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Abstract
In this paper, we propose parallel and cyclic iterative algorithms for solving the
multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive
operators. We also combine the process of cyclic and parallel iterative methods and
propose two mixed iterative algorithms. Our several algorithms do not need any prior
information about the operator norms. Under mild assumptions, we prove weak
convergence of the proposed iterative sequences in Hilbert spaces. As applications,
we obtain several iterative algorithms to solve the multiple-set split equality problem.
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1 Introduction
Let H1, H2, and H3 be real Hilbert spaces. The multiple-set split equality common fixed-
point problem (MSECFP) is to find x∗, y∗ with the property

x∗ ∈
p⋂

i=1

F(Ui), y∗ ∈
r⋂

j=1

F(Tj) such that Ax∗ = By∗, (1.1)

where p, r ≥ 1 are integers, {Ui}p
i=1 : H1 → H1 and {Tj}r

j=1 : H2 → H2 are nonlinear opera-
tors, A : H1 → H2 and B : H2 → H3 are two bounded linear operators. If Ui (1 ≤ i ≤ p) and
Tj (1 ≤ j ≤ r) are projection operators, then the MSECFP is reduced to the multiple-set
split equality problem (MSEP):

finding x∗ ∈
p⋂

i=1

Ci and y∗ ∈
r⋂

j=1

Qj such that Ax∗ = By∗, (1.2)

where {Ci}p
i=1 and {Qj}r

j=1 are nonempty closed convex subsets of real Hilbert spaces H1

and H2, respectively. When p = r = 1, the MSECFP and MSEP become the split equal-
ity common fixed-point problem (SECFP) and split equality problem (SEP), respectively,
which were first put forward by Moudafi [1]. These allow asymmetric and partial relations
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between the variables x and y. They are applied in many situations, for instance, in game
theory and in intensity-modulated radiation therapy (see [2] and [3]).

If H2 = H3 and B = I , then MSECFP (1.1) reduces to the multiple-set split common fixed-
point problem (MSCFP):

finding x∗ ∈
p⋂

i=1

F(Ui) such that Ax∗ ∈
r⋂

j=1

F(Tj) (1.3)

and MSEP (1.2) reduces to the multiple-set split feasibility problem (MSFP):

finding x∗ ∈
p⋂

i=1

Ci such that Ax∗ ∈
r⋂

j=1

Qj. (1.4)

They play significant roles in dealing with problems in image restoration, signal process-
ing, and intensity-modulated radiation therapy [3–6]. With p = r = 1, MSCFP (1.3) is
known as the split common fixed-point problem (SCFP) and MSFP (1.4) is known as the
split feasibility problem (SFP). Many iterative algorithms have been developed to solve the
MSCFP and the MSFP. See, for example, [7–14] and the references therein.

Note that the SFP can be formulated as a fixed-point equation

PC
(
I – γ A∗(I – PQ)A

)
x∗ = x∗, (1.5)

where PC and PQ are the (orthogonal) projections onto C and Q, respectively, γ > 0 is any
positive constant, and A∗ denotes the adjoint of A. This implies that we can use fixed-point
algorithms (see [15–21]) to solve SFP. Byrne [22] proposed the so-called CQ algorithm
which generates a sequence {xk}:

xn+1 = PC
(
xn – γ A∗(I – PQ)Axn

)
, (1.6)

where γ ∈ (0, 2/λ) with λ being the spectral radius of the operator A∗A. The CQ algorithm
is efficient when PC and PQ are easily calculated. However, if C and Q are complex sets, for
example, the fixed-point sets, the efficiency of the CQ algorithm will be affected because
the projections onto such convex sets are generally hard to be accurately calculated. To
solve the SCFP of nonexpansive operators, Censor and Segal [23] proposed and proved,
in finite-dimensional spaces, the convergence of the following algorithm:

xn+1 = U
(
xn – γ A∗(I – T)Axn

)
, n ∈ N , (1.7)

where γ ∈ (0, 2
λ

) with λ being the largest eigenvalue of the matrix A∗A.
For solving the constrained MSFP, Censor et al. [6] introduced the following proximity

function:

g(x) :=
1
2

p∑

i=1

αi‖x – PCi x‖2 +
1
2

r∑

j=1

βj
∥∥Ax – PQj (Ax)

∥∥2, (1.8)
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where αi > 0 (1 ≤ i ≤ p), βj > 0 (1 ≤ j ≤ r), and
∑p

i=1 αi +
∑r

j=1 βj = 1. Then

∇g(x) =
p∑

i=1

αi(x – PCi x) +
r∑

j=1

βjA∗(Ax – PQj (Ax)
)
,

and they proposed the following projection method:

xn+1 = P�

(
xn – γ∇g(xn)

)
, (1.9)

where � is the constrained set, 0 < γL ≤ γ ≤ γU < 2
L , and L is the Lipschitz constant of ∇g .

For solving MSCFP (1.3) of directed operators, Censor and Segal [23] introduced a par-
allel iterative algorithm as follows:

xn+1 = xn – γ

[ p∑

i=1

αi
(
xn – Ui(xn)

)
+

r∑

j=1

βjA∗(Axn – Tj(Axn)
)
]

, (1.10)

where {αi}p
i=1, {βj}r

j=1 are nonnegative constants, 0 < γ < 2/L with L =
∑p

i=1 αi + λ
∑r

j=1 βj

and λ being the largest eigenvalue of A∗A. They obtained the convergence of iterative
algorithm (1.6).

Wang and Xu [24] proposed the following cyclic iterative algorithm for MSCFP (1.3) of
directed operators:

xn+1 = U[n]1 (xn + γ A∗(T[n]2 – I)Axn, (1.11)

where 0 < γ < 2/ρ(A∗A), [n]1 := n(mod p), and [n]2 := n(mod r). They proved the weak con-
vergence of the sequence {xn} generated by (1.7).

For solving MSCFP (1.3), Tang and Liu [25] introduced inner parallel and outer cyclic
iterative algorithm:

xn+1 = U[n]1

(
xn + γn

r∑

j=1

ηjA∗(Tj – I)Axn

)
(1.12)

and outer parallel and inner cyclic iterative algorithm:

xn+1 =
p∑

i=1

ωiUi
(
xn + γnA∗(T[n]2 – I)Axn

)
(1.13)

for directed operators {Ui}p
i=1 and {Tj}r

j=1, where [n]1 = n(mod p), [n]2 = n(mod r), 0 < a ≤
γn ≤ b < 2/ρ(A∗A), {ηj}r

j=1, {ωi}p
i=1 ⊂ (0, 1) with

∑r
j=1 ηj = 1 and

∑p
i=1 ωi = 1. They obtained

the weak convergence of the above two mixed iterative sequences to solve MSCFP (1.3) of
directed operators.

The SEP proposed by Moudafi [1] is to

find x∗ ∈ C, y∗ ∈ Q such that Ax∗ = By∗, (1.14)
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which can be written as the following minimization problem:

min
x∈C,y∈Q

1
2
‖Ax – By‖2. (1.15)

Assume that the solution set of the SEP is nonempty. By the optimality conditions,
Moudafi [1] obtained the following fixed-point formulation: (x∗, y∗) solves the SEP if and
only if

⎧
⎨

⎩
x∗ = PC(x∗ – γ A∗(Ax∗ – By∗)),

y∗ = PQ(y∗ + βB∗(Ax∗ – By∗)),
(1.16)

where γ , β > 0. Therefore, for solving the SECP of firmly quasi-nonexpansive operators,
Moudafi [1] introduced the following alternating algorithm:

⎧
⎨

⎩
xn+1 = U(xn – γnA∗(Axn – Byn)),

yn+1 = T(yn + γnB∗(Axn+1 – Byn)),
(1.17)

where a nondecreasing sequence γn ∈ (ε, min( 1
λA

, 1
λB

) – ε), λA, λB stand for the spectral
radius of A∗A and B∗B, respectively. In [26], Moudafi and Al-Shemas introduced the fol-
lowing simultaneous iterative method:

⎧
⎨

⎩
xn+1 = U(xn – γnA∗(Axn – Byn)),

yn+1 = T(yn + γnB∗(Axn – Byn)),
(1.18)

where γn ∈ (ε, 2
λA+λB

– ε), λA, λB stand for the spectral radius of A∗A and B∗B, respec-
tively. Recently, many iterative algorithms have been developed to solve the SEP, SECFP,
and MSEP. See, for example, [27–34] and the references therein. Note that in algorithms
(1.17) and (1.18), the determination of the step size {γn} depends on the operator (matrix)
norms ‖A‖ and ‖B‖ (or the largest eigenvalues of A∗A and B∗B). To overcome this short-
age, we introduce parallel and cyclic iterative algorithms with self-adaptive step size to
solve MSECFP (1.1) governed by firmly quasi-nonexpansive operators. We also propose
two mixed iterative algorithms which combine the process of cyclic and parallel iterative
methods and do not need the norms of bounded linear operators. As applications, we
obtain several iterative algorithms to solve MSEP (1.2).

2 Preliminaries
2.1 Concepts
Throughout this paper, we always assume that H is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖. Let I denote the identity operator on H . Denote the fixed-
point set of an operator T by F(T). We denote by → the strong convergence and by ⇀

the weak convergence. We use ωw(xk) = {x : ∃xkj ⇀ x} to stand for the weak ω-limit set of
{xk} and use � to stand for the solution set of MSECFP (1.1).

Definition 2.1 An operator T : H → H is said to be
(i) nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ H ;
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(ii) firmly nonexpansive if ‖Tx – Ty‖2 ≤ ‖x – y‖2 – ‖(x – y) – (Tx – Ty)‖2 for all x, y ∈ H ;
(iii) firmly quasi-nonexpansive (i.e., directed operator) if F(T) = ∅ and

‖Tx – q‖2 ≤ ‖x – q‖2 – ‖x – Tx‖2

or equivalently

〈x – q, x – Tx〉 ≥ ‖x – Tx‖2

for all x ∈ H and q ∈ F(T).

Definition 2.2 An operator T : H → H is called demiclosed at the origin if, for any se-
quence {xn} which weakly converges to x, and if the sequence {Txn} strongly converges to
0, then Tx = 0.

Recall that the metric (nearest point) projection from H onto a nonempty closed convex
subset C of H , denoted by PC , is defined as follows: for each x ∈ H ,

PC(x) = arg min
y∈C

{‖x – y‖}.

It is well known that PCx is characterized by the inequality

PCx ∈ C, 〈x – PCx, z – PCx〉 ≤ 0, z ∈ C.

Remark 2.1 It is easily seen that a firmly nonexpansive operator is nonexpansive. Firmly
quasi-nonexpansive operators contain firmly nonexpansive operators with a nonempty
fixed-point set. A projection operator is firmly nonexpansive.

2.2 Mathematical model
Recall that the SCFP is to find x∗ with the property

x∗ ∈ F(U) such that Ax∗ ∈ F(T) (2.1)

and the SFP is to find x∗ with the property:

x∗ ∈ C such that Ax∗ ∈ Q, (2.2)

where A : H1 → H2 is a bounded linear operator, U : H1 → H1 and T : H2 → H2 are non-
linear operators, C and Q are closed convex sets of Hilbert spaces H1 and H2, respectively.

We can formulate SFP (2.2) as an optimization. First, we consider the following proxim-
ity function:

g(x) =
1
2
‖x – PCx‖2 +

1
2
‖Ax – PQAx‖2.

Then the proximity function g(x) is convex and differentiable with gradient

∇g(x) = x – PCx + A∗(I – PQ)Ax,
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where A∗ denotes the adjoint of A. Assume that the solution set of the SFP is nonempty,
then x∗ is a solution of the SFP if and only if x∗ = arg minx∈H1 g(x), i.e.,

∇g
(
x∗) = 0,

which is equivalent to

x∗ = x∗ – τ∇g
(
x∗)

= x∗ – τ
(
x∗ – PCx∗ + A∗(I – PQ)Ax∗) (2.3)

for all τ > 0. For solving the SCFP of directed operators (i.e., firmly quasi-nonexpansive
operators), Wang [35] proposed the following algorithm:

xn+1 = xn – τn
[
(xn – Uxn) + A∗(I – T)Axn

]
, (2.4)

where the variable size step τn was chosen:

τn =
‖xn – Uxn‖2 + ‖(I – T)Axn‖2

‖(xn – Uxn) + A∗(I – T)Axn‖2 .

This algorithm can be obtained by the fixed-point Eq. (2.3), where projection operators
PC and PQ are replaced by U and T .

Setting

h(x, y) =
1
2

p∑

i=1

αi‖x – PCi x‖2 +
1
2

r∑

j=1

βj‖y – PQj y‖2 +
1
2
‖Ax – By‖2, (2.5)

MSEP (1.2) can be written as the following minimization problem:

min
x∈H1,y∈H2

h(x, y),

where αi > 0 (1 ≤ i ≤ p), βj > 0 (1 ≤ j ≤ r),
∑p

i=1 αi = 1, and
∑r

j=1 βj = 1. Assume that the
solution set of the MSEP is nonempty, by the optimality conditions (x∗, y∗) solves the MSEP
if and only if

⎧
⎨

⎩
∇xh(x∗, y∗) = 0,

∇yh(x∗, y∗) = 0,
(2.6)

which is equivalent to

⎧
⎨

⎩
x∗ = x∗ – γ∇xh(x∗, y∗) = x∗ – γ [x∗ –

∑p
i=1 αiPCi (x∗) + A∗(Ax∗ – By∗)],

y∗ = y∗ – β∇yh(x∗, y∗) = y∗ – β[y∗ –
∑r

j=1 βjPQj (y∗) – B∗(Ax∗ – By∗)]
(2.7)

for γ , β > 0. These motivate us to introduce several iterative algorithms with self-adaptive
step size for solving MSECFP (1.1) governed by firmly quasi-nonexpansive mappings and
MSEP (1.2).
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2.3 The well-known lemmas
The following lemmas will be helpful for our main results in the next section.

Lemma 2.1 Let H be a real Hilbert space. Then

2〈x, y〉 = ‖x‖2 + ‖y‖2 – ‖x – y‖2 = ‖x + y‖2 – ‖x‖2 – ‖y‖2, ∀x, y ∈ H . (2.8)

Lemma 2.2 ([36]) Let H be a real Hilbert space. Then, for all t ∈ [0, 1] and x, y ∈ H ,

∥∥tx + (1 – t)y
∥∥2 = t‖x‖2 + (1 – t)‖y‖2 – t(1 – t)‖x – y‖2.

Lemma 2.3 ([37]) Let H be a real Hilbert space. Then

‖α0x0 + α1x1 + α2x2 + α3x3 + · · · + αrxr‖2 ≤
r∑

i=0

αi‖xi‖2 – αsαt‖xs – xt‖2

for any s, t ∈ {0, 1, 2, . . . , r} and for xi ∈ H , i = 0, 1, 2, . . . , r, with α0 + α1 + · · · + αr = 1 and
0 ≤ αi ≤ 1.

Lemma 2.4 ([38]) Let E be a uniformly convex Banach space, K be a nonempty closed
convex subset of E, and T : K → K be a nonexpansive mapping. Then I – T is demi-closed
at origin.

3 Parallel and cyclic iterative algorithms
In this section, we introduce parallel and cyclic iterative algorithms and prove the weak
convergence for solving MSECFP (1.1) of firmly quasi-nonexpansive operators. In our al-
gorithms, the selection of the step size does not need any prior information of the operator
norms ‖A‖ and ‖B‖.

In what follows, we adopt the following assumptions:
(A1) The problem is consistent, namely its solution set � is nonempty;
(A2) Both Ui and Tj are firmly quasi-nonexpansive operators, and both I – Ui and I – Tj

are demiclosed at origin (1 ≤ i ≤ p, 1 ≤ j ≤ r).
(A3) The sequences {αi

n}p
i=1, {β j

n}r
j=1 ⊂ [0, 1] such that

∑p
i=1 αi

n = 1 and
∑r

j=1 β
j
n = 1 for

every n ≥ 0, j(n) = n(mod r) + 1, i(n) = n(mod p) + 1.

Algorithm 3.1 Let x0 ∈ H1, y0 ∈ H2 be arbitrary. For n ≥ 0, let

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = xn – (α1
nU1(xn) + · · · + α

p
nUp(xn)) + A∗(Axn – Byn),

xn+1 = xn – τnun,

vn = yn – (β1
nT1(yn) + · · · + βr

nTr(yn)) – B∗(Axn – Byn),

yn+1 = yn – τnvn,

(3.1)

where the step size τn is chosen as

τn ∈
(

ε, min

{
1,

‖Axn – Byn‖2

‖A∗(Axn – Byn)‖2 + ‖B∗(Axn – Byn)‖2

}
– ε

)
, n ∈ �, (3.2)



Zhao and Zong Journal of Inequalities and Applications  (2018) 2018:83 Page 8 of 18

for small enough ε > 0, otherwise, τn = τ ∈ (0, 1) (τ being any value in (0, 1)), the set of
indexes � = {n ∈ N : Axn – Byn = 0}.

Remark 3.1 Note that in (3.2) the choice of the step size τn is independent of the norms
‖A‖ and ‖B‖. The value of τ does not influence the considered algorithm, it was intro-
duced just for the sake of clarity.

Lemma 3.1 τn defined by (3.2) is well defined.

Proof Taking (x, y) ∈ �, i.e., x ∈ ∩p
i=1F(Ui), y ∈ ∩r

j=1F(Tj), and Ax = By, we have

〈
A∗(Axn – Byn), xn – x

〉
= 〈Axn – Byn, Axn – Ax〉

and

〈
B∗(Axn – Byn), y – yn

〉
= 〈Axn – Byn, By – Byn〉.

By adding the two above equalities and by taking into account the fact that Ax = By, we
obtain

‖Axn – Byn‖2

=
〈
A∗(Axn – Byn), xn – x

〉
+

〈
B∗(Axn – Byn), y – yn

〉

≤ ∥∥A∗(Axn – Byn)
∥∥ · ‖xn – x‖ +

∥∥B∗(Axn – Byn)
∥∥ · ‖y – yn‖. (3.3)

Consequently, for n ∈ �, that is, ‖Axn –Byn‖ > 0, we have ‖A∗(Axn –Byn)‖ = 0 or ‖B∗(Axn –
Byn)‖ = 0. This leads to the fact that τn is well defined. �

Theorem 3.1 Assume that lim infn→∞ αi
n > 0(1 ≤ i ≤ p) and lim infn→∞ β

j
n > 0(1 ≤ j ≤

r). Then the sequence {(xn, yn)} generated by Algorithm 3.1 weakly converges to a solution
(x∗, y∗) of MSECFP (1.1). Moreover, ‖Axn – Byn‖ → 0, ‖xn+1 – xn‖ → 0, and ‖yn+1 – yn‖ → 0
as n → ∞.

Proof From the condition on {τn}, we have {τn}n≥0 is bounded. It follows from Algo-
rithm 3.1 and

∑p
i=1 αi

n = 1 that

un = α1
n
(
xn – U1(xn)

)
+ · · · + αp

n
(
xn – Up(xn)

)
+ A∗(Axn – Byn). (3.4)

Taking (x∗, y∗) ∈ �, i.e., x∗ ∈ ⋂p
i=1 F(Ui), y∗ ∈ ⋂r

j=1 F(Tj), and Ax∗ = By∗, we have

〈
un, xn – x∗〉

= α1
n
〈
xn – U1(xn), xn – x∗〉 + · · · + αp

n
〈
xn – Up(xn), xn – x∗〉

+
〈
A∗(Axn – Byn), xn – x∗〉

≥ α1
n
∥∥xn – U1(xn)

∥∥2 + · · · + αp
n
∥∥xn – Up(xn)

∥∥2 +
〈
Axn – Byn, Axn – Ax∗〉. (3.5)
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Similarly, we have

〈
vn, yn – y∗〉 ≥ β1

n
∥∥yn – T1(yn)

∥∥2 + · · · + βr
n
∥∥yn – Tr(yn)

∥∥2

–
〈
Axn – Byn, Byn – By∗〉. (3.6)

By adding the two inequalities (3.5)–(3.6) and taking into account the fact that Ax∗ = By∗,
we obtain

〈
un, xn – x∗〉 +

〈
vn, yn – y∗〉

≥
p∑

i=1

αi
n
∥∥xn – Ui(xn)

∥∥2 +
r∑

j=1

β j
n
∥∥yn – Tj(yn)

∥∥2 + ‖Axn – Byn‖2. (3.7)

From Algorithm 3.1 we also have

∥∥xn+1 – x∗∥∥2 +
∥∥yn+1 – y∗∥∥2

=
∥∥xn – τnun – x∗∥∥2 +

∥∥yn – τnvn – y∗∥∥2

=
∥∥xn – x∗∥∥2 +

∥∥yn – y∗∥∥2 – 2τn
(〈

un, xn – x∗〉 +
〈
vn, yn – y∗〉) + τ 2

n
(‖un‖2 + ‖vn‖2).

(3.8)

By Lemma 2.3 we get

‖un‖2 =
∥∥α1

n
(
xn – U1(xn)

)
+ · · · + αp

n
(
xn – Up(xn)

)
+ A∗(Axn – Byn)

∥∥2

≤ 2
∥∥α1

n
(
xn – U1(xn)

)
+ · · · + αp

n
(
xn – Up(xn)

)∥∥2 + 2
∥∥A∗(Axn – Byn)

∥∥2

≤ 2
p∑

i=1

αi
n
∥∥xn – Ui(xn)

∥∥2 + 2
∥∥A∗(Axn – Byn)

∥∥2 (3.9)

and

‖vn‖2 ≤ 2
r∑

j=1

β j
n
∥∥yn – Tj(yn)

∥∥2 + 2
∥∥B∗(Axn – Byn)

∥∥2. (3.10)

Setting sn(x∗, y∗) = ‖xn – x∗‖2 + ‖yn – y∗‖2 and using (3.7), (3.9)–(3.10), (3.8) can be written
as

sn+1
(
x∗, y∗)

≤ sn
(
x∗, y∗)

– 2τn

[ p∑

i=1

αi
n
∥∥xn – Ui(xn)

∥∥2 +
r∑

j=1

β j
n
∥∥yn – Tj(yn)

∥∥2 + ‖Axn – Byn‖2

]

+ 2τ 2
n

[ p∑

i=1

αi
n
∥∥xn – Ui(xn)

∥∥2 +
r∑

j=1

β j
n
∥∥yn – Tj(yn)

∥∥2
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+
∥∥A∗(Axn – Byn)

∥∥2 +
∥∥B∗(Axn – Byn)

∥∥2
]

= sn
(
x∗, y∗) – 2τn(1 – τn)

[ p∑

i=1

αi
n
∥∥xn – Ui(xn)

∥∥2 +
r∑

j=1

β j
n
∥∥yn – Tj(yn)

∥∥2
]

– 2τn
[‖Axn – Byn‖2 – τn

(∥∥A∗(Axn – Byn)
∥∥2 +

∥∥B∗(Axn – Byn)
∥∥2)]. (3.11)

We see that the sequence {sn(x∗, y∗)} is decreasing and lower bounded by 0; consequently,
it converges to some finite limit which is denoted by s(x∗, y∗). So the sequences {xn} and
{yn} are bounded.

By the conditions on {τn}, {αi
n} (1 ≤ i ≤ p) and {β j

n} (1 ≤ j ≤ r), from (3.11) we obtain,
for all i (1 ≤ i ≤ p) and j (1 ≤ j ≤ r),

lim
n→∞

∥∥xn – Ui(xn)
∥∥ = lim

n→∞
∥∥yn – Tj(yn)

∥∥ = 0 (3.12)

and

lim
n→∞

∥∥A∗(Axn – Byn)
∥∥ = lim

n→∞
∥∥B∗(Axn – Byn)

∥∥ = 0. (3.13)

It follows from (3.3) and (3.13) that

lim
n→∞‖Axn – Byn‖ = 0. (3.14)

Since

‖xn+1 – xn‖
= ‖xn – τnun – xn‖
= τn

∥∥α1
n
(
xn – U1(xn)

)
+ · · · + αp

n
(
xn – Up(xn)

)
+ A∗(Axn – Byn)

∥∥

≤ τn
(
α1

n
∥∥xn – U1(xn)

∥∥ + · · · + αp
n
∥∥xn – Up(xn)

∥∥ +
∥∥A∗(Axn – Byn)

∥∥)
, (3.15)

we get

lim
n→∞‖xn+1 – xn‖ = 0, (3.16)

which infers that {xn} is asymptotically regular. Similarly, we also have that {yn} is asymp-
totically regular, namely limn→∞ ‖yn+1 – yn‖ = 0.

Take (x̃, ỹ) ∈ ωω(xn, yn), i.e., there exists a subsequence {(xnk , ynk )} of {(xn, yn)} such that
(xnk , ynk ) ⇀ (x̃, ỹ) as k → ∞. Combined with the demiclosedness of Ui – I and Tj – I at
0, it follows from (3.12) that Ui(x̃) = x̃ and Tj(ỹ) = ỹ for 1 ≤ i ≤ p and 1 ≤ j ≤ r. So, x̃ ∈⋂p

i=1 F(Ui) and ỹ ∈ ⋂r
j=1 F(Tj). On the other hand, Ax̃ – Bỹ ∈ ωw(Axn – Byn) and weakly

lower semicontinuity of the norm imply that

‖Ax̃ – Bỹ‖ ≤ lim inf
n→∞ ‖Axn – Byn‖ = 0,

hence (x̃, ỹ) ∈ �. So ωw(xn, yn) ⊆ �.
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Next, we will show the uniqueness of the weak cluster point {(xn, yn)}. Indeed, let (x̄, ȳ)
be another weak cluster point of {(xn, yn)}, then (x̄, ȳ) ∈ �. From the definition of sn(x∗, y∗),
we have

sn(x̃, ỹ) = ‖xn – x̄‖2 + ‖x̄ – x̃‖2 + 2〈xn – x̄, x̄ – x̃〉 + ‖yn – ȳ‖2 + ‖ȳ – ỹ‖2 + 2〈yn – ȳ, ȳ – ỹ〉
= sn(x̄, ȳ) + ‖x̄ – x̃‖2 + ‖ȳ – ỹ‖2 + 2〈xn – x̄, x̄ – x̃〉 + 2〈yn – ȳ, ȳ – ỹ〉. (3.17)

Without loss of generality, we may assume that xn ⇀ x̄ and yn ⇀ ȳ. By passing to the limit
in relation (3.17), we obtain

s(x̃, ỹ) = s(x̄, ȳ) + ‖x̄ – x̃‖2 + ‖ȳ – ỹ‖2.

Reversing the role of (x̃, ỹ) and (x̄, ȳ), we also have

s(x̄, ȳ) = s(x̃, ỹ) + ‖x̃ – x̄‖2 + ‖ỹ – ȳ‖2.

By adding the two last equalities, we obtain x̃ = x̄ and ỹ = ȳ, which implies that {(xn, yn)}
weakly converges to the solution of (1.1). This completes the proof. �

Next, we propose the cyclic iterative algorithm for solving MSECFP (1.1) of firmly quasi-
nonexpansive operators.

Algorithm 3.2 Let x0 ∈ H1, y0 ∈ H2 be arbitrary. For n ≥ 0, let

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = xn – Ui(n)(xn) + A∗(Axn – Byn),

xn+1 = xn – τnun,

vn = yn – Tj(n)(yn) – B∗(Axn – Byn),

yn+1 = yn – τnvn,

(3.18)

where the step size τn is chosen as in Algorithm 3.1.

Theorem 3.2 The sequence {(xn, yn)} generated by Algorithm 3.2 weakly converges to a
solution (x∗, y∗) of MSECFP (1.1). Moreover, ‖Axn – Byn‖ → 0, ‖xn – xn+1‖ → 0, and ‖yn –
yn+1‖ → 0 as n → ∞.

Proof Let (x∗, y∗) ∈ �, we have

〈
un, xn – x∗〉 =

〈
xn – Ui(n)(xn), xn – x∗〉 +

〈
A∗(Axn – Byn), xn – x∗〉

≥ ∥∥xn – Ui(n)(xn)
∥∥2 +

〈
Axn – Byn, Axn – Ax∗〉 (3.19)

and

〈
vn, yn – y∗〉 ≥ ∥∥yn – Tj(n)(yn)

∥∥2 –
〈
Axn – Byn, Byn – By∗〉. (3.20)
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By adding the two inequalities (3.19)–(3.20) and taking into account the fact that Ax∗ =
By∗, we obtain

〈
un, xn – x∗〉 +

〈
vn, yn – y∗〉

≥ ∥∥xn – Ui(n)(xn)
∥∥2 +

∥∥yn – Tj(n)(yn)
∥∥2 + ‖Axn – Byn‖2. (3.21)

Similar to (3.8), we have

∥∥xn+1 – x∗∥∥2 +
∥∥yn+1 – y∗∥∥2

=
∥∥xn – x∗∥∥2 +

∥∥yn – y∗∥∥2 – 2τn
(〈

un, xn – x∗〉 +
〈
vn, yn – y∗〉)

+ τ 2
n
(‖un‖2 + ‖vn‖2). (3.22)

We also have

‖un‖2 =
∥∥xn – Ui(n)(xn) + A∗(Axn – Byn)

∥∥2

≤ 2
∥∥xn – Ui(n)(xn)

∥∥2 + 2
∥∥A∗(Axn – Byn)

∥∥2 (3.23)

and

‖vn‖2 ≤ 2
∥∥yn – Tj(n)(yn)

∥∥2 + 2
∥∥B∗(Axn – Byn)

∥∥2. (3.24)

Setting sn(x∗, y∗) = ‖xn – x∗‖2 + ‖yn – y∗‖2 and using (3.21), (3.23)–(3.24), (3.22) can be
written as

sn+1
(
x∗, y∗)

≤ sn
(
x∗, y∗) – 2τn

[∥∥xn – Ui(n)(xn)
∥∥2 +

∥∥yn – Tj(n)(yn)
∥∥2 + ‖Axn – Byn‖2]

+ 2τ 2
n
[∥∥xn – Ui(n)(xn)

∥∥2 +
∥∥yn – Tj(n)(yn)

∥∥2 +
∥∥A∗(Axn – Byn)

∥∥2

+
∥∥B∗(Axn – Byn)

∥∥2]

= sn
(
x∗, y∗) – 2τn(1 – τn)

[∥∥xn – Ui(n)(xn)
∥∥2 +

∥∥yn – Tj(n)(yn)
∥∥2]

– 2τn
[‖Axn – Byn‖2 – τn

(∥∥A∗(Axn – Byn)
∥∥2 +

∥∥B∗(Axn – Byn)
∥∥2)]. (3.25)

Similar to the proof of Theorem 3.1, we have

lim
n→∞

∥∥xn – Ui(n)(xn)
∥∥ = lim

n→∞
∥∥yn – Tj(n)(yn)

∥∥ = 0 (3.26)

and

lim
n→∞‖Axn – Byn‖ = 0. (3.27)

Since

‖xn+1 – xn‖ = τn
∥∥xn – Ui(n)(xn) + A∗(Axn – Byn)

∥∥

≤ τn
(∥∥xn – Ui(n)(xn)

∥∥ +
∥∥A∗(Axn – Byn)

∥∥)
, (3.28)
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we get

lim
n→∞‖xn+1 – xn‖ = 0, (3.29)

which infers that {xn} is asymptotically regular. Similarly, we also have that {yn} is asymp-
totically regular, namely limn→∞ ‖yn+1 – yn‖ = 0.

Take (x̃, ỹ) ∈ ωω(xn, yn), i.e., there exists a subsequence {(xnk , ynk )} of {(xn, yn)} such that
(xnk , ynk ) ⇀ (x̃, ỹ) as k → ∞. Noting that the pool of indexes is finite and {xn} is asymptot-
ically regular, for any i ∈ {1, 2, . . . , p}, we can choose a subsequence {nil } ⊂ {n} such that
xnil

⇀ x̃ as l → ∞ and i(nil ) = i for all l. It turns out that

lim
l→∞

∥∥xnil
– Ui(xnil

)
∥∥ = lim

l→∞
∥∥xnil

– Ui(nil )(xnil
)
∥∥ = 0. (3.30)

By the same reason, for any j ∈ {1, 2, . . . , r}, we can choose a subsequence {njm} ⊂ {n} such
that ynjm ⇀ ỹ as m → ∞ and j(njm ) = j for all m. So,

lim
m→∞

∥∥ynjm – Uj(ynjm )
∥∥ = 0. (3.31)

Combined with the demiclosedness of Ui – I and Tj – I at 0, it follows from (3.30) and
(3.31) that Ui(x̃) = x̃ and Tj(ỹ) = ỹ for 1 ≤ i ≤ p and 1 ≤ j ≤ r. So, x̃ ∈ ⋂p

i=1 F(Ui) and ỹ ∈⋂r
j=1 F(Tj). Similar to the proof of Theorem 3.1, we can complete the proof. �

Now, we give applications of Theorem 3.1 and Theorem 3.2 to solve MSEP (1.2). Assume
that the solution set S of MSEP (1.2) is nonempty. Since the orthogonal projection operator
is firmly nonexpansive, by Lemma 2.4 we have the following results for solving MSEP (1.2).

Corollary 3.1 For any given x0 ∈ H1, y0 ∈ H2, define a sequence {(xn, yn)} by the following
procedure:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = xn – (α1
nPC1 (xn) + · · · + α

p
nPCp (xn)) + A∗(Axn – Byn),

xn+1 = xn – τnun,

vn = yn – (β1
nPQ1 (yn) + · · · + βr

nPQr (yn)) – B∗(Axn – Byn),

yn+1 = yn – τnvn,

(3.32)

where the step size τn is chosen as in Algorithm 3.1. If lim infn→∞ αi
n > 0 (1 ≤ i ≤ p) and

lim infn→∞ β
j
n > 0 (1 ≤ j ≤ r), then the sequence {(xn, yn)} weakly converges to a solution

(x∗, y∗) of MSEP (1.2). Moreover, ‖Axn – Byn‖ → 0, ‖xn+1 – xn‖ → 0, and ‖yn+1 – yn‖ → 0
as n → ∞.

Corollary 3.2 For any given x0 ∈ H1, y0 ∈ H2, define a sequence {(xn, yn)} by the following
procedure:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = xn – PCi(n) (xn) + A∗(Axn – Byn),

xn+1 = xn – τnun,

vn = yn – PQj(n) (yn) – B∗(Axn – Byn),

yn+1 = yn – τnvn,

(3.33)
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where the step size τn is chosen as in Algorithm 3.1. Then the sequence {(xn, yn)} weakly
converges to a solution (x∗, y∗) of MSEP (1.2). Moreover, ‖Axn – Byn‖ → 0, ‖xn+1 – xn‖ → 0,
and ‖yn+1 – yn‖ → 0 as n → ∞.

4 Mixed cyclic and parallel iterative algorithms
Now, for solving MSECFP (1.1) of firmly quasi-nonexpansive operators, we introduce two
mixed iterative algorithms which combine the process of cyclic and simultaneous iterative
methods. In our algorithms, the selection of the step size does not need any prior infor-
mation of the operator norms ‖A‖ and ‖B‖, and the weak convergence is proved. We go
on making use of assumptions (A1)–(A3).

Algorithm 4.1 Let x0 ∈ H1, y0 ∈ H2 be arbitrary. For n ≥ 0, let

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = xn – (α1
nU1(xn) + · · · + α

p
nUp(xn)) + A∗(Axn – Byn),

xn+1 = xn – τnun,

vn = yn – Tj(n)(yn) – B∗(Axn – Byn),

yn+1 = yn – τnvn,

(4.1)

where the step size τn is chosen in the same way as in Algorithm 3.1.

Theorem 4.1 Assume that lim infn→∞ αi
n > 0 (1 ≤ i ≤ p). Then the sequence {(xn, yn)} gen-

erated by Algorithm 4.1 weakly converges to a solution (x∗, y∗) of MSECFP (1.1). Moreover,
‖Axn – Byn‖ → 0, ‖xn+1 – xn‖ → 0, and ‖yn+1 – yn‖ → 0 as n → ∞.

Proof Let (x∗, y∗) ∈ �. We can get (3.5) and (3.20), so

〈
un, xn – x∗〉 +

〈
vn, yn – y∗〉

≥
p∑

i=1

αi
n
∥∥xn – Ui(xn)

∥∥2 +
∥∥yn – Tj(n)(yn)

∥∥2 + ‖Axn – Byn‖2. (4.2)

It follows from Algorithm 4.1 that (3.8)–(3.9) and (3.24) are true. Setting sn(x∗, y∗) =
‖xn – x∗‖2 + ‖yn – y∗‖2, we have

sn+1
(
x∗, y∗)

≤ sn
(
x∗, y∗) – 2τn(1 – τn)

[
α1

n
∥∥xn – U1(xn)

∥∥2 + · · · + αp
n
∥∥xn – Up(xn)

∥∥2

+
∥∥yn – Tj(n)(yn)

∥∥2] – 2τn
[‖Axn – Byn‖2 – τn

(∥∥A∗(Axn – Byn)
∥∥2

+
∥∥B∗(Axn – Byn)

∥∥2)]. (4.3)

By the same reason as in Theorem 3.1, we obtain that, for all i (1 ≤ i ≤ p),

lim
n→∞

∥∥xn – Ui(xn)
∥∥ = 0, (4.4)

lim
n→∞

∥∥yn – Tj(n)(yn)
∥∥ = 0 (4.5)
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and

lim
n→∞‖Axn – Byn‖ = 0. (4.6)

So

lim
n→∞‖xn+1 – xn‖ = lim

n→∞‖yn+1 – yn‖ = 0, (4.7)

which infers that {xn} and {yn} are asymptotically regular.
Take (x̃, ỹ) ∈ ωω(xn, yn), i.e., there exists a subsequence {(xnk , ynk )} of {(xn, yn)} such that

(xnk , ynk ) ⇀ (x̃, ỹ) as k → ∞. Noting that the pool of indexes is finite and {yn} is asymp-
totically regular, for any j ∈ {1, 2, . . . , r}, we can choose a subsequence {njl } ⊂ {n} such that
ynjl

⇀ ỹ as l → ∞ and j(njl ) = j for all l. It turns out that

lim
l→∞

∥∥ynjl
– Tj(ynjl

)
∥∥ = lim

l→∞
∥∥ynjl

– Tj(njl )(ynjl
)
∥∥ = 0. (4.8)

Combined with the demiclosedness of Ui – I and Tj – I at 0, it follows from (4.4) and
(4.7) that Ui(x̃) = x̃ and Tj(ỹ) = ỹ for 1 ≤ i ≤ p and 1 ≤ j ≤ r. So, x̃ ∈ ⋂p

i=1 F(Ui) and ỹ ∈
⋂r

j=1 F(Tj). Similar to the proof of Theorem 3.1, we can complete the proof. �

Next, we propose another mixed cyclic and parallel iterative algorithm for solving
MSECFP (1.1) of firmly quasi-nonexpansive operators.

Algorithm 4.2 Let x0 ∈ H1, y0 ∈ H2 be arbitrary. For n ≥ 0, let

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = xn – Ui(n)(xn) + A∗(Axn – Byn),

xn+1 = xn – τnun,

vn = yn – (β1
nT1(yn) + · · · + βr

nTr(yn)) – B∗(Axn – Byn),

yn+1 = yn – τnvn,

(4.9)

where the step size τn is chosen as in Algorithm 3.1.

Similar to the proof of Theorem 4.1, we can get the following result.

Theorem 4.2 Assume that lim infn→∞ β
j
n > 0 (1 ≤ j ≤ r). Then the sequence {(xn, yn)}

generated by Algorithm 4.2 weakly converges to a solution (x∗, y∗) of MSECFP (1.1) of
firmly quasi-nonexpansive operators. Moreover, ‖Axn – Byn‖ → 0, ‖xn – xn+1‖ → 0 and
‖yn – yn+1‖ → 0 as n → ∞.

Finally, we obtain two mixed iterative algorithms to solve MSEP (1.2). Assume that the
solution set S of MSEP (1.2) is nonempty.



Zhao and Zong Journal of Inequalities and Applications  (2018) 2018:83 Page 16 of 18

Corollary 4.1 For any given x0 ∈ H1, y0 ∈ H2, define a sequence {(xn, yn)} by the following
procedure:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = xn – (α1
nPC1 (xn) + · · · + α

p
nPCp (xn)) + A∗(Axn – Byn),

xn+1 = xn – τnun,

vn = yn – PQj(n) (yn) – B∗(Axn – Byn),

yn+1 = yn – τnvn,

(4.10)

where the step size τn is chosen as in Algorithm 3.1. If lim infn→∞ αi
n > 0 (1 ≤ i ≤ p), then the

sequence {(xn, yn)} weakly converges to a solution (x∗, y∗) of MSEP (1.2). Moreover, ‖Axn –
Byn‖ → 0, ‖xn+1 – xn‖ → 0, and ‖yn+1 – yn‖ → 0 as n → ∞.

Corollary 4.2 For any given x0 ∈ H1, y0 ∈ H2, define a sequence {(xn, yn)} by the following
procedure:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n = xn – PCi(n) (xn) + A∗(Axn – Byn),

xn+1 = xn – τnun,

vn = yn – (β1
nPQ1 (yn) + · · · + βr

nPQr (yn)) – B∗(Axn – Byn),

yn+1 = yn – τnvn,

(4.11)

where the step size τn is chosen as in Algorithm 3.1. If lim infn→∞ β
j
n > 0(1 ≤ j ≤ r), then the

sequence {(xn, yn)} weakly converges to a solution (x∗, y∗) of MSEP (1.2). Moreover, ‖Axn –
Byn‖ → 0, ‖xn+1 – xn‖ → 0, and ‖yn+1 – yn‖ → 0 as n → ∞.

5 Results and discussion
To avoid computing the norms of the bounded linear operators, we introduce parallel and
cyclic iterative algorithms with self-adaptive step size to solve MSECFP (1.1) governed
by firmly quasi-nonexpansive operators. We also propose two mixed iterative algorithms
and do not need the norms of bounded linear operators. As applications, we obtain several
iterative algorithms to solve MSEP (1.2).

6 Conclusion
In this paper, we have considered MSECFP (1.1) of firmly quasi-nonexpansive operators.
Inspired by the methods for solving SCFP (2.1) and MSCFP (1.3), we introduce parallel
and cyclic iterative algorithms for solving MSECFP (1.1). We also present two mixed it-
erative algorithms which combine the process of parallel and cyclic iterative methods. In
our several iterative algorithms, the step size is chosen in a self-adaptive way and the weak
convergence is proved.
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