnα

)

≤
∞∑

n=1

nαr–2
P

(
max
1≤i≤n

max
j≥1

∣
∣X(j)

i
∣
∣ > nα

)

+
∞∑

n=1

nαr–2
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

ani

∞∑

j=1

U (j)
i ej

∥
∥
∥
∥
∥

> εnα

)

≤
∞∑

n=1

nαr–2
∞∑

j=1

n∑

i=1

P
(∣
∣X(j)

i
∣
∣ > nα

)

+
∞∑

n=1

nαr–2
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniUi

∥
∥
∥
∥
∥

> εnα

)

:= I1 + I2.

By weakly upper bounded assumption and Lemma 2.2, we have

I1 ≤ C
∞∑

j=1

∞∑

n=1

nαr–1
P
(∣
∣X(j)∣∣ > nα

)

≤ C
∞∑

j=1

∞∑

n=1

nαr–1
∞∑

m=n
P
(
mα <

∣
∣X(j)∣∣ ≤ (m + 1)α

)

= C
∞∑

j=1

∞∑

m=1

P
(
mα <

∣
∣X(j)∣∣ ≤ (m + 1)α

) m∑

n=1

nαr–1
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≤ C
∞∑

j=1

∞∑

m=1

mαr
P
(
mα <

∣
∣X(j)∣∣ ≤ (m + 1)α

)

≤ C
∞∑

j=1

E
∣
∣X(j)∣∣r < ∞.

To estimate I2, we first show that

n–α max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniEUi

∥
∥
∥
∥
∥

→ 0 as n → ∞.

Note by the Hölder inequality that
∑n

i=1 ani = O(n). So we have by the zero mean assump-
tion, if αr > 1,

n–α max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniEUi

∥
∥
∥
∥
∥

= n–α max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniEVi

∥
∥
∥
∥
∥

≤ n–α

∞∑

j=1

n∑

i=1

aniE
∣
∣X(j)

i
∣
∣I

(∣
∣X(j)

i
∣
∣ > nα

)

≤ Cn1–α

∞∑

j=1

E
∣
∣X(j)∣∣I

(∣
∣X(j)∣∣ > nα

)

≤ Cn1–αr
∞∑

j=1

E
∣
∣X(j)∣∣rI

(∣
∣X(j)∣∣ > nα

) → 0 as n → ∞;

and, if αr = 1, the conclusion above also remains true by the dominated convergence the-
orem. Therefore, when n is large enough,

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniEUi

∥
∥
∥
∥
∥

≤ n–α/2. (2)

Noting that {aniU
(j)
i , 1 ≤ i ≤ n, n ≥ 1} is NA for any j ≥ 1, one can see that {ani(Ui –

EUi), 1 ≤ i ≤ n, n ≥ 1} is CNA. Hence, we have by the Markov inequality, Lemmas 2.1
and 2.2,

∑n
i=1 a2

ni = O(n) and (2)

I2 ≤ C
∞∑

n=1

nαr–2
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

ani(Ui – EUi)

∥
∥
∥
∥
∥

> εnα/2

)

≤ C
∞∑

n=1

nαr–2α–2
E

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

ani(Ui – EUi)

∥
∥
∥
∥
∥

)2

≤ C
∞∑

n=1

nαr–2α–2
n∑

i=1

a2
niE‖Ui – EUi‖2

≤ C
∞∑

n=1

nαr–2α–2
n∑

i=1

a2
niE‖Ui‖2

≤ C
∞∑

j=1

∞∑

n=1

nαr–2α–2
n∑

i=1

a2
niE

∣
∣U (j)

i
∣
∣2
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≤ C
∞∑

j=1

∞∑

n=1

nαr–2
n∑

i=1

a2
niP

(∣
∣X(j)∣∣ > nα

)

+ C
∞∑

j=1

∞∑

n=1

nαr–2α–2
n∑

i=1

a2
niE

∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ nα

)

≤ C
∞∑

j=1

∞∑

n=1

nαr–1
P
(∣
∣X(j)∣∣ > nα

)

+ C
∞∑

j=1

∞∑

n=1

nαr–2α–1
E

∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ nα

)

=: I21 + I22.

Similar to the proof of I1 < ∞, we have I21 < ∞. Finally, we will estimate I22. It is easy to
see that

I22 ≤ C
∞∑

j=1

∞∑

n=1

nαr–2α–1
E

∣
∣X(j)∣∣2I

(∣
∣X(j)∣∣ ≤ nα

)

= C
∞∑

j=1

∞∑

n=1

nαr–2α–1
n∑

m=1

E
∣
∣X(j)∣∣2I

(
(m – 1)α <

∣
∣X(j)∣∣ ≤ mα

)

= C
∞∑

j=1

∞∑

m=1

E
∣
∣X(j)∣∣2I

(
(m – 1)α <

∣
∣X(j)∣∣ ≤ mα

) ∞∑

n=m
nαr–2α–1

≤ C
∞∑

j=1

∞∑

m=1

mαr–2α
E

∣
∣X(j)∣∣2I

(
(m – 1)α <

∣
∣X(j)∣∣ ≤ mα

)

≤ C
∞∑

j=1

E
∣
∣X(j)∣∣r < ∞.

The proof is completed. �

Remark 3.1 Theorem 3.1 concerns the weighted sums of random vectors in Hilbert space.
If we take ani = 1 for any 1 ≤ i ≤ n, n ≥ 1, the result is still stronger than the corresponding
one of Huan et al. [1] since the case αr = 1 was not considered in Huan et al. [1]; Huan [13]
considered the case αr = 1 for the partial sums of random vectors in Hilbert space, but
1 < r < 2 was assumed in that paper. Therefore, Theorem 3.1 improves the corresponding
results of Huan et al. [1] and Huan [13], respectively.

Theorem 3.2 Let 1 ≤ r < 2. Let {an, n ≥ 1} be a sequence of real numbers such that
∑n

i=1 a2
i = O(n) and let {Xn, n ≥ 1} be a sequence of zero mean H-valued CNA random

vectors. If {Xn, n ≥ 1} is coordinatewise weakly upper bounded by a random vector X , then
∑∞

j=1 E|X(j)|r < ∞ implies that

1
n1/r

∥
∥
∥
∥
∥

n∑

i=1

aiXi

∥
∥
∥
∥
∥

→ 0 a.s.
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Proof Applying Theorem 3.1 with ani = ai, for each 1 ≤ i ≤ n, n ≥ 1 and α = 1/r, we have,
for any ε > 0,

∞ >
∞∑

n=1

n–1
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aiXi

∥
∥
∥
∥
∥

> εn1/r

)

=
∞∑

m=0

2m+1–1∑

n=2m

n–1
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aiXi

∥
∥
∥
∥
∥

> εn1/r

)

≥ 1
2

∞∑

m=0

P

(

max
1≤k≤2m

∥
∥
∥
∥
∥

k∑

i=1

aiXi

∥
∥
∥
∥
∥

> ε
(
2m+1)1/r

)

,

which together with the Borel–Cantelli lemma shows that, as m → ∞,

1
(2m)1/r max

1≤k≤2m+1

∥
∥
∥
∥
∥

k∑

i=1

aiXi

∥
∥
∥
∥
∥

→ 0 a.s.

Noting that, for any fixed n, there exists a positive integer m such that 2m ≤ n < 2m+1, we
have

1
n1/r

∥
∥
∥
∥
∥

n∑

i=1

aiXi

∥
∥
∥
∥
∥

≤ 1
(2m)1/r max

1≤k≤2m+1

∥
∥
∥
∥
∥

k∑

i=1

aiXi

∥
∥
∥
∥
∥

→ 0 a.s.

The proof is completed. �

Theorem 3.3 Let 1 ≤ r < 2 and αr ≥ 1. Let {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of real num-
bers such that

∑n
i=1 a2

ni = O(n). Let {Xn, n ≥ 1} be a sequence of zero mean H-valued CNA
random vectors. Suppose that {Xn, n ≥ 1} is coordinatewise weakly upper bounded by a
random vector X. Assume that one of the following assumptions holds:

(i)
∑∞

j=1 E|X(j)|r < ∞ if 0 < q < r;
(ii)

∑∞
j=1 E|X(j)|r log |X(j)| < ∞ if q = r;

(iii)
∑∞

j=1 E|X(j)|q < ∞ if r < q < 2.
Then

∞∑

n=1

nαr–αq–2
E

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– εnα

)q

+

< ∞.

Proof From Theorem 3.1 and Lemma 2.3 we can see that

∞∑

n=1

nαr–αq–2
E

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– εnα

)q

+

=
∞∑

n=1

nαr–αq–2
∫ ∞

0
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– εnα > t1/q

)

dt

=
∞∑

n=1

nαr–αq–2
∫ nαq

0
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– εnα > t1/q

)

dt
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+
∞∑

n=1

nαr–αq–2
∫ ∞

nαq
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– εnα > t1/q

)

dt

≤
∞∑

n=1

nαr–2
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

> εnα

)

+
∞∑

n=1

nαr–αq–2
∫ ∞

nαq
P

(

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

> t1/q

)

dt

< ∞.

The proof is completed. �

Remark 3.2 As stated in Sect. 1, the corresponding result in Ko [2] is wrongly established
when r = 1. If we take ani = 1 for any 1 ≤ i ≤ n, n ≥ 1, q = 1, Theorem 3.3 is equivalent
to the corresponding one of Ko [2] when 1 < r < 2, αr > 1. The interesting case αr = 1,
which was not considered in Ko [2], is also considered here. Consequently, Theorem 3.3
generalizes and improves the corresponding result of Ko [2].

Theorem 3.4 Suppose that the conditions of Theorem 3.3 hold with αr > 1, we have

∞∑

n=1

nαr–2
E

(

sup
k≥n

k–α

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– ε

)q

+

< ∞.

Proof By standard calculation, we obtain from Theorem 3.3

∞∑

n=1

nαr–2
E

(

sup
k≥n

k–α

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– ε

)q

+

=
∞∑

m=1

2m–1∑

n=2m–1

nαr–2
E

(

sup
k≥n

k–α

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– ε

)q

+

≤ C
∞∑

m=1

2m(αr–1)
E

(

sup
k≥2m–1

k–α

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– ε

)q

+

≤ C
∞∑

l=1

E

(

max
2l–1≤k<2l

k–α

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– ε

)q

+

l∑

m=1

2m(αr–1)

≤ C
∞∑

l=1

2l(αr–1)
E

(

max
2l–1≤k<2l

2–α(l–1)

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– ε

)q

+

≤ C
∞∑

l=1

2l(αr–αq–1)
E

(

max
1≤k<2l

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– ε2α(l–1)

)q

+

≤ C
∞∑

l=1

nαr–αq–2
E

(

max
1≤k<n

∥
∥
∥
∥
∥

k∑

i=1

aniXi

∥
∥
∥
∥
∥

– ε2–αnα

)q

+

< ∞.

The proof is completed. �
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4 Conclusions
In this paper, we investigate the complete convergence and the complete moment conver-
gence for sequences of coordinatewise negatively associated random vectors in Hilbert
spaces. The obtained results in this paper improve and extend the corresponding theo-
rems of Huan et al. [1] as well as correct and improve the corresponding one of Ko [2].
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