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Abstract
Let SH = {SHt , t ≥ 0} be a sub-fractional Brownian motion with Hurst index 0 < H < 1. In
this paper, we give a local law of the iterated logarithm of the form

limsup
s↓0

|SHt+s – SHt |
sH

√
2 log+ log(1/s)

= 1,

almost surely, for all t > 0, where log+ x =max {1, log x} for x ≥ 0. As an application, we
introduce the �H-variation of SH driven by �H(x) := [x/

√
2 log+ log+(1/x)]1/H (x > 0)

with �H(0) = 0.
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1 Introduction and main results
The quadratic variation and realized quadratic variation have been widely used in stochas-
tic analysis and statistics of stochastic processes. The realized power variation of order
p > 0 is a generalization of the quadratic variation, which is defined as

n∑

k=1

|Xtk – Xtk–1 |p, (1.1)

where {Xt , t > 0} is a stochastic process and κ = {0 = t0 < t1 < · · · < tn = t} is a partition
of [0, t] with max1≤i≤n{ti – ti–1} → 0. It was introduced in Barndorff–Nielsen and Shep-
hard [1, 2] to estimate the integrated volatility in some stochastic volatility models used in
quantitative finance and also, under an appropriate modification, to estimate the jumps of
the processes under analysis. The main interest in these papers is the asymptotic behavior
of the statistic (1.1), or some appropriate renormalized version of it, as n → ∞, when the
process Xt is a stochastic integral with respect to a Brownian motion. Refinements of their
results have been obtained in Woerner [3]. A more general generalization to the realized
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quadratic variation is called �-variation, and it is defined by

S�(X, t,κ) :=
n∑

k=1

�
(|Xtk – Xtk–1 |

)
,

where � is a nonnegative, increasing continuous function on R+ with �(0) = 0. Let
P ([0, t]) be a class of all partitions κ = {0 = t0 < t1 < · · · < tn = t} of [0, t] with |κ| :=
max1≤i≤n{ti – ti–1}. Then the �-variation of a stochastic process {Xt , t > 0} is defined as

S�(X, t) := lim sup
δ→0

{
S�(X, t,κ) : κ ∈ P

(
[0, t]

)
, |κ| < δ

}
.

Consider the function

�H (x) =
(
x/

√
2 log+ log+(1/x)

)1/H , x > 0

with �H (0) = 0 and 0 < H < 1, where log+ x = max{1, log x} for x > 0. When X is a standard
Brownian motion B, Taylor [4] first considered the �1/2-variation and proved S�1/2 (B, t) = t
for all t > 0. Kawada and Kôno [5] extended this to some stationary Gaussian processes W
and proved S�1/2 (W , t) = t for all t > 0 by using an estimate given by Kôno [6]. Recently,
Dudley and Norvaiša [7] extended this to the fractional Brownian motion BH with Hurst
index H ∈ (0, 1) and proved S�H (BH , t) = t for all t > 0. More generally, for a bi-fractional
Brownian motion BH,K , Norvaiša [8] showed that S�H,K (BH,K , t) = t if

�H,K (x) =
(

x
/ √

22–K log+ log+ 1
x

) 1
HK

, x > 0.

On the other hand, since Chung’s law and Strassen’s functional law of the iterated loga-
rithm appeared, the functional law of the iterated logarithm and its rates for some classes
of Gaussian processes have been discussed by many authors (see, for example, Csörgö and
Révész [9], Lin et al. [10], Dudley and Norvaiša [7], Malyarenko [11]). However, almost all
results considered only some Gaussian processes with stationary increments, and there
has been little systematic investigation on other self-similar Gaussian processes (see, for
example, Norvaiša [8], Tudor and Xiao [12], and Yan et al. [13]). The main reason for this
is the complexity of dependence structures for self-similar Gaussian processes which do
not have stationary increments.

Motivated by these results, in this paper, we consider the law of the iterated logarithm
and �-variation of a sub-fractional Brownian motion. Recall that a mean-zero Gaussian
process SH = {SH

t , t ≥ 0} is said to be a sub-fractional Brownian motion (in short, sub-fBm)
with Hurst index H ∈ (0, 1), if SH

0 = 0 and

RH (s, t) := E
[
SH

s SH
t
]

= s2H + t2H –
1
2
[
(s + t)2H + |t – s|2H]

(1.2)

for all s, t > 0. When H = 1
2 , this process coincides with the standard Brownian motion B.

Sub-fBm was first introduced by Bojdecki et al. [14] as an extension of Brownian motion,
and it arises from occupation time fluctuations of branching particle systems with Poisson
initial condition. A sub-fBm with Hurst index H is H-self-similar, Hölder continuous, and
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it is long/short-range dependent. A process X is long-range dependent if
∑

n≥α ρn(α) = ∞
for any α > 0, and it is short-range dependent if

∑
n≥α ρn(α) < ∞, where ρn(α) = E[(Xα+1 –

Xα)(Xn+1 – Xn)],α > 0. However, when H �= 1
2 , it has no stationary increments. Moreover,

it admits the following (quasi-helix) estimates:

[(
2 – 22H–1) ∧ 1

]|t – s|2H ≤ E
[(

SH
t – SH

s
)2] ≤ [(

2 – 22H–1) ∨ 1
]|t – s|2H (1.3)

for all t, s ≥ 0. More works on sub-fractional Brownian motion can be found in Bojdecki et
al. [15, 16], Shen and Yan [17], Sun and Yan [18], Tudor [19, 20], Yan et al. [21, 22], and the
references therein. For the above discussions, we find that the complexity of sub-fractional
Brownian motion is very different from that of fractional Brownian motion or bi-fractional
Brownian motion. Therefore, it seems interesting to study the iterated logarithm and �-
variation of sub-fractional Brownian motion. In the present paper, our main objectives are
to expound and to prove the following theorems.

Theorem 1.1 Let 0 < H < 1, we then have

lim sup
s→0

|SH
t+s – SH

t |
ϕH (s)

= 1, (1.4)

almost surely, for all t > 0, where the function ϕH is defined by

ϕH (s) = sH
√

2 log+ log+(1/s), s > 0

with ϕH (0) = 0, where log+ x = max {1, log x} for x ≥ 0.

Theorem 1.2 Let 0 < H < 1, and let �H be defined as above. Then we have

S�H

(
SH , T

)
= T , a.s. (1.5)

for all T > 0.

As an immediate question driven by Theorem 1.2, one can consider the following
asymptotic behavior:

φ(δ)
(
S�H

(
SH , T , δ

)
– T

) −→ L, (1.6)

as δ tends to zero, where L denotes a distribution, φ(δ) ↑ ∞ (δ → 0), and S�H (SH , T , δ) is
defined as follows:

S�H

(
SH , T , δ

)
= sup

{
S�H

(
SH , T ,κ

)
: κ ∈ P

(
[0, t]

)
, |κ| ≤ δ

}
.

We have known that when H = 1
2 , the sub-fBm SH coincides with a standard Brownian

motion B. So, the two results above are some natural extensions to Brownian motion (see,
for example, Csörgö and Révész [9], Dudley and Norvaivsa [7], Lin et al. [10]). This paper
is organized as follows. In Sect. 2, we prove Theorem 1.1. In Sect. 3, we give the proof of
Theorem 1.2.
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2 Proof of Theorem 1.1
In this section and the next section, we prove our main results. When H = 1

2 , the sub-
fBm SH is a standard Brownian motion, and Theorem 1.1 and Theorem 1.2 are given in
Taylor [4]. In this section and the next section, we assume throughout that H �= 1

2 .

Lemma 2.1 Let μ be a centered Gaussian measure in a linear space E, and let A ⊂ E be a
symmetric convex set. Then we have

μ(A + h) ≤ μ(A) (2.1)

for any h ∈ E.

Inequality (2.1) is called Anderson’s inequality (see, for example, [23]). It admits the fol-
lowing version:

Let X1, . . . , Xn and Y1, . . . , Yn both be jointly Gaussian with mean zero and such that
the matrix {EYjYj – EXiXj, 1 ≤ i, j ≤ n} is nonnegative definite. Then we have

P
(

max
1≤j≤n

|Xj| ≥ x
)

≤ P
(

max
1≤j≤n

|Yj| ≥ x
)

(2.2)

for any x > 0.
We also will need the next tail probability estimate which is introduced (Lemma 12.18) in
Dudley and Norvaiša [7].

Lemma 2.2 (Dudley and Norvaiša [7]) Let B be a Banach space, and let S ⊂ B be a com-
pact set such that cS ⊂ S for each c ∈ (0, 1]. Assume that S(δ0) ⊂ S is closed for some
0 < δ0 ≤ 1 and that

S(δ) =
δ

δ0
S(δ0)

for 0 < δ ≤ δ0. If Y = {Y (t), t ∈ S} is a mean-zero continuous Gaussian process with a self-
similar index α ∈ (0, 1), then

σ 2
δ := sup

{
E
[
Y (t)

]2 : t ∈ S(δ)
}

= (δ/δ0)2ασ 2
δ0

for every δ ∈ (0, δ0]. Moreover, for any θ ∈ (0, 1), there is a constant Cθ ∈ (0,∞) depending
only on θ such that

P
(

sup
t∈S(δ)

∣∣Y (t)
∣∣ > x

)
≤ Cθ exp

{
–

θx2

2σ 2
δ

}
(2.3)

for all δ ∈ (0, δ0] and x > 0.

The above result is Lemma 12.18 in Dudley and Norvaiša [7].

Lemma 2.3 (Dudley and Norvaiša [7]) Suppose that {ξk , k ≥ 1} is a sequence of jointly
normal random variables such that Eξk = 0, Var(ξk) = 1 for all k ≥ 1, and

lim sup
n→∞

max
k,m∈(n,2n]

k �=m

E[ξkξm] < θ ∈
(

0,
1
2

)
,
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then we have

lim sup
n→∞

ξn√
2 log n

≥ 1 – 2θ

almost surely.

The above result is Lemma 12.20 in Dudley and Norvaiša [7].

Lemma 2.4 Let H ∈ (0, 1
2 ) ∪ ( 1

2 , 1). Then the functions

ρH (t, s) :=

⎧
⎨

⎩
(t + s)2H – t2H – s2H , if H > 1

2 ,

t2H + s2H – (t + s)2H , if H < 1
2 ,

(2.4)

with s, t ≥ 0 are nonnegative definite.

By Kolmogorov’s consistency theorem, we find that there is a mean-zero Gaussian pro-
cess ζ H = {ζ H

t , t ≥ 0} such that ζ H
0 = 0 and

E
[
ζ H

t ζ H
s

]
= ρH (t, s)

for all t, s ≥ 0.

Lemma 2.5 Let H ∈ (0, 1
2 ) ∪ ( 1

2 , 1) and t > 0. Denote Xt(s) := SH
t+s – SH

t for s ≥ 0. Then we
have

E
[
Xt(s)

]2 ∼
⎧
⎨

⎩
s2H , if t > 0,

(2 – 22H–1)s2H , if t = 0,
(2.5)

as s ↓ 0, where the notation ∼ denotes the equivalence as s ↓ 0 for every fixed t > 0, and

E[Xt(u)Xt(v)]
√

E[Xt(u)2]
√

E[Xt(v)2]
≤ CH

[(
u
v

)H

+
(

v
u

)H

–
∣∣∣∣

√
u
v

–
√

v
u

∣∣∣∣

2H]
(2.6)

for all u, v ≥ 0, and t > 0.

Proof Clearly, we have

E
[
Xt(s)

]2 = (2t + s)2H + s2H – 22H–1[(t + s)2H + t2H]

= (t + s)2H(
(2 – x)2H + x2H – 22H–1(1 + (1 – x)2H))

for all s, t ≥ 0, where x = s
s+t . An elementary calculus may show that

lim
x↓0

1
x2H

{
(2 – x)2H + x2H – 22H–1(1 + (1 – x)2H)}

= 1,

as x → 0, which implies that estimate (2.5) holds.
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Given t > 0. Consider the Gaussian process ζ H with the covariance ρH defined by (2.4).
Then we have

E
([

ζ H
t+u – ζ H

t
][

ζ H
t+v – ζ H

t
]) ≥ 0

for all u, v ≥ 0. To see that the inequality holds, we define the function on R
2

(x, y) �→ G(x, y) := 1 + (1 – x – y)2H – (1 – x)2H – (1 – y)2H

with (x, y) ∈D := {(x, y)|x, y ≥ 0, x + y ≤ 1}. Then, on the boundary of D, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G(0, y)|0≤y≤1 = 0 (0 < H < 1),

G(x, 0)|0≤x≤1 = 0 (0 < H < 1),

G(x, y)|x+y=1 = 1 – (1 – x)2H – (1 – y)2H ≥ x2H – (1 – y)2H = 0 ( 1
2 < H < 1),

G(x, y)|x+y=1 = 1 – (1 – x)2H – (1 – y)2H ≤ x2H – (1 – y)2H = 0 (0 < H < 1
2 ).

Moreover, the equations

⎧
⎨

⎩

∂G
∂x (x, y) = –2H{(1 – x – y)2H–1 – (1 – x)2H–1} = 0,
∂G
∂y (x, y) = –2H{(1 – x – y)2H–1 – (1 – y)2H–1} = 0

admit a unique solution (x, y) = (0, 0). Thus, we get

min
(x,y)∈D

{
G(x, y)

}
= min

{
G(0, 0), G(0, y)|0≤y≤1 , G(x, 0)|0≤x≤1 , G(x, y)|x+y=1

}

and

max
(x,y)∈D

{
G(x, y)

}
= max

{
G(0, 0), G(0, y)|0≤y≤1 , G(x, 0)|0≤x≤1 , G(x, y)|x+y=1

}
,

which imply

G(x, y) ≥ 0, (x, y) ∈D

for all 1
2 < H < 1 and

G(x, y) ≤ 0, (x, y) ∈D

for all 0 < H < 1
2 . It follows that

E
([

ζ H
t+u – ζ H

t
][

ζ H
t+v – ζ H

t
])

= (2t + u + v)2H + 22Ht2H – (2t + u)2H – (2t + v)2H

= (2t + u + v)2HG
(

u
2t + u + v

,
v

2t + u + v

)
≥ 0

(
1
2

< H < 1
)
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and

E
([

ζ H
t+u – ζ H

t
][

ζ H
t+v – ζ H

t
])

= (2t + u)2H + (2t + v)2H – (2t + u + v)2H – 22Ht2H

= –(2t + u + v)2HG
(

u
2t + u + v

,
v

2t + u + v

)
≥ 0

(
0 < H <

1
2

)

for all u, v ≥ 0, which imply

E
[
Xt(u)Xt(v)

]
= E

([
SH

t+u – SH
t
][

SH
t+v – SH

t
])

=
1
2
(
u2H + v2H – |u – v|2H)

–
1
2

E
([

ζ H
t+u – ζ H

t
][

ζ H
t+v – ζ H

t
])

≤ 1
2
(
u2H + v2H – |u – v|2H)

(2.7)

for all u, v ≥ 0 and t > 0. Combining this with (1.3), we give estimate (2.6) and the lemma
follows. �

Lemma 2.6 For 0 < H < 1, we then have

lim sup
s→0

|SH
t+s – SH

t |
ϕH (s)

≥ 1, (2.8)

almost surely, for all t > 0.

Proof Let ε ∈ (0, 1) and t > 0. We see that

lim sup
s↓0

|Xt(s)|
ϕH (s)

≥ lim sup
n→∞

|Xt(rn)|
ϕH(rn)

= lim sup
n→∞

|Xt(rn)|
(rn)H

√
2 log(–n log r)

= lim sup
n→∞

∣∣Xt
(
rn)∣∣(2

(
rn)2H

log(–n log r)
)– 1

2

= lim sup
n→∞

∣∣Xt
(
rn)∣∣(2 log nE

[
Xt

(
rn)2])– 1

2 (2.9)

for every r ∈ (0, 1), by the fact log(–n log r) ∼ log n (n → ∞).
Now, we verify that

lim sup
n→∞

|Xt(rn)|
√

2(log n)E[Xt(rn)2]
≥ 1 – ε, (2.10)

almost surely, for r ∈ (0, 1) small enough. In fact, by Lemma 2.3 we only need to prove

lim sup
n→∞

sup
(k,m)∈Dn

E[Xt(rk)(Xt(rm))]
√

E[Xt(rk)2]
√

E[Xt(rm)2]
<

ε

2
(2.11)
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for any ε ∈ (0, 1), where Dn = {(k, m)|k, m ≥ n, k �= m}. Some elementary calculations may
show that the following inequalities hold:

x2H + x–2H –
(
x–1 – x

)2H ≤ (1 + 2H)x2–2H
(

1
2

< H < 1
)

and

x2H + x–2H –
(
x–1 – x

)2H ≤ 2x2H
(

0 < H <
1
2

)

for any x ∈ (0, 1). It follows from Lemma 2.5 that there is a real r ∈ (0, 1) small enough such
that

E[Xt(rk)Xt(rm)]
√

E[Xt(rk)2]
√

E[Xt(rm)2]
<

ε

2

for each k �= m, which implies that (2.11) holds and (2.10) follows with probability one.
Combining this with the arbitrariness of ε ∈ (0, 1), (2.9), and (2.10), we get that inequal-
ity (2.8) holds for all t > 0. �

To prove Theorem 1.1, we now need to introduce the reverse inequality of (2.8), i.e.,

lim sup
s→0

|SH
t+s – SH

t |
ϕH (s)

≤ 1 (2.12)

almost surely, for all t > 0. The used method is due to the decomposition (2.7), i.e.,

E
[
Xt(u)Xt(v)

]
= E

[(
SH

t+u – SH
t
)(

SH
t+v – SH

t
)]

=
1
2
(
u2H + v2H – |u – v|2H)

–
1
2
∣∣(2t + u + v)2H + 22Ht2H – (2t + u)2H – (2t + v)2H∣∣

for all u, v ≥ 0 and t > 0. Recall that a mean-zero Gaussian process BH = {BH
t , t ≥ 0} is said

to be a fractional Brownian motion with Hurst index H ∈ (0, 1), if BH
0 = 0 and

E
[
BH

s BH
t
]

=
1
2
[
s2H + t2H – |t – s|2H]

(2.13)

for all s, t > 0. When H = 1
2 , this process coincides with the standard Brownian motion B.

Moreover, for all t > 0, the process {BH
t+s – BH

t , s ≥ 0} also is a fractional Brownian motion
with Hurst index H ∈ (0, 1). It follows that

E
[(

BH
t+u – BH

t
)(

BH
t+v – BH

t
)]

– E
[
Xt(u)Xt(v)

]
= 2–1E

[
ζ H

t+u – ζ H
t

][
ζ H

t+v – ζ H
t

]
(2.14)

for all u, v ≥ 0 and t > 0. More works on fractional Brownian motion can be found in
Biagini et al. [24], Hu [25] and Mishura [26], Nourdin [27], and the references therein.
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Proof of Theorem 1.1 Given ε > 0 and γ ∈ (0, 1) such that

E
[
Xt

(
γ n)]2 ≤ (1 + ε)γ 2nH

for each n ≥ 1. Then we have

P
(∣∣Xt

(
γ n)∣∣ ≥ (1 + ε)ϕH

(
γ n)) = 2P

(
Xt

(
γ n) ≥ (1 + ε)ϕH

(
γ n))

= 2P
(

Xt(γ n)
√

E[Xt(γ n)]2
≥ (1 + ε)φH (γ n)

√
E[Xt(γ n)]2

)

= 2
∫ ∞

(1+ε)φH (γ n)√
E[Xt (γ n)]2

1√
2π

e– 1
2 x2

dx ≤ 2
[
n log(1/γ )

]–(1+ε)

by the fact

(1 + ε)ϕH (γ n)
√

E[Xt(γ n)2]
≥ (1 + ε)ϕH (γ n)

√
(1 + ε)γ 2nH

=
(1 + ε)(γ n)2H

√
2 log(–n logγ )

√
(1 + ε)γ 2nH

.

It follows from the Borel–Cantelli lemma that

lim sup
n→∞

|Xt(γ n)|
ϕH (γ n)

≤ 1 + ε (2.15)

almost surely. Given ε ∈ (0, 1/2), let γ ∈ (0, 1) satisfy

2
(
γ –1 – 1

)H ≤ ε, γ H ≥ (1 + ε)/(1 + 2ε).

We now need to prove the estimate

lim
n→∞ sup

γ n+1≤u≤γ n

∣∣∣∣
Xt(u)
ϕH (u)

–
Xt(γ n)
ϕH(γ n)

∣∣∣∣ ≤ 2ε (2.16)

almost surely. For all n = 1, 2, . . . and s ∈ [0, 1], let

Xn
t (s) := Xt

(
(1 – s)γ n) – Xt

(
γ n) = SH

t+(1–s)γ n – SH
t+γ n

and

Y n
t (s) := BH

t+(1–s)γ n – BH
t+γ n .

Then, for all γ ∈ (0, 1) and n ≥ 1, Y n
t = {Y n

t (s), s ∈ [0, 1]} also is a fractional Brownian mo-
tion which admits the same distribution as {BH

sγ n , s ∈ [0, 1]}.
On the other hand, by (2.14) and Anderson’s inequality (2.1), we have

P
(

sup
γ n+1≤u≤γ n

∣∣Xt(u) – Xt
(
γ n)∣∣ ≥ εϕH

(
γ n+1)

)

= P
(

sup
s∈[0,1–γ ]

∣∣Xn
t (s)

∣∣ ≥ εγ (n+1)H
√

log
(
–(n + 1) logγ

))
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≤ P
(

sup
s∈[0,1–γ ]

∣∣Y n
t (s)

∣∣ ≥ εγ (n+1)H
√

log
(
–(n + 1) logγ

))

= P
(

sup
s∈[0,γ n(1–γ )]

∣∣BH (s)
∣∣ ≥ εγ (n+1)H

√
log

(
–(n + 1) logγ

)) ≡ �n(γ , ε)

for all γ , ε ∈ (0, 1) and n ≥ 1. It follows from Lemma 2.2 with Yt = BH
t+· – BH

t , S = [0, 1],
S(δ) = [0, δ], 0 < δ ≤ 1, θ = 1/2, and C = C1/2 that

�n(r, ε) ≤ C exp

{
–

θ (εγ (n+1)H
√

log(–(n + 1) logγ ))2

2 sup{E|Yt(s)|2 : t ∈ S(δ)}
}

= C exp

{
–

1
2ε2γ 2(n+1)H log(–(n + 1) logγ )

2[rn(1 – γ )]2H

}

= C exp

{
–

ε2γ 2H log(–(n + 1) logγ )
4(1 – γ )2H

}
(2.17)

for each γ n+1 < e–e. Taking ε ∈ (0, 1/2) and γ ∈ (0, 1) such that

2
(
γ –1 – 1

)H ≤ ε, γ H ≥ (1 + ε)/(1 + 2ε)

to see that

�n(γ , ε) ≤ C exp

{
–

ε2 log(–(n + 1) logγ )
(2(γ –1 – 1)H )2

}

≤ –C exp
{
log

(
–(n + 1) logγ

)}
=

C
–(n + 1) logγ

by (2.17), which gives

P
(
sup

{∣∣Xt(u) – Xt
(
γ n)∣∣ : rn+1 ≤ u ≤ γ n} ≥ εϕH

(
γ n+1))

≤ –C exp
{
log

(
–(n + 1) logγ

)}
=

C
–(n + 1) logγ

.

Therefore, by the Borel–Cantelli lemma, we have that

lim sup
n→∞

sup
γ n+1≤u≤γ n

|Xt(u) – Xt(γ n)|
ϕH (γ n+1)

≤ ε (2.18)

almost surely. Noting that ϕH is increasing, we see that

0 ≤ ϕH (γ n)
ϕH (u)

– 1 ≤ ϕH (γ n)
ϕH (γ n+1)

– 1 = γ –H

√
log(–n logγ )

log(–(n + 1) logγ )
– 1

for γ n+1 ≤ u ≤ γ n. It follows that

lim sup
n→∞

sup
γ n+1≤u≤γ n

∣∣∣∣
ϕH (γ n)
ϕH (u)

– 1
∣∣∣∣ = γ –H – 1 ≤ ε

1 + ε
,

by the choice of γ . Combining this with (2.15) and (2.18), we get (2.16). Finally, by (2.15)
and (2.16), letting ε ↓ 0, we get (2.12) for all t > 0, and Theorem 1.1 follows. �
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Remark 2.1 From the proof of Theorem 1.1 we see that the idea came from the decom-
position

SH
t

d= BH
t + ζ H

t

for all t ≥ 0, where d= stands for the equal in distribution and ζ H is a Gaussian process with
the covariance ρH defined by (2.4). Thus, for a self-similar Gaussian process, G = {Gt , t ≥
0} admits the decomposition

Gt
d= BH

t + ξt

for all t ≥ 0, where ξt is a suitable Gaussian process. We can show that a similar limit the-
orem holds. However, for a different self-similar Gaussian process (weighted-fractional
Brownian motion, bi-fractional Brownian motion, etc.) one needs to consider some con-
crete estimates.

3 Proof of Theorem 1.2
In order to prove Theorem 1.2, we first give a lemma which extends the related result for
Brownian motion.

Lemma 3.1 Let 0 < H < 1 and t > 0. Denote

St,δ =
{

(u, v)|u, v ∈ [0, t]; 0 < u + v ≤ δ
}

for δ > 0, then we have

lim
δ↓0

(
sup

(u,v)∈St,δ

|SH
t+u – SH

t–v|
ϕH (u + v)

)
= 1 (3.1)

almost surely.

Proof Given t ≥ 0 and denote δ0 = min{t, e–e}. Define the function δ �→ D(δ) by

D(δ) := sup
(u,v)∈Sδ0,δ

|SH
t+u – SH

t–v|
ϕH (u + v)

for each 0 < δ ≤ δ0.
By Theorem 1.1, we have known that limδ↓0 D(δ) ≥ 1 almost surely. We now need to give

the upper bound of D(δ). Let ε ∈ (0, 1
2 ) and

Xt(u, v) := SH
t+u – SH

t–v

for u, v ∈ [0, δ0]. Denote δn := exp{–n1–ε}, Sn := Sδ0,δn and

En :=
{
ω ∈ � : sup

{∣∣Xt(u, v,ω)
∣∣ : (u, v) ∈ Sn

} ≥ (1 + 2ε)ϕH (δn)
}

for all n ≥ 8. We need to handle P(En). To this end, we define the process

Yt(u, v) := BH
t+u – BH

t–v, u, v ∈ [0, δ0].
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Then, for any u1, v1, u2, v2 ≥ 0, we have

E
[
Yt(u1, v1)Yt(u2, v2)

]
– E

[
Xt(u1, v1)Xt(u2, v2)

]

= 2–1E
[
ζ H

t+u1 – ζ H
t–v1

][
ζ H

t+u2 – ζ H
t–v2

]

by (2.14), which implies that the matrix

(aij)n×n, aij = E
[
Yt(ui, vi)Yt(uj, vj)

]
– E

[
Xt(ui, vi)Xt(uj, vj)

]
(3.2)

is nonnegative definite for any ui, vi ∈ [0, δ0], i = 1, . . . , n. It follows from inequality (2.2)
that

P
(

sup
(u,v)∈Sδ0,δ

∣∣Xt(u, v)
∣∣ > x

)
≤ P

(
sup

(u,v)∈Sδ0,δ

∣∣Yt(u, v)
∣∣ > x

)

for all δ ∈ (0, δ0] and x > 0. By (2.16) and Lemma 2.2 with θ = 1
1+2ε

, we then have

P(En) = P
(

sup
(u,v)∈Sn

∣∣Xt(u, v,ω)
∣∣ ≥ (1 + 2ε)ϕH (δn)

)

≤ P
(

sup
(u,v)∈Sn

∣∣Yt(u, v)
∣∣ ≥ (1 + 2ε)ϕH (δn)

)

≤ Cθ exp

{
–

θ [(1 + 2ε)ϕH (δn)]2

2σ 2
δ

}

= Cθ exp

{
–

(1 + 2ε)ϕ2
H (δn)

2σ 2
δ

}

≤ Cθ exp

{
–

(1 + 2ε)(δH
n )2 · 2 log(– log δn)
2(δn)2H

}

= Cθ exp
{

–(1 + 2ε) log(– log δn)
}

= Cθ n–(1–ε)(1+2ε)

for every n ≥ 1. It follows from the Borel–Cantelli lemma that there exists n0 = n0(ω) such
that

sup
(u,v)∈Sn

∣∣Xt(u, v)
∣∣ ≤ (1 + 2ε)ϕH (δn)

almost surely, for each n ≥ n0, which implies that

D(δ) ≤ sup
(u,v)∈Sδn ,δ

|SH
t+u – SH

t–v|
ϕH (u + v)

= sup
(u,v)∈Sn

{ |Xt(u, v)|
ϕH (u + v)

: (u, v) ∈ S(δ)
}

≤ sup
m≥n

sup
(u,v)∈Sm

{ |Xt(u, v)|
ϕH (u + v)

: (u, v) ∈ Sm \ Sm+1

}

≤ sup
m≥n

sup
(u,v)∈Sm

|Xt(u, v)|
δH

m+1
√

2 log(– log δm)

≤ sup
m≥n

(1 + 2ε)ϕH (δm)
δH

m+1
√

2 log(– log δm)



Qi and Yan Journal of Inequalities and Applications  (2018) 2018:96 Page 13 of 18

= sup
m≥n

(1 + 2ε)δH
m
√

2 log(– log δm)
δH

m+1
√

2 log(– log δm)

= (1 + 2ε) sup
m≥n

(
δm

δm+1

)H

−→ 1 + 2ε (n → ∞)

for δ ≤ δn and ε ∈ (0, 1), since δm
δm+1

→ 1, as m → ∞. This completes the proof. �

Finally, at the end of this paper, we give the proof of Theorem 1.2. We will use the lo-
cal law of the iterated logarithm (Theorem 1.1) for SH and the Vitali covering lemma to
introduce the next inequality and its reverse:

S�H

(
SH , T

) ≥ T (3.3)

for all T > 0, where �H is defined in Sect. 1.

Proof of Theorem 1.2 Let H �= 1
2 . We first show that inequality (3.3) holds. Given δ > 0. Let

0 < ε < 1 and

Eδ =
{

(t,ω)|t ∈ [0, T],ω ∈ �,

�H
(∣∣SH

t+s(ω) – SH
t (ω)

∣∣) > (1 – ε)s for some (rational) s ∈ (0, δ)
}

.

Clearly, we have that there exists ξ > 0 such that

�H

((
1 –

ε

2

)H

ϕH (v)
)

> (1 – ε)v

for each 0 < v < ξ since �H is regularly varying of order H–1 and is asymptotic to ϕ–1
H near

zero. Therefore, by Theorem 1.1, for all t ∈ (0, T] and δ ∈ (0, ξ ), we have P({ω : (t,ω) ∈
Eδ}) = 1. It follows from the Fubini theorem that P({m(Eδ) = T}) = 1 for each 0 < v < ξ ,
where m(·) denotes the Lebesgue measure on [0, T]. Clearly, the set of all intervals [t, t + s]
with t ∈ [0, T] and arbitrarily small s > 0 is a Vitali covering of the set

E :=
⋂

0<δ≤1

Eδ =
∞⋂

j=1

E1/j

and P(E) = 1. According to the Vitali lemma, we can choose a finite sub-collection Eδ of
intervals of length less than δ which are disjoint and have total length at least T – ε. Then

S�H

(
SH , T ,κ

) ≥
∑

j

�H
(∣∣SH

t′j +sj
– SH

t′j

∣∣)

> (1 – ε)
∑

j

sj > (1 – ε)(T – ε)

almost surely, where κ = {ti, i = 0, 1, 2, . . . , n} ∈ P ([0, T]) with mesh |κ| ≤ δ such that for
each of the disjoint intervals [t′

j , t′
j + sj] from Eδ with total length at least T – ε, there is

some i with ti–1 = t′
j and ti = t′

j + sj. Therefore, for each δ > 0 small enough, we obtain that

sup
{

S�H

(
SH , T ,κ

)
: κ ∈ P

(
[0, T]

)
, |κ| ≤ δ

}
> (1 – ε)(T – ε), a.s.
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This shows that inequality (3.3) holds by taking δ and ε decreasing to zero.
Now, let us prove the reverse inequality of (3.3). Let ε > 0. For any partition κ = {ti, i =

0, 1, 2, . . . , n} ∈ P ([0, T]), denote �i = ti – ti–1 and �iSH = SH
ti

– SH
ti–1

for i = 1, . . . , n, and let

I1 :=
{

i ∈ {1, . . . , n} : �iSH ∈ [0, (1 + ε)ϕH (�i))
}

,

I2 :=
{

i ∈ {1, . . . , n} : �iSH ∈ [(1 + ε)ϕH (�i), AϕH (�i))
}

,

I3 :=
{

i ∈ {1, . . . , n} : �iSH ∈ [AϕH (�i),∞)
}

with

A =
√

8
(
4 + 1/(2H)

)
e2H , (3.4)

and hence the sum S�H (SH , T ,κ) can be divided into three sums of small, medium, and
large increments. For i ∈ I1, we will show that the sum of �i is close to T if the mesh of κ

becomes small enough, while for i ∈ I2 ∪ I3, the sum of �i is negligible.
Step I. We estimate the sum

∑

i∈I1

�H
(∣∣�iSH ∣∣).

Since �H is regularly varying of order 1
H and is asymptotic near zero to ϕ–1

H , again, there
is a real number η(c, ε) > 0 such that

�H
(
cϕH (v)

) ≤ (
c1/H + ε

)
v (3.5)

for any 0 < v < η(c, ε) and c > 0. Take δ1 := η(1 + ε). For a partition κ = {ti, i = 0, 1, 2, . . . , n} ∈
P ([0, T]) with mesh |κ| < δ1, we then obtain

∑

i∈I1

�H
(∣∣�iSH∣∣) ≤

∑

i∈I1

�H
(
(1 + ε)ϕH (�i)

)
) ≤ (1 + ε)1/HT + εT . (3.6)

Step II. We estimate the sum

∑

i∈I2

�H
(∣∣�iSH ∣∣).

Let δ > 0 and denote

Uδ(u, v) =
{

(t,ω) ∈ [0, T] × � :
∣∣SH

t+u(ω) – SH
t–v(ω)

∣∣ < (1 + ε)ϕH (u + v)
}

for any u, v ≥ 0, u + v ≤ δ, and v ≤ t. By Lemma 3.1, for every t ∈ (0, T), we have

lim
δ→0

1Uδ
(t,ω) = 1

with probability one. It follows from Fatou’s lemma and the Fubini theorem that

lim
δ→0

∫

[0,T]
1Uδ

(t,ω) dt = T
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with probability one. Let �1 be a subset of � such that P(�1) = 1, and for every ω ∈ �1,
there exists δ2(ω) > 0 such that

m
({

t ∈ [0, T] : (t,ω) /∈ Uδ(u, v)
})

=
∫

[0,T]

[
1 – 1Uδ

(t,ω)
]

dt ≤ ε

for all δ ≤ δ2(ω). We choose δ2(ω) ≤ η(A, ε). If a partition κ ∈ P ([0, T]) with |κ| ≤ δ2(ω)
such that there exists an interval [ti–1, ti] contains a point of Uδ2(ω), then i ∈ I1. So, the total
length of such intervals is at least T – ε, and in particular,

∑

i∈I2

�i ≤ ε.

This shows that

∑

i∈I2

�H
(∣∣�iSH∣∣) ≤

∑

i∈I2

�H
(
AϕH (�i)

) ≤ (
A1/H + ε

)∑

i∈I2

�i ≤ A1/Hε + ε2 (3.7)

by (3.5) with c = A, provided |κ| ≤ δ2(ω).
Step III. We estimate the sum

∑

i∈I3

�H
(∣∣�iSH ∣∣).

We shall show that the sum also is small. Denote

Sm,j =
[

j
2

e–m,
(

1 +
j
2

)
e–m

]

and

Vm,j(A) =
{
ω ∈ � : sup

t,s∈Sm,j

∣∣SH
t (ω) – SH

s (ω)
∣∣ ≥ AϕH

(
e–m–2)

}

for any integer number m ≥ 3 and j = 0, 1, . . . , jm = [2Tem]–1, where [x] denotes the integer
part of x and A is defined by (3.4). The intervals Sm,j, j = 0, . . . , jm, overlap and cover [0, T].
Moreover, we have

{
i ∈ I3(ω) : e–m–1 < 2�i ≤ e–m}� ≤ 5{j = 0, 1, . . . , jm : ω ∈ Vm,j}� ≡ Zm(ω) (3.8)

for each ω ∈ �, where E� denotes the number of elements in a set E. In order to bound
Zm, we need to estimate P(Vm,j(A)) for j = 0, . . . , jm, and we show that one can replace SH

by a fractional Brownian motion BH with Hurst index H .
Given u ≥ 0. Recall that Xu(t) = SH

u+t – SH
u and Yu(t) = BH

u+t – BH
u for each t ∈ [0, 1], and

E
[
Yu(t)Yu(s)

]
– E

[
Xu(t)Xu(s)

]
= 2–1E

[
ζ H

u+t – ζ H
u

][
ζ H

u+t – ζ H
u

]

for all s, t ∈ [0, 1], where ζ H is defined in Sect. 2. Hence, the matrix

(aij)n×n, aij = E
[
Yu(ti)Yu(tj)

]
– E

[
Xu(ti)Xu(tj)

]
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with t1, t2, . . . , tn ∈ [0, 1] is nonnegative definite. It follows from inequality (2.1) that

P
(

sup
t∈[0,δ]

∣∣Xu(t)
∣∣ > x

)
≤ P

(
sup

t∈[0,δ]

∣∣Yu(t)
∣∣ > x

)

for all 0 < δ ≤ 1 and x > 0. Thus, by applying Lemma 2.2 with S = S(1) = [0, 1] and θ = 1/2 to
the Gaussian process Yu, and setting u := (j/2)e–m, δ := e–m, we find that there is a constant
C > 0 such that

P
(
Vm,j(A)

) ≤ P
(

sup
t∈Sm,j

∣∣Xu(t)
∣∣ > (A/2)ϕH

(
e–m–2)

)

≤ P
(

sup
t∈Sm,j

∣∣Yu(t)
∣∣ > 2δH

√
γ log(m + 2)

)
≤ C(m + 2)–γ

for all m ≥ 3 and j = 0, 1, . . . , jm, which implies that

EZm ≤ 10CTemm–γ .

By the Borel–Cantelli lemma, there exists a set �2 ⊂ � with probability one and some
integer number m1(ω) ≥ 3 dependent only on ω ∈ �2 such that

Zm(ω) ≤ emm2–γ , ∀m ≥ m1(ω). (3.9)

Moreover, by Corollary 2.3 in Dudley [28] and (1.3), we see that there is another set �3 ⊂ �

with probability one such that, for each ω ∈ �3, there exists a finite constant D(ω) such
that

∣∣SH
t (ω) – SH

s (ω)
∣∣ ≤ D(ω)(t – s)H

√
– log(t – s) (3.10)

for 0 ≤ s < t ≤ e–1.
Let now ω ∈ �2 ∩ �3 and m2(ω) ≥ m1(ω) satisfy

M(ω) :=
1
2

D(ω)
1
H 2

1
2H

∑

m≥m2(ω)

m–2 ≤ ε.

Denote δ3(ω) := e–m2(ω) and

�m :=
{

i : e–m–1 < 2�i ≤ e–m, i ∈ {1, 2, . . . , n}}.

Let κ = {ti, i = 0, 1, 2, . . . , n} ∈ P ([0, T]) with |κ| ≤ δ3(ω) and for each m ≥ m2(ω). Then
[ti–1, ti] ⊂ Sm,j for every m and some j = 0, . . . , jm, if i ∈ �m. Combining this with (3.8), (3.9),
and (3.10), we have

∑

i∈I3

�H
(∣∣�iSH∣∣) =

∑

m≥m2(ω)

∑

i∈I3∩�m

(∣∣�iSH ∣∣)

≤
∑

m≥m2(ω)

Zm(ω)�H
(
D(ω)

(
e–m/2

)H√
log 2 + m + 1

)

≤ M(ω) < ε (3.11)

for such a κ = {ti, i = 0, 1, 2, . . . , n} ∈ P ([0, T]).
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Finally, for ω ∈ �1 ∩ �2 ∩ �3, by taking 0 < δ ≤ min{δ1, δ2(ω), δ3(ω)} by using (3.6), (3.7),
and (3.11), we get

S�H

(
SH , T ,κ

)
=

3∑

j=1

∑

i∈Ij

�H
(∣∣�iSH∣∣)

≤ (1 + ε)1/HT +
(
1 + T + A1/H + ε

)
ε

for every partition κ ∈ P ([0, T]) with |κ| < δ(ω). Thus, we have gotten the desired reverse
inequality of (3.3) by arbitrariness of ε > 0, and the theorem follows. �

4 Results, discussion, and conclusions
In this paper, we give an iterated logarithm and �-variation for a sub-fBm by using some
precise estimations and inequalities. It is important to note that the method used here is
also applicative to many similar Gaussian processes.
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