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Abstract
An analytic center cutting plane method is an iterative algorithm based on the
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1 Introduction and preliminaries
Some recent developments in solving variational inequalities are analytic center cutting
plane methods. An analytic center cutting plane method is an interior algorithm based on
the computation of analytic centers. In order to work with analytic center cutting plane
methods, some authors assume that the feasible sets of variational inequalities are poly-
topes, e.g., see [1–6], while others pay more attention to problems with infinitely many
linear constraints, e.g., see [7, 8], etc. Analytic center cutting plane methods also can be
used to other types of optimization problems, like mathematical programming with equi-
librium constraints [9], convex programming [10, 11], conic programming [12], stochas-
tic programming [13, 14], and combinatorial optimization [11]. In this paper, we propose
some analytic center cutting plane methods for solving pseudomonotone or quasimono-
tone variational inequalities.

Let X be a nonempty subset of the n-dimensional Euclidean spaceRn, and let F : X →R
n

be a function. We say that a point x∗ ∈ X is a solution of the variational inequality VI(F , X)
if

F
(
x∗)T(

x – x∗) ≥ 0, ∀x ∈ X. (1)

The point x∗ ∈ X is a solution of the dual variational inequality VID(F , X) if

F(x)T(
x – x∗) ≥ 0, ∀x ∈ X. (2)

We denote by X∗ the set of solutions of VI(F , X), and by X∗
D the set of solutions of

VID(F , X).
From Auslender [15] we have the following lemma.
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Lemma 1 If F is continuous, then a solution of VID(F , X) is a solution of VI(F , X); and if
F is continuous pseudomonotone, then x∗ ∈ X is a solution of VI(F , X) if and only if it is a
solution of VID(F , X).

Given VI[F , X] (VID[F , X]), the gap function is defined as

gX(x) = max
y∈X

F(x)T (x – y), x ∈ X

(
fX(x) = max

y∈X
F(y)T (x – y), x ∈ X

)
.

Since gX(x) ≥ 0, fX(x) ≥ 0, and

arg min
x∈X

gX(x) =
{

gX(x) = 0; x ∈ X
}

= arg min
x∈X

fX(x) =
{

gX(x) = 0; x ∈ X
}

,

we have the following lemma.

Lemma 2 A point x∗ ∈ X is a solution of VI[F , X] (VID[F , X]) if and only if gX(x∗) = 0
(fX(x∗) = 0).

A point x∗ ∈ X is said to be a ε-solution of the variational inequality (1) if gX(x∗) < ε.
A function F : X →R

n is said to be monotone on X if

(
F(y) – F(x)

)T (y – x) ≥ 0, ∀x, y ∈ X;

strongly monotone if there exists a constant M > 0 such that

(
F(y) – F(x)

)T (y – x) ≥ M‖y – x‖, ∀x, y ∈ X;

quasimonotone on X if

F(x)T (y – x) > 0 ⇒ F(y)T (y – x) ≥ 0, ∀x, y ∈ X;

pseudomonotone on X if

F(x)T (y – x) ≥ 0 ⇒ F(y)T (y – x) ≥ 0, ∀x, y ∈ X;

pseudomonotone plus on X if it is pseudomonotone on X and if

F(x)T (y – x) ≥ 0
F(y)T (y – x) = 0

}

⇒ F(x) = F(y), ∀x, y ∈ X;

and strongly pseudomonotone on X if there exist constants M > 0, α > 0 such that

F(x)T (y – x) ≥ 0 ⇒ F(y)T (y – x) ≥ M‖y – x‖α , ∀x, y ∈ X.
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2 Results and discussion
We proposed some analytic center cutting plane methods (ACCPM) for convex feasibility
problems. Convex feasibility problem is a problem of finding a point in a convex set, which
contains a full dimensional ball and is contained in a compact convex set described by
matrix inequalities. There are many applications of these types of problems in nonsmooth
optimization. The ACCPM is an efficient technique for nondifferentiable optimization.
We employed some nonpolyhedral models into the ACCPM.

We present five analytic center cutting plane methods for solving variational inequalities
whose domains are bounded or unbounded convex bodies.

First four algorithms are for the variational inequalities with compact and convex fea-
sible sets. If F : X → R

n is pseudomonotone plus on a compact convex body X, then our
Algorithm 1 either stops with a solution of the variational inequality VI(F , X) after a finite
number of iterations, or there exists an infinite sequence {xj} in X that converges to a so-
lution of VI(F , X). If F : X → R

n is pseudomonotone plus on a compact convex body X,
then our Algorithm 2 stops with an ε-solution of the variational inequality VI(F , X) after
a finite number of iterations. If F : X → R

n is Lipschitz continuous on a compact convex
body X, then our Algorithm 3 either stops with a solution of the variational inequality
VI(F , X) after a finite number of iterations, or there exists an infinite sequence {xj} in X
that converges to a solution of VI(F , X). If F : X → R

n is Lipschitz continuous on a com-
pact convex body X, then our Algorithm 4 stops with an ε-solution of VI(F , X) after a
finite number of iterations.

Our fifth algorithm is for variational inequalities with unbounded compact convex feasi-
ble regions, and these feasible regions can be the n-dimensional Euclidean space Rn itself.
If F : X → R

n is strongly monotone on X, then our Algorithm 5 either stops with a solu-
tion of the variational inequality VI(F , X) after a finite number of iterations, or there exists
an infinite sequence {xk

j } in X that converges to a solution of VI(F , X). Furthermore, the
proof of the previous result also indicates that, if F : X →R

n is strongly pseudomonotone
on X, then our Algorithm 5 either stops with a solution of VI(F , X) after a finite number
of iterations, or there exists an infinite sequence {xj} in X that converges to a solution of
VI(F , X).

3 Conclusions
This paper works with variational inequalities whose feasible sets are bounded or un-
bounded convex bodies. We present some analytic center cutting plane algorithms that
extend the algorithms proposed in [1, 2, 16], from polytopes/polyhedron to convex re-
gions, or from bounded convex region to unbounded convex regions. We should mention
that our approach can be used to extend many interior methods which are associated with
polyhedral feasible regions, e.g., the algorithms given by [3, 4]. We can also extend some
other algorithms for variational inequalities over polyhedral feasible sets [17–19].

4 Compact convex bodies
A polytope is a set P ⊆R

n which is the convex hull of a finite set.
A polyhedron is a set

{
x ∈R

n; AT x ≤ b
} ⊆R

n,

where b ∈R
n, and A is an m × n matrix.
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Every polytope is a polyhedron, whereas not every polyhedron is a polytope.
Minkowski proved the following lemma in 1896.

Lemma 3 A set P ⊆R
n is a polytope if and only if it is a bounded polyhedron.

We make the following assumptions for polytopes throughout this paper.
(a) Interior assumption: A polytope is always a full-dimensional polytope and that in-

cludes 0 ≤ x ≤ e, where e is a vector of all ones.
We note that if a polytope has nonempty interior, then (a) can be met by re-scaling.
A convex body X ⊆ R

n is a convex and bounded subset with nonempty interior.
A rectangle B ⊆R

n is defined by

B =
{

x = (x1, x2, . . . , xn) ∈R
n; ai ≤ xi ≤ bi

}
,

where ai, bi ∈R.
A rectangle can also be given by some inequalities

B =
{

x ∈ R
n; HT x ≤ b

}
,

where HT x = b is a finite set of hyperplanes, H is an m × n matrix. And, if we denote by V
the finite set of all vertices of B, then

B = con(V ).

Theorem 1 A bounded subset X ⊆ R
n is a compact convex body if and only if there exists

a sequence of polytopes {Cj} satisfying Cj ⊆ Cj+1 (j = 1, . . .) such that

( ∞⋃

j=1

Cj

)c

= X.

Proof The sufficiency is trivial. We only prove the necessity.
Since X is bounded, there exists a rectangle B such that X ⊆ B.
Take a partition P1 of B. Then B is divided into a set of finite sub-rectangles by a finite

set of hyperplanes. Let D1 =
⋃k1

j=1 B1(j), where B1(j) (j = 1, . . . , k1) are all the sub-rectangles
that lie entirely within X. Let V1 be the set of all vertices of B1(j) (j = 1, . . . , k1), then V1 is a
finite set. So, C1 = con(V1) is a polytope, and it obviously satisfies

D1 ⊆ C1 ⊆ X.

(For the case of a 2-dimensional Euclidean space, see Fig. 1.)
Take a finer partition P2 of B. Similarly, we have a set D2 =

⋃k2
j=1 B2(j), where B2(j)

(j = 1, . . . , k2) are all the sub-rectangles which correspond to P2 and lie entirely within X;
and we have a polytope C2 = con(V2), where V2 is the set of all vertices of B2(j) (j = 1, . . . , k2)
such that

C1 ⊆ C2 ⊆ X.
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Figure 1 C1 = con(V1)

By mathematical induction, there exists a sequence of polytopes {Cj} which satisfies

Cj ⊆ Cj+1 ⊆ X (j = 1, . . .).

It is easy to see that (
⋃∞

j=1 Cj)c = X. �

It is quite straightforward to prove the following Corollary 1, Proposition 1, and Propo-
sition 2.

Corollary 1 A subset X ⊆ R
n is a compact convex body if there is a uniformly bounded

sequence of polytopes {Cj}, i.e., Cj ⊆ B for a given rectangle B, such that

( ∞⋃

j=1

Cj

)c

= X.

Proposition 1 Let X ⊆ R
n be a compact convex body and F : X → R

n be a continuous
function, then the variational inequality VI[F , X] has solutions.

Proposition 2 Let X ⊆R
n be a compact convex body and F : X →R

n be a continuous and
strictly pseudomonotone function, then the variational inequality VI[F , X] has a unique
solution.

5 Generalized analytic center cutting plane algorithms for solving
pseudomonotone variational inequalities

For any polytope {x ∈R
n; AT x ≤ b},

{
x ∈ Rn; AT x + s = b, s = (s1, s2, . . . , sn), si ≥ 0

}

is associated with the potential function

ϕ =
n∑

i=1

ln si.
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It is known that an analytic center is the maximizer of the potential function ϕ, and the
unique solution of the system

AT y = 0,

AT x + s = b,

Y T s = e,

where y is a positive dual vector, and Y the diagonal matrix built upon y.
An approximate analytic center [20] is the maximizer of the potential function ϕ, and

the unique solution of the system

AT z = 0,

AT x + s = b,
∥
∥ZT s – e

∥
∥ ≤ η < 1,

where z is a dual vector, and Z is the diagonal matrix built upon z.
Now we modify Goffin, Marcotte, and Zhu’s [2] Algorithm 1 to solve VI(F , X). We pro-

pose an algorithm for solving variational inequalities, whose feasible sets are compact con-
vex bodies.

From Theorem 1, there exists a sequence of variational inequalities VI[F , Cj] (j = 1, . . .)
induced by the original variational inequality VI[F , X], where the polytope Cj is given by
the linear inequalities AT

j x = bj, x, bj ∈R
n, and Aj is an m × n matrix. So, we may apply the

algorithm in [2] to each VI[F , Cj]. Algorithm 1 uses this idea, but the algorithm in [2] is
applied to VI[F , Cj] for only a certain number of iterations until we get

gCj

(
xk

j
)

<
1
2j (j = 1, . . .),

by use of Theorem 1 of [2].

Algorithm 1
Step 1. (initialization)

k = 0, j = 1, Ak = Aj, bk = bj, Ck
j =

{
x ∈ R

n; Ak
j x ≤ bk

j
}

;

Step 2. (computation of an approximate analytic center)
Find an approximate analytic center xk

j of Ck
j ;

Step 3. (stop criterion)
Compute gX(xk

j ) = maxx∈X F(xk
j )T (xk

j – x),
if gX(xk

j ) = 0, then STOP,
else GO TO step 4;

Step 4. (find an ε-solution for ε = 1
2j )

Compute gCj (x
k
j ) = maxx∈Cj F(xk

j )T (xk
j – x),

if gCj (x
k
j ) < 1

2j , then increase j by one RETURN TO Step 1,
else GO TO Step 5;
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Step 5. (cut generation)
Set

Ak+1
j =

[
Ak

j

F(xk
j )T

]

, bk+1
j =

[
bk

j

F(xk
j )T xk

j

]

,

Hk
j = {x ∈ R

n; F(xk
j )T (x – xk

j ) = 0} is the new cutting plane for VI(F , Ck
j ).

Increase k by one GO TO Step 2.

Theorem 2 Let F : X → R
n be pseudomonotone plus on a compact convex body X, then

Algorithm 1 either stops with a solution of VI(F , X) after a finite number of iterations, or
there exists a subsequence of the infinite sequence {xk

j } that converges to a point x∗ ∈ X∗.

Proof According to Algorithm 1 and Theorem 1 of [2], for any given j, ∃xj ∈ Cj such that
after a finite number of iterations,

gCj (xj) <
1
2j .

Since X is compact, there exists a subsequence {xj(q)} of {xj} and a point x∗ ∈ X such that

lim
q→∞ xj(q) = x∗.

∀p < j, we have

gCp (xj) ≤ gCj (xj) <
1
2j .

On the other hand, due to the compactness of X, ∃N > 0 such that ‖y‖ ≤ N , ∀y ∈ X.
Since

max
y∈X

F
(
x′)T(

x′ – y
) ≥ 0 and max

y∈X
F
(
x′′)T(

x′′ – y
) ≥ 0,

for ∀x′, x′′ ∈ X,

∣∣gX
(
x′) – gX

(
x′′)∣∣

=
∣∣
∣max

y∈X
F
(
x′)T(

x′ – y
)

– max
y∈X

F
(
x′′)T(

x′′ – y
)∣∣
∣

≤ max
y∈X

∣
∣F

(
x′)T(

x′ – y
)

– F
(
x′′)T(

x′′ – y
)∣∣

= max
y∈X

∣∣[F
(
x′)T x′ – F

(
x′′)T x′′] +

[
F
(
x′′)T y – F

(
x′)T y

]∣∣

≤ ∣∣F
(
x′)T x′ – F

(
x′′)T x′′∣∣ + max

y∈X

∣∣F
(
x′′)T y – F

(
x′)T y

∣∣

≤ ∣∣F
(
x′)T x′ – F

(
x′′)T x′′∣∣ + N

∥∥F
(
x′′) – F

(
x′)∥∥.

By the continuities of F(x) and F(x)T x, gX(x) is a continuous function on X.
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Consequently, ∀p

gCp

(
x∗) = lim

q→∞ gCp (xj(q)) ≤ lim
q→∞ gCj(q) (xj(q)) ≤ lim

q→∞
1

2j(q) = 0.

Then we have

g⋃∞
j=1 Cj

(
x∗) = max

y∈⋃∞
j=1 Cj

F
(
x∗)(x∗ – y

)

≤
∞∑

j=1

max
y∈Cj

F
(
x∗)(x∗ – y

)
=

∞∑

j=1

gCj

(
x∗) = 0.

On the other hand,∀y ∈ X, ∃{yi} ⊆ ⋃∞
j=1 Cj such that

lim
i→∞ yi = y.

Because

∣∣F
(
x∗)(x∗ – yi

)∣∣ ≤ max
y∈⋃∞

j=1 Cj
F
(
x∗)(x∗ – y

)

= g⋃∞
j=1 Cj

(
x∗) = 0,

we have

∣∣F
(
x∗)(x∗ – y

)∣∣ = lim
i→∞

∣∣F
(
x∗)(x∗ – yi

)∣∣ = 0.

Therefore,

gX
(
x∗) = max

y∈X
F
(
x∗)(x∗ – y

)
= 0,

which deduces that x∗ is a solution of VI(F , X). �

Algorithm 1 usually generates an infinite sequence. In order to terminate at a finite num-
ber of iterations, we change the stop criterion, Step 3 in Algorithm 1, to get the following
algorithm.

Algorithm 2 Step 1, Step 2, Step 4, and Step 5 are the same as those of Algorithm 1.
Step 3. (stop criterion)

Compute gX(xk
j ) = maxx∈X F(xk

j )T (xk
j – x),

if gX(xk
j ) < ε, then STOP,

else GO TO step 4.

From Theorem 2 we have the following.

Theorem 3 Let F : X → R
n be pseudomonotone plus on a compact convex body X, then

Algorithm 2 stops with an ε-solution of VI(F , X) after a finite number of iterations.
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6 Generalized analytic center cutting plane algorithms for solving
quasimonotone variational inequalities

In this section, we are going to modify Marcotte and Zhu’s [1] approach to solve quasi-
monotone variational inequalities VI(F , X). We assume that the feasible sets are compact
convex bodies.

From Theorem 1 there is a sequence of variational inequalities VI[F , Cj] (j = 1, . . .) in-
duced by the original variational inequality VI[F , X].

According to [1], the following are the conditions that are required in the construction
of algorithms for solving quasimonotone variational inequalities.

For any given j, let the auxiliary function �j(y, x) : Rn → R
n be continuous in x and

strongly monotone in y, i.e.,

〈
�j

(
y′, x

)
– �j

(
y′′, x

)
, y′ – y′′〉 ≥ βj

∥
∥y′ – y′′∥∥2, ∀y′, y′′ ∈ X

for βj > 0. βj is said to be the strong monotonicity constant for �j(y, x) : Rn → R
n. The

function �j is associated with the variational inequality AVI[�, X, x] whose solution wj(x)
satisfies

〈
�j

(
w(x), x

)
– �j(x, x) + F(x), y – wj(x)

〉 ≥ 0, ∀y ∈ X.

It is known that wj(x) are continuous [21], and that x is a solution of VI[F , Cj] if and only
if it is a fixed point of w.

Assume 0 < ρj < 1 and 0 < αj < βj. Let l(j) (which depends on x) be the smallest nonneg-
ative integer for which

〈
F
(
x + ρ

l(j)
j

(
wj(x) – x

))
, x – wj(x)

〉 ≥ αj
∥∥wj(x) – xj

∥∥2.

Define

Gj(x) = F
(
x + ρ

l(j)
j

(
wj(x) – x

))
.

If x∗
j is a solution of VI[F , Cj], then wj(x∗

j ) = x∗
j , l(j) = 0, and Gj(x∗

j ) = F(x∗
j ).

Algorithm 3
Step 1. (initialization)

Let βj > 0 be the strong monotonicity constant for �j(y, x) : Rn →R
n, with respect

to y, and let αj ∈ (0,βj).

k = 0, j = 1, Ak = Aj, bk = bj, Ck
j =

{
x ∈ R

n; Ak
j x ≤ bk

j
}

;

Step 2. (computation of an approximate analytic center)
Find an approximate analytic center xk

j of Ck
j ;

Step 3. (stop criterion)
Compute gX(xk

j ) = maxx∈X F(xk
j )T (xk

j – x),
if gX(xk

j ) = 0, then STOP,
else GO TO step 4;
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Step 4. (find an ε-solution for ε = 1
2j )

Compute gCj (x
k
j ) = maxx∈Cj F(xk

j )T (xk
j – x),

if gCj (x
k
j ) < 1

2j , then increase j by one RETURN TO Step 1,
else GO TO Step 5;

Step 5. (auxiliary variational inequality)
Let wj(xk

j ) satisfy the variational inequality

〈
F
(
xk

j
)

+ �j
(
wj

(
xk

j
)
, xk

j
)

– �j
(
xk

j , xk
j
)
, y – wj

(
xk

j
)〉 ≥ 0, ∀y ∈ Cj.

Let

yk
j = xk

j + ρ
l(k,j)
j

(
wj

(
xk

j
)

– xk
j
)

and Gj
(
xk

j
)

= F
(
yk

j
)
,

where l(k, j) is the smallest integer which satisfies

〈
F
(
xk

j + ρ
l(k,j)
j

(
wj

(
xk

j
)

– xk
j
))

, xk
j – wj

(
xk

j
)〉 ≥ αj

∥
∥wj

(
xk

j
)

– xk
j
∥
∥2;

Step 6. (cutting plane generation)
Set

Ak+1
j =

[
Ak

j

G(xk
j )T

]

, bk+1
j =

[
bk

j

G(xk
j )T xk

j

]

,

Hk
j = {x ∈ R

n; G(xk
j )T (x – xk

j ) = 0} is the new cutting plane for VI(F , Ck
j ).

Increase k by one GO TO Step 2.

By Theorem 1 of [1], similar to the proof of Theorem 2, we have the following theorem.

Theorem 4 Let F : X → R
n be Lipschitz continuous, i.e., there exists a constant L > 0 such

that

(
F(y) – F(x)

)T (y – x) ≤ L‖y – x‖, ∀x, y ∈ X

on a compact convex body X, and X∗
D be nonempty. Then Algorithm 3 either stops with a

solution of VI(F , X) after a finite number of iterations, or there exists a subsequence of the
infinite sequence {xk

j } that converges to a point x∗ ∈ X∗.

Algorithm 4 Step 1, Step 2, Step 4, Step 5, and Step 6 are the same as those in Algorithm 3.
Step 3. (stop criterion)

Compute gX(xk
j ) = maxx∈X F(xk

j )T (xk
j – x),

if gX(xk
j ) < ε, then STOP,

else GO TO step 4.

By Theorem 4 we have the following.

Theorem 5 Let F : X → R
n be Lipschitz continuous on a compact convex body X and X∗

D
be nonempty. Then Algorithm 4 stops with an ε-solution of VI(F , X) after a finite number
of iterations.
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7 Generalized analytic center cutting plane algorithms for variational
inequalities with unbounded domains

This section presents analytic center cutting plane algorithms for solving a strongly pseu-
domonotone variational inequality VI[F , X] whose domain is an unbounded convex body.
By use of Propositions 1 and 2, due to the pseudomonotonicity, VI[F , X] has a unique
solution x∗ over X. Let {Cj} be a sequence of polytopes that satisfies

Cj ⊆ Cj+1 (j = 1, . . .), and

( ∞⋃

j=1

Cj

)c

= X,

then VI[F , Cj] has a unique solution x∗
j over Cj (j = 1, 2, . . . ). We can always assume that Cj

contains all boundary points of X (if there are any). Since the solution x∗ of VI[F , X] is a
fixed point, x∗ lies in Cj if j is large enough (say j > k), therefore by Lemma 2 x∗

j = x∗ (j > k).
The following algorithm is proposed here to find x∗.

Algorithm 5
Step 1. (initialization)

k = 0, j = 1, Ak = Aj, bk = bj, Ck
j =

{
x ∈ R

n; Ak
j x ≤ bk

j
}

;

Step 2. (find an ε-solution for ε = 1
2j )

Find an approximate analytic center xk
j of Ck

j .
Compute gCj (x

k
j ) = maxx∈Cj F(xk

j )T (xk
j – x),

if gCj (x
k
j ) < 1

2j , then increase j by one RETURN TO Step 1,
else GO TO Step 3;

Step 3. (cut generation)
Set

Ak+1
j =

[
Ak

j

F(xk
j )T

]

, bk+1
j =

[
bk

j

F(xk
j )T xk

j

]

,

Hk
j = {x ∈ R

n; F(xk
j )T (x – xk

j ) = 0} is the new cutting plane for VI(F , Ck
j ).

Increase k by one GO TO Step 2.

Theorem 6 Let F : X →R
n be strongly monotone on X , then Algorithm 5 either stops with

a solution of VI(F , X) after a finite number of iterations, or there exists a subsequence of the
infinite sequence {xk

j } that converges to a point x∗ ∈ X∗.

Proof F is strongly monotone on X implies that there exists a constant N > 0 such that
[22]

max
y∈X

F(x)T (x – y) ≥ N‖x – y‖2, ∀x ∈ X.

Let x∗
j be the unique solution of VI[F , Cj] over Cj (j = 1, 2, . . . ). Suppose all boundary

points of X (if there are any) are in Cj (j = 1, 2, . . . ). Then, if j is large enough (say j > k), by
Lemma 2 we have

x∗
j = x∗ (j > k).
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If Algorithm 5 does not stop after a finite number of iterations, then exists an infinite
sequence {xj} ⊆ X with xj ∈ Cj such that

gCj (xj) <
1
2j (j = 1, 2, . . . ).

Hence

N
∥
∥xj – x∗∥∥2 = N

∥
∥xj – x∗

j
∥
∥2 ≤ gCj (xj) = max

y∈Cj
F(x)T (xj – y) <

1
2j (j > k),

which implies that {xj} is a bounded sequence. Therefore, ∃subsequence of {xj}, which is
convergent to x∗∗ in X. Similar to the proof of Theorem 2, x∗∗ is a solution for VI[F , X],
and so x∗∗ = x∗. �

We notice that, in the proof of Theorem 6, the key condition is that {xj} in X is a bounded
subsequence. Therefore, similarly we have the following theorem.

Theorem 7 Let F : X → R
n be strongly pseudomonotone on X , then Algorithm 5 either

stops with a solution of VI(F , X) after a finite number of iterations, or there exists a subse-
quence of the infinite sequence in X that converges to a point x∗ ∈ X.

Theorems 6 and 7 state that Algorithm 5 can always stop and output an approximate
solution after a finite number of iterations.
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