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Abstract
This paper is devoted to studying the global existence and blow-up results for the
following p-Laplacian parabolic problems:

⎧
⎪⎨

⎪⎩

(h(u))t =∇ · (|∇u|p–2∇u) + f (u) in D× (0, t∗),
∂u
∂n = g(u) on ∂D× (0, t∗),
u(x, 0) = u0(x) ≥ 0 in D.

Here p > 2, the spatial region D in R
N (N ≥ 2) is bounded, and ∂D is smooth. We set

up conditions to ensure that the solution must be a global solution or blows up in
some finite time. Moreover, we dedicate upper estimates of the global solution and
the blow-up rate. An upper bound for the blow-up time is also specified. Our research
relies mainly on constructing some auxiliary functions and using the parabolic
maximum principles and the differential inequality technique.
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1 Introduction
For more than ten years, many authors have discussed the blow-up phenomena of p-
Laplacian parabolic problems. We refer the readers to [1–11] and the references therein.
In this paper, we intend to study the blow-up phenomena of the following p-Laplacian
parabolic problems:

⎧
⎪⎪⎨

⎪⎪⎩

(h(u))t = ∇ · (|∇u|p–2∇u) + f (u) in D × (0, t∗),
∂u
∂n = g(u) on ∂D × (0, t∗),

u(x, 0) = u0(x) ≥ 0 in D.

(1.1)

In (1.1), p > 2, the spatial region D in R
N (N ≥ 2) is bounded, ∂D is smooth, t∗ is the blow-

up time if the blow-up occurs, otherwise t∗ = +∞, h(s) is a C2(R+) function with h′(s) > 0,
s ∈ R+, f (s) is a positive C1(R+) function, g(s) is a positive C2(R+) function, and u0(x)
is a nonnegative C2(D) function with ∂u0(x)/∂n = g(u0), x ∈ ∂D. The above assumptions

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1665-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1665-3&domain=pdf
http://orcid.org/0000-0002-3616-5785
mailto:djuntang@sxu.edu.cn


Ding Journal of Inequalities and Applications  (2018) 2018:67 Page 2 of 14

and the regularity theorem in [12] guarantee that the nonnegative classical solution u of
problem (1.1) satisfies u ∈ C3(D × (0, T)) ∩ C2(D × [0, T)).

The blow-up problems for parabolic equations with nonlinear boundary conditions have
been widely investigated in recent years (see, e.g., [1, 6, 13–26]). In order to study prob-
lem (1.1), we focus on the papers [1, 16], and [22]. In [1], Ding and Shen considered the
following problems:

⎧
⎪⎪⎨

⎪⎪⎩

(h(u))t = ∇ · (|∇u|p–2∇u) + f (u) in D × (0, t∗),

|∇u|p–2 ∂u
∂n = g(u) on ∂D × (0, t∗),

u(x, 0) = u0(x) ≥ 0 in D.

(1.2)

In (1.2), p ≥ 2, the spatial region D in R
N (N ≥ 2) is bounded and convex, and ∂D is

smooth. By constructing some auxiliary functions and using the differential inequality
technique, they established the conditions on functions f , g , h, and u0 to ensure that the
solution u blows up at some time. In addition, an upper bound and a lower bound of the
blow-up time were obtained. The method in [1] is not suitable for the study of problem
(1.1) because of the different boundary conditions of problem (1.1) and problem (1.2).
Zhang et al. [16] and Zhang [22] dealt with the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

(h(u))t = ∇ · (a(u)∇u) + f (u) in D × (0, t∗),
∂u
∂n = g(u) on ∂D × (0, t∗),

u(x, 0) = u0(x) > 0 in D.

(1.3)

In (1.3), the spatial region D in R
N (N ≥ 2) is bounded, and ∂D is smooth. By constructing

some auxiliary functions and using parabolic maximum principles, they set up the con-
ditions on functions a, f , g , h, and u0 to guarantee that the solution either blows up in
a finite time or exists globally. Moreover, an upper estimate of the blow-up rate and an
upper bound of the blow-up time are given. They also obtained an upper estimate of the
global solution. We intend to use the methods in [16] and [22] to study problem (1.1).
Since the principal parts of the two equations are different in problems (1.1) and (1.3), the
auxiliary functions in papers [16] and [22] are not suitable for problem (1.1). Therefore,
the key to our research is to construct some new auxiliary functions. By using these new
auxiliary functions, parabolic maximum principles, and differential inequality techniques,
we complete the study of problem (1.1).

We proceed as follows. In Sect. 2, we set up some conditions to ensure that the solution
blows up in a finite time. An upper estimate of the blow-up solution and an upper bound
of the blow-up time are also given. Section 3 is devoted to finding some conditions to guar-
antee that the solution exists globally. At the same time, we also obtain an upper estimate
of the global solution. In Sect. 4, as applications of the abstract results, two examples are
presented.

In this paper, for convenience, we use a comma to denote partial differentiation, for
example, u,i = ∂u

∂xi
, u,ij = ∂2u

∂xi ∂xj
. We also adopt summation convection, for example,

u,iu,ju,ij =
n∑

i=1

n∑

j=1

∂u
∂xi

∂u
∂xj

∂2u
∂xi ∂xj

.
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2 Blow-up solution
In order to study the blow-up solution of (1.1), we define

α = inf
s∈R+

f (s)
g(s)h′(s)e–s (2.1)

and

β = min
D

∇ · (|∇u0|p–2∇u0) + f (u0)
g(u0)h′(u0)e–u0

. (2.2)

We also construct the following two auxiliary functions:

P(x, t) = –
1

g(u)
ut + βe–u, (x, t) ∈ D × [

0, t∗), (2.3)

�(s) =
∫ +∞

s

eτ

g(τ )
dτ , s ∈R+. (2.4)

Since g(s) is a positive C2(R+) function, we have

�′(s) = –
es

g(s)
< 0, s ∈R+,

which means that the function � has an inverse function �–1. With the aid of the above
two auxiliary functions, we can get the following Theorem 2.1 that is the main result on
the blow-up solution.

Theorem 2.1 Let u be a nonnegative classical solution of (1.1). Assume that the following
three assumptions are true:

(i)

0 < β ≤ α; (2.5)

(ii)

∫ +∞

M0

eτ

g(τ )
dτ < +∞, M0 = max

D
u0(x); (2.6)

(iii)

1 – 2
g ′(s)
g(s)

+
g ′′(s)
g(s)

≥ 0, (p – 2)
(

g ′(s)
g(s)

– 1
)

–
h′′(s)
h′(s)

≥ 0,

f ′(s)
f (s)

– (p – 1)
(

g ′(s)
g(s)

– 1
)

≥ 0, s ∈R+.
(2.7)

Then the solution u must blow up in a finite time t∗ and

t∗ ≤ 1
β

∫ +∞

M0

eτ

g(τ )
dτ
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as well as

u(x, t) ≤ �–1(β
(
t∗ – t

))
, (x, t) ∈ D × [

0, t∗).

Proof For the auxiliary function P(x, t) defined in (2.3), by calculating, we have

P,i =
g ′

g2 utu,i –
1
g

ut,i – βe–uu,i (2.8)

and

P,ij =
(

g ′′

g2 – 2
(g ′)2

g3

)

utu,iu,j +
g ′

g2 u,iut,j +
g ′

g2 utu,ij +
g ′

g2 ut,iu,j –
1
g

ut,ij

+ βe–uu,iu,j – βe–uu,ij. (2.9)

With (2.9), we get

�P = P,ii

=
(

g ′′

g2 – 2
(g ′)2

g3

)

|∇u|2ut + 2
g ′

g2 (∇u · ∇ut) +
g ′

g2 ut�u –
1
g
�ut

+ βe–u|∇u|2 – βe–u�u. (2.10)

Using the first equation of (1.1), we obtain

Pt =
g ′

g2 (ut)2 –
1
g

(ut)t – βe–uut

=
g ′

g2 (ut)2 – βe–uut –
1
g

(∇ · (|∇u|p–2∇u)
h′ +

f
h′

)

t

=
g ′

g2 (ut)2 – βe–uut +
h′′

g(h′)2 |∇u|p–2ut�u – (p – 2)
1

gh′ |∇u|p–4(∇u · ∇ut)�u

–
1

gh′ |∇u|p–2�ut + (p – 2)
h′′

g(h′)2 |∇u|p–4utu,iu,ju,ij

– (p – 2)(p – 4)
1

gh′ |∇u|p–6(∇u · ∇ut)u,iu,ju,ij – 2(p – 2)
1

gh′ |∇u|p–4ut,iu,ju,ij

– (p – 2)
1

gh′ |∇u|p–4u,iu,jut,ij +
(

fh′′

g(h′)2 –
f ′

gh′

)

ut . (2.11)

It follows from (2.9)–(2.11) that

1
h′ |∇u|p–2�P + (p – 2)

1
h′ |∇u|p–4u,iu,jP,ij – Pt

= (p – 1)
(

g ′′

g2h′ – 2
(g ′)2

g3h′

)

|∇u|put + 2(p – 1)
g ′

g2h′ |∇u|p–2(∇u · ∇ut)

+
(

g ′

g2h′ –
h′′

g(h′)2

)

|∇u|p–2ut�u + β(p – 1)
e–u

h′ |∇u|p – β
e–u

h′ |∇u|p–2�u

+ (p – 2)
(

g ′

g2h′ –
h′′

g(h′)2

)

|∇u|p–4utu,iu,ju,ij – β(p – 2)
e–u

h′ |∇u|p–4u,iu,ju,ij
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–
g ′

g2 (ut)2 +
(

βe–u +
f ′

gh′ –
fh′′

g(h′)2

)

ut + (p – 2)
1

gh′ |∇u|p–4(∇u · ∇ut)�u

+ (p – 2)(p – 4)
1

gh′ |∇u|p–6(∇u · ∇ut)u,iu,ju,ij

+ 2(p – 2)
1

gh′ |∇u|p–4ut ,i u,ju,ij. (2.12)

By (2.8), we have

ut,i = –gP,i +
g ′

g2 utu,i – βge–uu,i (2.13)

and

∇ut = –g∇P +
g ′

g
ut∇u – βge–u∇u. (2.14)

Inserting (2.13) and (2.14) into (2.12), we arrive at

1
h′ |∇u|p–2�P + (p – 2)

1
h′ |∇u|p–4u,iu,jP,ij

+
1
h′ |∇u|p–6

(

2(p – 1)
g ′

g
|∇u|4 + (p – 2)(p – 4)u,iu,ju,ij + (p – 2)|∇u|2�u

)

× (∇u · ∇P) + 2(p – 2)
1
h′ |∇u|p–4u,ju,ijP,i – Pt

= (p – 1)
g ′′

g2h′ |∇u|put +
(

β(p – 1)
e–u

h′ – 2β(p – 1)
g ′e–u

gh′

)

|∇u|p

+
(

(p – 1)
g ′

g2h′ –
h′′

g(h′)2

)

|∇u|p–2ut�u – β(p – 1)
e–u

h′ |∇u|p–2�u

+ (p – 2)
(

(p – 1)
g ′

g2h′ –
h′′

g(h′)2

)

|∇u|p–4utu,iu,ju,ij

– β(p – 1)(p – 2)
e–u

h′ |∇u|p–4u,iu,ju,ij

–
g ′

g2 (ut)2 +
(

βe–u +
f ′

gh′ –
fh′′

g(h′)2

)

ut . (2.15)

It follows from the first equation of (1.1) that

|∇u|p–2�u = h′ut – (p – 2)|∇u|p–4u,iu,ju,ij – f . (2.16)

Substituting (2.16) into (2.15), we deduce

1
h′ |∇u|p–2�P + (p – 2)

1
h′ |∇u|p–4u,iu,jP,ij

+
1
h′ |∇u|p–6

(

2(p – 1)
g ′

g
|∇u|4 + (p – 2)(p – 4)u,iu,ju,ij + (p – 2)|∇u|2�u

)

× (∇u · ∇P) + 2(p – 2)
1
h′ |∇u|p–4u,ju,ijP,i – Pt
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= (p – 1)
g ′′

g2h′ |∇u|put +
(

β(p – 1)
e–u

h′ – 2β(p – 1)
g ′e–u

gh′

)

|∇u|p

+
(

(p – 2)
g ′

g2 –
h′′

gh′

)

(ut)2 +
(

f ′

gh′ – (p – 1)
g ′f

g2h′ – β(p – 2)e–u
)

ut

+ β(p – 1)
f e–u

h′ . (2.17)

With (2.3), we have

ut = gP + βge–u. (2.18)

Inserting (2.18) into (2.17), we derive

1
h′ |∇u|p–2�P + (p – 2)

1
h′ |∇u|p–4u,iu,jP,ij

+
1
h′ |∇u|p–6

(

2(p – 1)
g ′

g
|∇u|4 + (p – 2)(p – 4)u,iu,ju,ij + (p – 2)|∇u|2�u

)

× (∇u · ∇P) + 2(p – 2)
1
h′ |∇u|p–4u,ju,ijP,i

+
[

(p – 1)
g ′′

gh′ |∇u|p +
(

gh′′

h′ – (p – 2)g ′
)

(
P – 2βe–u)

+
f ′

h′ – (p – 1)
g ′f
gh′ – β(p – 2)ge–u

]

P – Pt

= β(p – 1)
e–u

h′

(

1 – 2
g ′

g
+

g ′′

g

)

|∇u|p + β2ge–2u
[

(p – 2)
(

g ′

g
– 1

)

–
h′′

h′

]

+ β
f e–u

h′

[
f ′

f
– (p – 1)

(
g ′

g
– 1

)]

. (2.19)

Assumption (2.7) guarantees that the right-hand side of equality (2.19) is nonnegative.
Hence, we have

1
h′ |∇u|p–2�P + (p – 2)

1
h′ |∇u|p–4u,iu,jP,ij

+
1
h′ |∇u|p–6

(

2(p – 1)
g ′

g
|∇u|4 + (p – 2)(p – 4)u,iu,ju,ij + (p – 2)|∇u|2�u

)

× (∇u · ∇P) + 2(p – 2)
1
h′ |∇u|p–4u,ju,ijP,i

+
[

(p – 1)
g ′′

gh′ |∇u|p +
(

gh′′

h′ – (p – 2)g ′
)

(
p – 2βe–u)

+
f
h′ – (p – 1)

g ′f
gh′ – β(p – 2)ge–u

]

P

– Pt ≥ 0 in D × (
0, t∗). (2.20)

The regularity assumptions on functions f , g , and h in Sect. 1, parabolic maximum prin-
ciples [27], and (2.20) imply that under the following three possible cases, P may take its
nonnegative maximum value:

(a) for t = 0,
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(b) at a point where |∇u| = 0,
(c) on the boundary ∂D × (0, t∗).
First, we consider case (a). With (2.2), we deduce

P(x, 0) = –
1

g(u0)

{
1

h′(u0)
[∇ · (|∇u0|p–2∇u0

)
+ f (u0)

]
}

+ βe–u0

= e–u0

(

β –
∇ · (|∇u0|p–2∇u0) + f (u0)

g(u0)h′(u0)e–u0

)

≤ 0 in D. (2.21)

Then, we consider case (b). Assume that (x̃, t̃) ∈ D × (0, t∗) is a point where |∇u(x̃, t̃)| = 0.
Now we have

∣
∣∇ · (|∇u|p–2∇u

)∣
∣ =

∣
∣|∇u|p–2�u + (p – 2)|∇u|p–4u,iu,ju,ij

∣
∣

≤ |∇u|p–2|�u| + (p – 2)|∇u|p–4|∇u||∇u||u,ij|
= |∇u|p–2(|�u| + (p – 2)|u,ij|

)
.

Hence, we obtain

∣
∣∇ · (|∇u|p–2∇u

)∣
∣
∣
∣
(x̃,t̃) ≤ |∇u|p–2(|�u| + (p – 2)|u,ij|

)∣
∣
(x̃,t̃) = 0;

that is,

∇ · (|∇u|p–2∇u
)∣
∣
(x̃,t̃) = 0. (2.22)

It follows from (2.22), (2.1), and (2.5) that

P(x̃, t̃) =
(

–
1

g(u)
ut + βe–u

)∣
∣
∣
∣
(x̃,t̃)

=
{

–
1

g(u)h′(u)
[∇ · (|∇u|p–2∇u0

)
+ f (u)

]
+ βe–u

}∣
∣
∣
∣
(x̃,t̃)

=
(

–
f (u)

g(u)h′(u)
+ βe–u

)∣
∣
∣
∣
(x̃,t̃)

=
[

e–u
(

β –
f (u)

g(u)h′(u)e–u

)]∣
∣
∣
∣
(x̃,t̃)

≤ e–u(β – α)
∣
∣
(x̃,t̃) ≤ 0. (2.23)

Finally, we consider case (c). Making use of the boundary condition of (1.1), we get

∂P
∂n

=
g ′

g2 ut
∂u
∂n

–
1
g

∂ut

∂n
– βe–u ∂u

∂n
=

g ′

g
ut –

1
g

(
∂u
∂n

)

t
– βe–ug

=
g ′

g
ut –

1
g

gt – βe–ug = –βe–ug < 0 on ∂D × (
0, t∗). (2.24)

Parabolic maximum principles, (2.21), and (2.23)–(2.24) guarantee that the maximum
value of P in D × [0, t∗) is nonpositive. Hence, we have

P(x, t) ≤ 0 in D × [
0, t∗),
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from which we obtain the following differential inequality:

eu

βg(u)
ut ≥ 1. (2.25)

At the point x̄ ∈ D, where u0(x̄) = M0, integrating (2.25) from 0 to t, we derive

1
β

∫ t

0

eu

g(u)
ut dt =

1
β

∫ u(x̄,t)

M0

eτ

g(τ )
dτ ≥ t, (2.26)

which implies that u must blow up in a finite time t∗. In fact, suppose that u is a global
solution, then for any t > 0, we deduce

1
β

∫ +∞

M0

eτ

g(τ )
dτ >

1
β

∫ u(x̄,t)

M0

eτ

g(τ )
dτ ≥ t. (2.27)

Taking the limit as t → +∞ in (2.27), we arrive at

1
β

∫ +∞

M0

eτ

g(τ )
dτ = +∞,

which contradicts (2.6). This contradiction suggests that u must blow up in a finite time t∗.
Letting t → t∗ in (2.26), we have

t∗ ≤ 1
β

∫ +∞

M0

eτ

g(τ )
dτ .

For each fixed x ∈ D, integrating (2.25) from t to t̃ (0 < t < t̃ < t∗), we get

�
(
u(x, t)

) ≥ �
(
u(x, t)

)
– �

(
u(x, t̃)

)
=

∫ u(x,t̃)

u(x,t)

eτ

g(τ )
dτ ≥ β(t̃ – t). (2.28)

Passing to the limit as t̃ → t∗ in (2.28), we obtain

�
(
u(x, t)

) ≥ β
(
t∗ – t

)
,

from which we deduce

u(x, t) ≤ �–1(β
(
t∗ – t

))
.

The proof is complete. �

3 Global solution
In order to complete the study of the global solution to (1.1), we define

ξ = sup
s∈R+

f (s)
g(s)h′(s)es (3.1)
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and

η = max
D

∇ · (|∇u0|p–2∇u0) + f (u0)
g(u0)h′(u0)eu0

. (3.2)

We also construct the following two auxiliary functions:

Q(x, t) = –
1

g(u)
ut + ηeu, (x, t) ∈ D × [

0, t∗), (3.3)


(s) =
∫ s

m0

e–τ

g(τ )
dτ , s ≥ m0 = min

D
u0(x). (3.4)

Here g(s) is a positive C2(R+) function to ensure


 ′(s) =
e–s

g(s)
> 0, s ≥ m0.

This implies that the inverse function 
–1 of the function 
 exists. The following Theo-
rem 3.1 is the main result of the global solution to problem (1.1).

Theorem 3.1 Let u be a nonnegative classical solution of (1.1). Assume that the following
three assumptions are satisfied:

(i)

η ≥ ξ > 0; (3.5)

(ii)

∫ +∞

m0

e–τ

g(τ )
dτ = +∞; (3.6)

(iii)

1 + 2
g ′(s)
g(s)

+
g ′′(s)
g(s)

≤ 0, (p – 2)
(

g ′(s)
g(s)

+ 1
)

–
h′′(s)
h′(s)

≤ 0,

f ′(s)
f (s)

– (p – 1)
(

g ′(s)
g(s)

+ 1
)

≤ 0, s ∈ R.
(3.7)

Then u must be a global solution and

u(x, t) ≤ 
–1(ηt + 

(
u0(x, t)

))
, (x, t) ∈ D ×R+.

Proof By using the reasoning process (2.8)–(2.19) for the auxiliary function Q defined in
(3.3), we have

1
h′ |∇u|p–2�Q + (p – 2)

1
h′ |∇u|p–4u,iu,jQ,ij

+
1
h′ |∇u|p–6

(

2(p – 1)
g ′

g
|∇u|4 + (p – 2)(p – 4)u,iu,ju,ij + (p – 2)|∇u|2�u

)
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× (∇u · ∇Q) + 2(p – 2)
1
h′ |∇u|p–4u,ju,ijQ,i

+
[

(p – 1)
g ′′

gh′ |∇u|p +
(

gh′′

h′ – (p – 2)g ′
)

(
Q – 2ηeu)

+
f ′

h′ – (p – 1)
g ′f
gh′ + η(p – 2)geu

]

Q – Qt

= η(p – 1)
eu

h′

(

1 + 2
g ′

g
+

g ′′

g

)

|∇u|p + η2ge2u
[

(p – 2)
(

g ′

g
+ 1

)

–
h′′

h

]

+ η
f eu

h′

[
f ′

f
– (p – 1)

(
g ′

g
+ 1

)]

. (3.8)

It follows from (3.7) and (3.8) that

1
h′ |∇u|p–2�Q + (p – 2)

1
h′ |∇u|p–4u,iu,jQ,ij

+
1
h′ |∇u|p–6

(

2(p – 1)
g ′

g
|∇u|4 + (p – 2)(p – 4)u,iu,ju,ij + (p – 2)|∇u|2�u

)

× (∇u · ∇Q) + 2(p – 2)
1
h′ |∇u|p–4u,ju,ijQ,i

+
[

(p – 1)
g ′′

gh′ |∇u|p +
(

gh′′

h′ – (p – 2)g ′
)

(
Q – 2ηeu)

+
f ′

h′ – (p – 1)
g ′f
gh′ + η(p – 2)geu

]

Q

– Qt ≤ 0 in D × (
0, t∗).

The parabolic maximum principle guarantees that in the following three possible cases,
Q may take its nonpositive minimum value:

(a) for t = 0,
(b) at a point where |∇u| = 0,
(c) on the boundary ∂D × (0, t∗).
First, case (a) is considered. By (3.2), we deduce

Q(x, 0) = –
1

g(u0)

{
1

h′(u0)
[∇ · (|∇u0|p–2∇u0

)
+ f (u0)

]
}

+ ηeu0

= eu0

(

η –
∇ · (|∇u0|p–2∇u0) + f (u0)

g(u0)h′(u0)eu0

)

≥ 0 in D. (3.9)

Then, case (b) is considered. Repeating the reasoning process of (2.23) and using (2.22),
(3.1), and (3.5), we have

Q(x̃, t̃) =
[

eu
(

η –
f (u)

g(u)h′(u)eu

)]∣
∣
∣
∣
(x̃,t̃)

≥ eu(η – ξ )
∣
∣
(x̃,t̃) ≥ 0, (3.10)

where (x̃, t̃) ∈ D × (0, t∗) is a point where |∇u(x̃, t̃)| = 0. Finally, case (c) is considered. With
the aid of the reasoning process in (2.24), it is easy to get

∂Q
∂n

= ηeu ∂u
∂n

= ηeug > 0 in ∂D × (
0, t∗). (3.11)
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Combining (3.9)–(3.11) and parabolic maximum principles, we can obtain that the min-
imum value of Q in D × [0, t∗) is nonnegative. In other words, we have

Q(x, t) ≥ 0 in D × [
0, t∗),

which implies that the following differential inequality holds:

e–u

ηg(u)
ut ≤ 1. (3.12)

For each fixed x ∈ D, integrating (3.12) from 0 to t, we deduce

1
η

∫ t

0

e–u

g(u)
ut dt =

1
η

∫ u(x,t)

u0(x)

e–τ

g(τ )
dτ ≤ t, (3.13)

which guarantees that u must be a global solution. In fact, if we assume that u blows up at
a finite time t∗, then the following conclusion holds:

lim
t→t∗–

u(x, t) = +∞.

Letting t → t∗– in (3.13), we have

1
η

∫ +∞

u0(x)

e–τ

g(τ )
dτ ≤ t∗

and

1
η

∫ +∞

m0

e–τ

g(τ )
dτ =

1
η

∫ u0(x)

m0

e–τ

g(τ )
dτ +

1
η

∫ +∞

u0(x)

e–τ

g(τ )
dτ ≤ 1

η

∫ u0(x)

m0

e–τ

g(τ )
dτ + t∗ < +∞,

which contradicts (3.6). This shows that u must be a global solution. It follows from (3.13)
that

∫ u(x,t)

u0(x)

e–τ

g(τ )
dτ =

∫ u(x,t)

m0

e–τ

g(τ )
dτ –

∫ u0(x)

m0

e–τ

g(τ )
dτ = 


(
u(x, t)

)
– 


(
u0(x)

) ≤ ηt,

from which we get

u(x, t) ≤ 
–1(ηt + 

(
u0(x)

))
.

The proof is complete. �

4 Applications
In this section, we give two examples to illustrate the results of Theorems 2.1 and 3.1.

Example 4.1 Let u be a nonnegative classical solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

(ueu)t = ∇ · (|∇u|2∇u) + e6u in D × (0, t∗),
∂u
∂n = 2e2(u–1) on ∂D × (0, t∗),

u(x, 0) = u0(x) =
∑3

i=1 x2
i in D,
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where the spatial region D = {x = (x1, x2, x3) | ∑3
i=1 x2

i < 1}. It is easy to see that

p = 4, h(u) = ueu, g(u) = 2e2(u–1), f (u) = e6u.

Now we have

α = inf
s∈R+

f (s)
g(s)h′(s)e–s =

e2

2
inf

s∈R+

e4s

1 + s
=

e2

2

and

β = min
D

∇ · (|∇u0|2∇u0) + f (u0)
g(u0)h′(u0)e–u0

=
e2

2
min

D

40u0 + e6u0

(1 + u0)e2u0
=

e2

2
min

0≤s≤1

40s + e6s

(1 + s)e2s =
e2

2
.

We easily verify that the three assumptions (2.5)–(2.7) of Theorem 2.1 hold. It follows
from Theorem 2.1 that u must blow up in a finite time t∗ and

t∗ ≤ 1
β

∫ +∞

M0

eτ

g(τ )
dτ =

∫ +∞

1

1
eτ

dτ =
1
e

,

u(x, t) ≤ �–1(β
(
t∗ – t

))
= �–1

(
e2

2
(
t∗ – t

)
)

= ln
1

t∗ – t
.

Example 4.2 Let u be a nonnegative classical solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

(ueu)t = ∇ · (|∇u|2∇u) + e–4u in D × (0, T),
∂u
∂n = 2e2(1–u) on ∂D × (0, T),

u(x, 0) =
∑3

i=1 x2
i in D,

where the spatial region D = {x = (x1, x2, x3) | ∑3
i=1 x2

i < 1}. Now

p = 4, h(u) = ueu, g(u) = 2e2(1–u), f (u) = e–4u.

We have

ξ = sup
s∈R+

f (s)
g(s)h′(s)es =

1
2e2 sup

s∈R+

1
(1 + s)e4s =

1
2e2

and

η = max
D

∇ · (|∇u0|2∇u0) + f (u0)
g(u0)h′(u0)eu0

=
1

2e2 max
D

40u0 + e–4u0

1 + u0

=
1

2e2 max
0≤s≤1

40s + e–4s

1 + s
=

10
e2 +

1
4e6 .

It is easy to check that the three assumptions (3.5)–(3.7) of Theorem 3.1 hold. Theorem 3.1
ensures that u must be a global solution and

u(x, t) ≤ 
–1(ηt + 

(
u0(x)

))
= ln

[(

20 +
1

2e4

)

t + exp

( 3∑

i=1

x2
i

)]

.
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5 Conclusion
In this paper, we research the blow-up and global solutions of p-Laplacian parabolic prob-
lem (1.1). We find that it is difficult to study the existence of blow-up and global solutions
of problem (1.1) by using the differential inequality technique in [1]. The main reason
for this is that the boundary conditions in problems (1.1) and (1.2) are different. As in
[16] and [22], we combine the parabolic maximum principle with differential inequality
to study problem (1.1). The difficulty of using this method is the need to construct some
appropriate auxiliary functions. Since the principal parts of the two equations are different
in problems (1.1) and (1.3), the auxiliary functions in papers [16] and [20] are not suitable
for problem (1.1). Therefore, the key to our study is to construct new auxiliary functions
P, �, Q, and 
 defined in (2.3), (2.4), (3.3), and (3.4), respectively. Using these auxiliary
functions, the parabolic maximum principle, and the differential inequality technique, we
complete the study of (1.1). We set up the conditions on functions f , g , h, and u0 to ensure
that the solution of (1.1) either blows up or exists globally. In addition, an upper estimate
of the global solution and the blow-up rate are obtained. We also give an upper bound for
the blow-up time.
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