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Abstract
Let J ∈R

n×n be a normal matrix such that J2 = –In, where In is an n-by-n identity
matrix. In (S. Gigola, L. Lebtahi, N. Thome in Appl. Math. Lett. 48:36–40, 2015) it was
introduced that a matrix A ∈ C

n×n is referred to as normal J-Hamiltonian if and only if
(AJ)∗ = AJ and AA∗ = A∗A. Furthermore, the necessary and sufficient conditions for the
inverse eigenvalue problem of such matrices to be solvable were given. We present
some alternative conditions to those given in the aforementioned paper for normal
skew J-Hamiltonian matrices. By using Moore–Penrose generalized inverse and
generalized singular value decomposition, the necessary and sufficient conditions of
its solvability are obtained and a solvable general representation is presented.

MSC: 65F18; 15A51; 15A18; 15A12

Keywords: Inverse eigenvalue problem; Hamiltonian matrix; Normal matrix;
Moore–Penrose generalized inverse; Generalized singular value decomposition

1 Introduction
In this paper, we mainly discuss the following partially described inverse eigenvalue prob-
lem which is considered in linear manifold.

Problem 1 Given the partial eigeninformation Y = (y1, y2, . . . , ym) ∈ C
n×m and � =

diag(λ1,λ2, . . . ,λm) ∈ C
m×m, consider the set

M(Y ,�) := {A ∈ �|AY = Y�}

of matrices A maintaining the eigeninformation, where � is the set of certain n-by-n struc-
tured matrices.

The above problem usually appears in the design and modification of mass-spring sys-
tems, dynamic structures, Hopfield neural networks, vibration in mechanic, civil en-
gineering, and aviation [2–4]. Furthermore, the inverse eigenvalue problems involving
Hamiltonian matrices have drawn considerable interest. For example, Zhang et al. [5]
solved the inverse eigenvalue problem of Hermitian and generalized Hamiltonian matri-
ces. Then Bai [6] settled the case of Hermitian and generalized skew-Hamiltonian ma-
trices. Xie et al. [7] resolved the case of symmetric skew-Hamiltonian matrices. Qian
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and Tan [8] also considered the cases of Hermitian and generalized Hamiltonian/skew-
Hamiltonian matrices from different perspectives. But the Hamiltonian matrices they con-
sidered are the special cases of the following normal J-Hamiltonian matrices and normal
skew J-Hamiltonian matrices.

In the following, let In be the n × n identity matrix.

Definition 1 ([1]) Given a normal matrix J ∈ R
n×n with J2 = –In. A matrix A ∈ C

n×n is
referred to as normal J-Hamiltonian if and only if (AJ)∗ = AJ and AA∗ = A∗A.

Definition 2 Let J ∈ R
n×n be a normal matrix such that J2 = –In. A matrix A ∈ C

n×n is
called normal skew J-Hamiltonian if and only if (AJ)∗ = –AJ and AA∗ = A∗A. The set of all
n × n normal skew J-Hamiltonian matrices is denoted by NSn×n(J).

In the above definitions, A∗ signifies the conjugate transpose of a matrix A ∈ C
n×n. It

is obvious that J is a real orthogonal skew-symmetric matrix, i.e., J = –JT = –J–1. This
indicates that n = 2k, k ∈ N. The above Hamiltonian matrices are also of importance in
several engineering areas such as optimal quadratic linear control, H∞ optimization, and
the related problem of solving Riccati algebraic equations [9].

Recently, Gigola et al. [1] solved Problem 1 for normal J-Hamiltonian matrices. In this
paper, we present a set of alternative conditions assuring the solvability of the problem
that involves skew normal J-Hamiltonian matrices. In order to present more simple condi-
tions to be verified, we mainly use Sun’s [10] and Penrose’s [11] results and the generalized
singular value decomposition to solve Problem 1 when the set � = NSn×n(J). A similar
technique may be used to solve the inverse eigenvalue problem for normal J-Hamiltonian
matrices.

2 Preliminaries
Throughout this paper, we denote by rank(A) and A† the rank and Moore–Penrose gen-
eralized inverse of a matrix A ∈ C

n×m, respectively. In, 0, and i =
√

–1 respectively signify
the identity matrix of order n, a zero matrix or a vector with appropriate size, and the
imaginary unit. Moreover, for any matrix A ∈ C

n×m, RA = In – AA† and LA = Im – A†A
signify specified orthogonal projectors.

Firstly, we consider the structure of the normal skew J-Hamiltonian matrices.

Lemma 1 Let J ∈R
n×n be a normal matrix such that J2 = –In. Then a matrix A ∈C

n×n is
normal skew J-Hamiltonian if and only if

A = U

[
A11 A12

–A∗
12 A22

]
U∗, (2.1)

where n = 2k, k ∈ N, A11 = A∗
11 ∈ C

k×k , A22 = A∗
22 ∈ C

k×k , A11A12 = A12A22, and U ∈ C
n×n

is a unitary matrix such that

U∗JU =

[
iIk 0
0 –iIk

]
. (2.2)
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Proof Because J ∈R
n×n is a normal matrix and J2 = –In, then J is a real orthogonal skew-

symmetric matrix. Therefore, there exists a unitary matrix U ∈C
n×n such that (2.2) holds,

where n = 2k, k ∈N.
Then partition U∗AU conforms with (2.2) as

U∗AU =

[
A11 A12

A21 A22

]
. (2.3)

From Definition 2, we know that JAJ = –A∗. It follows that
[

–A11 A12

A21 –A22

]
= –

[
A∗

11 A∗
21

A∗
12 A∗

22

]
.

Thus we have

A11 = A∗
11, A22 = A∗

22, A12 = –A∗
21. (2.4)

Because AA∗ = A∗A, then from (2.3) and (2.4) we have A11A12 = A12A22. Therefore, (2.1)
holds. �

Then we introduce the following results to solve Problem 1 later on.

Lemma 2 (Sun [10]) Let A1, B1 ∈ C
n×m be given. The linear matrix equation X1A1 = B1

has a Hermitian solution X1 ∈C
n×n if and only if

B1LA1 = 0, A∗
1B1 = B∗

1A1.

In this case, the general solution can be expressed as

X1 = B1A†
1 +

(
B1A†

1
)∗

–
1
2
(
A†

1
)∗(

A∗
1B1 + B∗

1A1
)
A†

1 + RA1 R1RA1 ,

where R1 ∈C
n×n is an arbitrary Hermitian matrix.

In this lemma, the general solution can be also expressed as

X1 = B1A†
1 +

(
B1A†

1
)∗

RA1 + RA1 R1RA1 .

The following lemma is taken from [11], see Corollary 2 in [11].

Lemma 3 (Penrose [11]) Let A2 ∈ C
n×m, C2 ∈ C

n×p, B2 ∈ C
p×q, and D2 ∈ C

m×q be given.
The pair of matrix equations A2X2 = C2, X2B2 = D2 has a solution X2 ∈C

m×p if and only if

RA2 C2 = 0, D2LB2 = 0, A2D2 = C2B2.

Moreover, the general solution can be expressed as

X2 = A†
2C2 + LA2 D2B†

2 + LA2 R2RB2 ,

where R2 ∈C
m×p is an arbitrary matrix.
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3 Solvability conditions and general solution of Problem 1
Given a normal matrix J ∈ R

n×n with J2 = –In, let Y ∈ C
n×m and � ∈ C

m×m be given in
Problem 1. In order to solve this problem for the case of normal skew J-Hamiltonian ma-
trices, we need to obtain the normal skew J-Hamiltonian solution of the linear matrix
equation

AY = Y�. (3.1)

If equation (3.1) is consistent, then the set M(Y ,�) is nonempty. By Lemma 1, equation
(3.1) is equivalent to the following:

[
A11 A12

–A∗
12 A22

]
U∗Y = U∗Y�. (3.2)

Let

U∗Y =

[
Y1

Y2

]
, Y1 ∈C

k×m, Y2 ∈C
k×m. (3.3)

Then (3.2) can be rewritten as follows:

{
A11Y1 + A12Y2 = Y1�,
–A∗

12Y1 + A22Y2 = Y2�.
(3.4)

Thus we have

{
A12Y2 = Y1� – A11Y1,
Y ∗

1 A12 = Y ∗
2 A22 – �∗Y ∗

2 .

By Lemma 3, the above system of matrix equations has a solution A12 ∈ C
k×k if and only

if

⎧⎪⎨
⎪⎩

A11Y1LY2 = Y1�LY2 ,
A22Y2LY1 = Y2�LY1 , where LY1 = Ik – Y1Y ∗

1 ,
Y ∗

1 A11Y1 + Y ∗
2 A22Y2 = Y ∗

1 Y1� + �∗Y ∗
2 Y2.

(3.5)

Then, by Lemma 2, the first equation in (3.5) has a Hermitian solution A11 ∈C
k×k if and

only if

Y1�LY2LY1LY2
= 0, LY2

(
Y ∗

1 Y1� – �∗Y ∗
1 Y1

)
LY2 = 0. (3.6)

In this case, the general solution is

A11 = Y1�LY2 (Y1LY2 )† +
(
LY2 Y ∗

1
)†

LY2�
∗Y ∗

1 RY1LY2
+ RY1LY2

S1RY1LY2
, (3.7)

where S1 ∈C
k×k is an arbitrary Hermitian matrix.
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Similarly, by Lemma 2, the second equation in (3.5) has a Hermitian solution A22 ∈C
k×k

if and only if

Y2�LY1LY2LY1
= 0, LY1

(
Y ∗

2 Y2� – �∗Y ∗
2 Y2

)
LY1 = 0. (3.8)

In this case, the general solution is

A22 = Y2�LY1 (Y2LY1 )† +
(
LY1 Y ∗

2
)†

LY1�
∗Y ∗

2 RY2LY1
+ RY2LY1

S2RY2LY1
, (3.9)

where S2 ∈C
k×k is an arbitrary Hermitian matrix. Let

G = Y ∗
1 Y1� + �∗Y ∗

2 Y2 – Y ∗
1
[
Y1�LY2 (Y1LY2 )† +

(
LY2 Y ∗

1
)†

LY2�
∗Y ∗

1 RY1LY2

]
Y1

– Y ∗
2
[
Y2�LY1 (Y2LY1 )† +

(
LY1 Y ∗

2
)†

LY1�
∗Y ∗

2 RY2LY1

]
Y2. (3.10)

From (3.5), (3.7), and (3.9) we know that G = G∗ is equivalent to

Y ∗
1 Y1� + �∗Y ∗

2 Y2 = �∗Y ∗
1 Y1 + Y ∗

2 Y2�.

Then substituting (3.7) and (3.9) into the third equation in (3.5) yields

Y ∗
1 RY1LY2

S1RY1LY2
Y1 + Y ∗

2 RY2LY1
S2RY2LY1

Y2 = G. (3.11)

Thus we need to obtain a pair of Hermitian solutions (̂S1, Ŝ2) of the linear matrix equation
(3.11). Firstly, we give the generalized singular value decomposition (GSVD) of the matrix
pair (RY1LY2

Y1,RY2LY1
Y2) as follows (see, for example, [12]):

RY1LY2
Y1 = U1�1M, RY2LY1

Y2 = U2�2M, (3.12)

where U1 and U2 are unitary matrices of order k and M ∈ C
m×m is a nonsingular matrix,

and

�1 =

⎛
⎜⎝

Ir3–r2 0 0 0
0 �1 0 0
0 0 0 0

⎞
⎟⎠

r3 – r2

r1 + r2 – r3

k – r1

r3 – r2 r1 + r2 – r3 r3 – r1 m – r3

,

�2 =

⎛
⎜⎝

0 0 0 0
0 �2 0 0
0 0 Ir3–r1 0

⎞
⎟⎠

k – r2

r1 + r2 – r3

r3 – r1

r3 – r2 r1 + r2 – r3 r3 – r1 m – r3

are block matrices with the same column partitioning. In the matrices �1 and �2,

r1 = rank(RY1LY2
Y1), r2 = rank(RY2LY1

Y2),

r3 = rank
(
Y ∗

1 RY1LY2
, Y ∗

2 RY2LY1

)
,

�1 = diag(ξ1, ξ2, . . . , ξr1+r2–r3 ), 1 > ξ1 ≥ · · · ≥ ξr1+r2–r3 > 0,
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�2 = diag(η1,η2, . . . ,ηr1+r2–r3 ), 0 < η1 ≤ · · · ≤ ηr1+r2–r3 < 1,

�2
1 + �2

2 = Ir1+r2–r3 .

We further partition the nonsingular matrix

M–1 =

(
M1 M2 M3 M4

r3 – r2 r1 + r2 – r3 r3 – r1 m – r3

)

compatibly with the block column partitioning of �1 or �2. Denote

(
M∗)–1GM–1 = (Gij)4×4 with Gij = M∗

i GMj, i, j = 1, 2, 3, 4. (3.13)

Then substitute (3.12) into (3.11). By [13, Theorem 3.1] we obtain that equation (3.11)
is consistent if and only if

Y ∗
1 Y1� + �∗Y ∗

2 Y2 = �∗Y ∗
1 Y1 + Y ∗

2 Y2�,

G13 = 0, G14 = 0, G24 = 0, G34 = 0, G44 = 0.
(3.14)

Moreover, its general solution can be expressed as

Ŝ1 = U1

⎡
⎢⎣

G11 G12�
–1
1 X13

�–1
1 G∗

12 �–1
1 (G22 – �2Y22�2)�–1

1 X23

X∗
13 X∗

23 X33

⎤
⎥⎦U∗

1 , (3.15)

Ŝ2 = U2

⎡
⎢⎣

Y11 Y12 Y13

Y ∗
12 Y22 �–1

2 G23

Y ∗
13 G∗

23�
–1
2 G33

⎤
⎥⎦U∗

2 , (3.16)

where X33, Y11, and Y22 are arbitrary Hermitian matrices, X13, X23, Y12, and Y13 are arbi-
trary matrices.

Then substituting (3.15) and (3.16) into (3.7) and (3.9) yields

{
A11 = Y1�LY2 (Y1LY2 )† + (LY2 Y ∗

1 )†LY2�
∗Y ∗

1 RY1LY2
+ RY1LY2

Ŝ1RY1LY2
,

A22 = Y2�LY1 (Y2LY1 )† + (LY1 Y ∗
2 )†LY1�

∗Y ∗
2 RY2LY1

+ RY2LY1
Ŝ2RY2LY1

.
(3.17)

From (3.4), (3.17), and Lemma 3, we get

A12 =
(
Y ∗

1
)†(Y ∗

2 A22 – �∗Y ∗
2
)

+ RY1 (Y1� – A11Y1)
(
Y ∗

2
)† + RY1 RRY2

=
(
Y †

1
)∗

Y ∗
2 Y2�LY1 (Y2LY1 )† +

(
Y †

1
)∗

Y ∗
2
(
LY1 Y ∗

2
)†

LY1�
∗Y ∗

2 RY2LY1

– RY1

(
LY2 Y ∗

1
)†

LY2�
∗Y ∗

1 RY1LY2
Y1Y2

† –
(
Y †

1
)∗

�∗Y ∗
2

+
(
Y †

1
)∗

Y ∗
2 RY2LY1

Ŝ2RY2LY1
– RY1RY1LY2

Ŝ1RY1LY2
Y1Y2

†

+ RY1 RRY2 , (3.18)

where R ∈ C
k×k is an arbitrary matrix.

Based on the above discussion, we can conclude the following result to solve Problem 1.
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Theorem 1 Given Y ∈ C
n×m and � ∈ C

m×m as described in Problem 1. Let U∗Y , G, the
GSVD of the matrix pair (RY1LY2

Y1,RY2LY1
Y2) and (M∗)–1GM–1 be given by (3.3), (3.10),

(3.12), and (3.13), respectively. Then Problem 1 is solvable(i.e., M(Y ,�) �= ∅) in the set
NSn×n(J) if and only if conditions (3.6), (3.8), (3.14), and A11A12 = A12A22 hold. Moreover,
in this case, the general solution can be expressed as

A = U

[
A11 A12

–A∗
12 A22

]
U∗,

where A11, A22, and A12 are given by (3.17) and (3.18), respectively. In the matrices A11,
A22, and A12, Ŝ1 and Ŝ2 are described in (3.15) and (3.16), respectively, where X33, Y11, and
Y22 are arbitrary Hermitian matrix blocks, X13, X23, Y12, Y13, and R are arbitrary matrix
blocks.

4 Conclusions
In this paper, we have obtained the necessary and sufficient conditions of the inverse eigen-
value problem for normal skew J-Hamiltonian matrices. Furthermore, a solvable general
representation is presented. We can also use the same method to solve the inverse eigen-
value problem for a normal J-Hamiltonian matrix.
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