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Abstract
We investigate a new kind of Hardy operator Hμ with respect to arbitrary positive
measures μ and prove that Hμ is bounded on Lp(dμ) with an upper constant
p/(p – 1). Moreover, we characterize a sufficient condition about the measure which
makes p/(p – 1) to be the Lp-norm of Hμ.
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1 Introduction
Let μ be a positive measure on [0,∞) and f be a nonnegative μ-measurable function.
Define Hardy operator with respect to the measure μ by

Hμf (x) =
1

μ([0, x])

∫
[0,x]

f (t) dμ(t), (1)

if 0 < μ([0, x]) < ∞, and set Hμf (x) = 0, if μ([0, x]) = 0 or ∞.
Observe that if μ is Lebesgue measure, then Hμ becomes the classical Hardy operator

Hf (x) =
1
x

∫ x

0
f (t) dt, (2)

and if μ =
∑∞

k=1 δk , then Hμ becomes the discrete Hardy operator

Hf (k) =
f (1) + · · · + f (k)

k
.

For 1 < p < ∞, reference [1] showed that the two operators are bounded on Lp and lp re-
spectively. Moreover, for both, the best constants are p/(p – 1) and the maximizing func-
tions do not exist. We refer the reader to [2–6] for the background material and further
references.

Hardy operator has a close relationship with Hardy–Littlewood maximal operator. From
the point of rearrangement, Hf is equivalent to Mf (see reference [7]). In reference [8],
Grafakos considered the Lp-boundedness for the maximal functions associated with gen-
eral measures. In this paper, we shall discuss the sharp problems about Hμ. We will
show that the operator Hμ is bounded on Lp(dμ) with an upper bound no more than
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p/(p – 1). Furthermore, we will characterize a sufficient condition about μ such that
‖Hμ‖Lp→Lp = p/(p – 1).

From the definition about Hμ, it is not necessary to consider the points x such that
μ([0, x]) = 0 or ∞. Therefore, we let

a = inf
{

x : μ
(
[0, x]

)
> 0

}
,

and

b =

⎧⎨
⎩

∞ if B = ∅,

inf B if B �= ∅,

where B denotes the set {x : μ([0, x]) = ∞ or μ([x,∞)) = 0}. Then we call that the measure
μ is supported in the interval [a, b].

For the case of weak type inequality, the best constant from Lp(dμ) to Lp,∞(dμ) is al-
ways 1.

Theorem 1.1 Let μ be a positive measure on [0,∞] and 1 ≤ p < ∞. Then we have

‖Hμ‖Lp(dμ)→Lp,∞(dμ) = 1.

Theorem 1.2 Suppose that μ is supported in [a, b] and f ∈ Lp(dμ) with 1 < p < ∞. For
f �= 0, define

Rμ(f ) =
‖Hμf ‖Lp(dμ)

‖f ‖Lp(dμ)
.

Then the following statements hold:
(i) ‖Hμf ‖Lp(dμ) ≤ p

p–1‖f ‖Lp(dμ) holds for arbitrary positive measure μ.
(ii) There exists no function f such that Rμ(f ) = p

p–1 holds.

Theorem 1.3 If μ satisfies one of the following conditions:
Condition 1. μ([a, b]) = ∞ and

lim
x→b

μ([a, x])
μ([a, x))

= 1;

Condition 2. {a} is not an atom of μ, and

lim
x→a

μ([a, x])
μ([a, x))

= 1,

then we have

sup
f ∈Lp(dμ),f �=0

Rμ(f ) =
p

p – 1
.

We remark that there indeed exist some measures so that

sup
f ∈Lp(dμ),f �=0

Rμ(f ) <
p

p – 1
. (3)
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For example, it is easy to know that the Dirac measure δ0 satisfies inequality (3). In this
paper, we will give some more complex counterexamples.

2 Preliminary and lemmas
In the study of sharp problems, the rearrangement of function is a very useful tool. Let

df (s) = μ
({|f | > s

})
.

Then the rearrangement of f is defined by

f ∗(t) = inf
{

s > 0 : df (s) ≤ t
}

.

By the properties of the rearrangement, we can easily have

‖f ‖Lp(dμ) =
∥∥f ∗∥∥

Lp(dm).

We refer the reader to [9] for more properties of rearrangement. In reference [1], Hardy
gave the following result.

Lemma 2.1 (G.H. Hardy and J.E. Littlewood) Let (X,μ) be a measurable space. If f , g ∈
M(X,μ), then

∫
X

|fg|dμ ≤
∫ ∞

0
f ∗(t)g∗(t) dt

holds.

Moreover, the theory of rearrangement plays an important role in proving the existence
of maximizing function. This is because of the following lemma introduced by Lieb [10].

Lemma 2.2 Suppose that (M,�,μ) and (M′,�′,μ′) are two measure spaces. Let X and Y
be Lp(M,�,μ) and Lq(M′,�′,μ′) with 1 ≤ p ≤ q < ∞. Let A be a bounded linear operator
from X to Y . For f ∈ X with f �= 0, set

R(f ) =
‖Af ‖Y

‖f ‖X

and

N = sup
{
R(f ) : f �= 0

}
.

Let {fj} be a uniform norm-bounded maximizing sequence for N , and assume that fj → f �= 0
and that A(fj) → A(f ) pointwise almost everywhere. Then f maximizes, i.e., R(f ) = N .

3 The boundedness of weak-Lp

In this section, we first prove Theorem 1.1. For the sake of clarity, we define a function as

Fμ(x) := μ
(
[0, x]

)
.



Nie and Yan Journal of Inequalities and Applications  (2018) 2018:78 Page 4 of 18

Obviously Fμ increases as x → ∞. It follows from Lemma 2.1 and the definition of Hμ that

Hμf (x) =
1

μ([0, x])

∫
[0,x]

f (t) dμ(t)

≤ 1
Fμ(x)

∫
[0,Fμ(x)]

f ∗(t) dt

= Hf ∗(Fμ(x)
)
. (4)

Let

Ef ∗
μ (λ) :=

{
x : Hf ∗(Fμ(x)

)
> λ

}
.

Note that f ∗ decreases, so we easily have that Hf ∗ decreases as well. If we take

x0 = sup
{

x : Hf ∗(Fμ(x)
)

> λ
}

,

then it implies that

Ef ∗
μ (λ) = [0, x0).

Thus, we can obtain that

{
x : Hf ∗(x) > λ

} ⊃ [
0, Fμ(x0)

)
.

We conclude that

μ
({

x : Hf ∗(Fμ(x)
)

> λ
}) ≤ Fμ(x0) ≤ ∣∣{x : Hf ∗(x) > λ

}∣∣, (5)

where | · | denotes the Lebesgue measure. It follows from inequalities (4) and (5) that

supλ>0 λμ({x : Hμf (x) > λ}) 1
p

‖f ‖Lp(dμ)
≤ supλ>0 λμ({x : Hf ∗(Fμ(x)) > λ}) 1

p

‖f ∗‖Lp(dm)

≤ supλ>0 λ|{x : Hf ∗(x) > λ}| 1
p

‖f ∗‖Lp(dm)
. (6)

Since f ∗ ∈ Lp(dm), by Hölder’s inequality, we have that

Hf ∗(x) =
1
x

∫ x

0
f ∗(t) dt ≤

(
1
x

∫ x

0

∣∣f ∗(t)
∣∣p dt

) 1
p

≤ x– 1
p
∥∥f ∗∥∥

Lp(dm). (7)

Thus it is obvious to obtain that

∣∣{x : Hf ∗(x) > λ
}∣∣ ≤ ∣∣{x : x– 1

p
∥∥f ∗∥∥

Lp(dm) > λ
}∣∣ =

‖f ∗‖p
Lp(dm)

λp . (8)

From inequality (6) and inequality (8), we have

supλ>0 λμ({x : Hμf (x) > λ}) 1
p

‖f ‖Lp(dμ)
≤ 1.
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That is,

‖Hμf ‖Lp,∞(dμ)

‖f ‖Lp(dμ)
≤ 1 (9)

holds. This is equivalent to

‖Hμ‖Lp(dμ)→Lp,∞(dμ) ≤ 1. (10)

Next it suffices to show that the constant 1 is sharp for inequality (10).
Take 0 ≤ x1 < x2 < ∞ such that 0 < μ([x1, x2]) < ∞. Let g = χ[x1,x2]. It is easy to obtain

‖Hμg‖Lp,∞(dμ) = ‖g‖Lp(dμ).

The proof is completed.

4 Lp-boundedness of the operator Hμ with upper bound p/(p – 1)
Now we will show the results (i) and (ii) of Theorem 1.2.

Proof Following the proof of (5), we obtain

∫
[0,∞]

(
f
(
μ

(
[0, x]

)))p dμ(x) ≤
∫

[0,∞]
f p(x) dx. (11)

By inequality (11), we conclude that

‖Hμf ‖Lp(R+,dμ) =
(∫

R+

∣∣∣∣ 1
μ([0, x])

∫
[0,x]

f (t) dμ(t)
∣∣∣∣
p

dμ(x)
) 1

p

≤
(∫

R+

∣∣∣∣ 1
Fμ(x)

∫
[0,Fμ(x)]

f ∗(t) dt
∣∣∣∣
p

dμ(x)
) 1

p

=
(∫

R+

∣∣Hf ∗(Fμ(x)
)∣∣p dμ(x)

) 1
p

≤
(∫

R+

∣∣Hf ∗(x)
∣∣p dx

) 1
p

. (12)

It follows from the inequality of classical Hardy operator that

(∫
R+

∣∣Hf ∗(x)
∣∣p dx

) 1
p

≤ p
p – 1

∥∥f ∗∥∥
Lp(dm) =

p
p – 1

‖f ‖Lp(dμ). (13)

Combining inequality (12) with inequality (13), we have

‖Hμf ‖Lp(R+,dμ) ≤ p
p – 1

‖f ‖Lp(dμ).

Since the sharp function for the classical Hardy operator does not exist, it is easy to know
from inequality (12) that there exists no function f such that Rμ(f ) = p

p–1 . The proof of
the result (ii) of Theorem 1.2 is completed. �
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5 A characterization of the measure μ which ensures supf �=0 Rμ(f ) = p/(p – 1)
In this section, we try to characterize the measure μ which ensures supf �=0 Rμ(f ) = p/(p –
1). We regard μ as a complete atom measure by giving an appropriate partition on [0,∞].
We first present a partition on [0,∞] by the following two lemmas.

Lemma 5.1 Let μ be a positive measure that is supported on [0,∞]. If μ([0,∞]) = ∞ and

lim
x→∞

μ({x})
μ([0, x])

= 0,

then there exists a partition on [0,∞] as

I0 = [0, x1], I1 = (x1, x2], . . . , Ik = (xk , xk+1], . . . ,

such that

μ(Ik+1) ≥ μ(Ik),

and

lim
k→∞

μ(Ik)
μ([0, xk+1])

= 0.

Proof Let x1 be any positive number. Denote I0 = [0, x1]. Since μ is supported on [0,∞],
we have

μ(I0) > 0.

For k = 2, we let

x2 = inf
{

x : μ
(
(x1, x]

) ≥ μ
(
[0, x1]

)}
.

For k > 2, we let

xk = inf
{

x : μ
(
(xk–1, x]

) ≥ μ
(
(xk–2, xk–1]

)}
.

Denote Ik = [xk–1, xk] with k = 2, 3, . . . . Since μ([0,∞]) = ∞, we easily have

lim
k→∞

xk = ∞.

Thus, {Ik} obviously constitutes a partition of [0,∞].
We first show that

μ(Ik) ≥ μ(Ik–1)

and

μ
(
(xk , xk+1)

) ≤ μ(Ik–1). (14)
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By our construction, for any x > xk+1, it follows that

μ
(
(xk , x]

) ≥ μ
(
(Ik–1)

)
.

Thus the property of measure implies that

μ(Ik) = lim
x>xk+1

x→xk+1

μ
(
(xk , x]

) ≥ μ(Ik–1).

Moreover, if xk < x < xk+1, then μ([xk , x]) < μ(Ik–1). Thus, it follows that

μ
(
(xk , xk+1)

)
= lim

x<xk+1
x→xk+1

μ
(
(xk , x]

) ≤ μ(Ik–1).

To complete the proof, it remains to show that

lim
k→∞

μ(Ik–1)
μ([0, xk])

= 0.

This is equivalent to prove that, for any ε > 0, there is an integer N > 0 such that

μ(Ik–1)
μ([0, xk])

≤ 2ε

holds for k ≥ N .
In order to prove this result, we divide the set Z+ \ {1} into two parts:

Fε :=
{

k ∈ Z : k ≥ 2,
μ({xk})

μ((xk–1, xk))
< ε

}
(15)

and

Gε :=
{

k ∈ Z : k ≥ 2,
μ({xk})

μ((xk–1, xk))
≥ ε

}
. (16)

By definition (16), if k ∈ Gε , then we have

μ(Ik–1) ≤
(

1 +
1
ε

)
μ

({xk}
)
. (17)

We discuss the problem in two cases:
Case I. Gε is not a finite set.
Case II. Gε is a finite set.
If Gε is not a finite set, then by equality limx→∞ μ({x})

μ([0,x]) = 0, there exists an integer N ∈ Gε

such that, for any k ≥ N ,

μ({xk})
μ([0, xk])

<
ε2

1 + ε
. (18)
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Thus if k > N and k ∈ Gε , then by inequalities (17) and (18), we have

μ(Ik–1)
μ([0, xk])

≤ ε. (19)

On the other hand, if k > N and k ∈ Fε , since Gε is not a finite integer and N ∈ Gε , we can
find a series of integers k0, k0 + 1, . . . , k, such that k0 ∈ Gε , and

k0 + 1, . . . , k ∈ Fε .

By the definition of Fε and inequality (14), we can conclude that if i ∈ Fε , then

μ
(
(xi–1, xi]

)
= μ

(
(xi–1, xi)

)
+ μ

({xi}
)

≤ (1 + ε)μ
(
(xi–1, xi)

)

≤ (1 + ε)μ
(
(xi–2, xi–1]

)
. (20)

It immediately implies from inequality (20) that

μ
(
(xk0 , xk]

)
=

k∑
i=k0+1

μ
(
(xi–1, xi]

)

≥
k∑

i=k0+1

(1 + ε)i–kμ
(
(xk–1, xk]

)

= μ
(
(xk–1, xk]

)1 – ( 1
1+ε

)k–k0

1 – 1
1+ε

. (21)

Thus, by inequality (21), we have

μ(Ik–1)
μ([0, xk])

≤ μ((xk–1, xk])
μ((xk0–1, xk])

≤ 1 – 1
1+ε

1 – ( 1
1+ε

)k–k0

≤ ε

1 – ( 1
1+ε

)k–k0
. (22)

Since k0 ∈ Gε , inequalities (14) and (20) imply

μ(Ik–1)
μ([0, xk])

≤ (1 + ε)k–k0
μ(Ik0–1)
μ([0, xk])

≤ (1 + ε)k–k0ε. (23)

If (1 + ε)k–k0 > 2, by inequality (22), we have

μ(Ik–1)
μ([0, xk])

≤ 2ε.

If (1 + ε)k–k0 ≤ 2, by inequality (23), we have

μ(Ik–1)
μ([0, xk])

≤ 2ε.
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At last, we conclude that if k > N and k ∈ Fε , then

μ(Ik–1)
μ([0, xk])

≤ 2ε. (24)

The proof of Case I is complete.
If Gε is a finite set, then we can find an integer k0 such that k ∈ Fε for k > k0. Then, by

inequality (22), we can find a big enough integer N such that

μ(Ik–1)
μ([0, xk])

≤ 2ε

if k ≥ N . The proof is completed. �

Lemma 5.2 Suppose that μ is supported in [0,∞]. If μ({0}) = 0 and limx→0
μ([0,x])
μ([0,x)) = 1, then

there exists a partition on (0, 1],

(x1, 1], (x2, x1], . . . , (xk , xk–1], . . . ,

such that limk→∞ xk = 0 and

lim
k→∞

μ((xk , xk–1])
μ([0, xk–1])

= 0.

Proof Without loss of generality, suppose

μ
(
[0, 1]

)
=

∞∑
k=1

1
k2 .

If μ({1}) < 1, then we set k0 = 0. If μ({1}) ≥ 1, then we set

k0 = max

{
m :

m∑
k=1

1
k2 ≤ μ

({1})
}

.

It is easy to see that

k0+1∑
k=1

1
k2 > μ

({1}).

Then we can find a positive real number x1 < 1 such that

x1 = sup

{
x : μ

(
(x, 1]

) ≥
k0+1∑
k=1

1
k2

}
.

Proceeding in this way, we set

ki = max

{
m :

m∑
k=1

1
k2 ≤ μ

(
[xi, 1]

)}
(25)



Nie and Yan Journal of Inequalities and Applications  (2018) 2018:78 Page 10 of 18

and

xi+1 = sup

{
x : μ

(
(x, 1]

) ≥
ki+1∑
k=1

1
k2

}
(26)

for i ≥ 1. By (27), (25), and (26), we can conclude

ki∑
k=1

1
k2 ≤ μ

(
[xi, 1]

) ≤ μ
(
(xi+1, 1]

) ≤
ki+1∑
k=1

1
k2 ≤ μ

(
[xi+1, 1]

)
. (27)

It is easy to see that xi > xi+1 and

lim
i→∞μ

(
[xi, 1]

) ≥ lim
i→∞

ki∑
k=1

1
k2 = μ

(
(0, 1]

)
.

Thus we have limi→∞ xi = 0. It is easy to see that

(x1, 1], (x2, x1], . . . , (xk , xk–1], . . . ,

divide (0, 1]. It can be implied from inequality (27) that

μ
(
[xi, 1]

)
+

1
(ki + 1)2 ≥

ki+1∑
k=1

1
k2 ≥ μ

(
(xi+1, 1]

)
. (28)

To prove this partition satisfying the requirement of the lemma, we define two integer
sets:

Fε =
{

k ≥ 1 :
μ({xk})

μ((xk+1, xk])
< ε

}

and

Gε =
{

k ≥ 1 :
μ({xk})

μ((xk+1, xk])
≥ ε

}
,

where ε is an arbitrary positive real number. Since limx→0
μ([0,x])
μ([0,x)) = 1, we have

limx→0
μ({x})
μ([0,x)) = 0. It is easy to find an integer N such that

μ({xi–1})
μ([0, xi–1])

< 2ε2

for any integer i > N . Thus, by the construction of Gε , if i > N and i ∈ Gε , we have

μ((xi, xi–1])
μ([0, xi–1])

< 2ε.

If i ∈ Fε , then we have

μ
(
(xi+1, xi]

) ≤ 1
1 – ε

μ
(
(xi+1, xi)

)
. (29)
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By inequalities (28) and (29), we have

μ((xi+1, xi])
μ([0, xi])

≤ 1
1 – ε

μ((xi+1, xi))
μ([0, xi])

=
1

1 – ε

μ((xi+1, 1]) – μ([xi, 1])
μ((0, 1]) – μ((xi, 1])

≤ 1
1 – ε

1/(ki + 1)2∑∞
k=ki+2 1/k2 .

Thus we can find a sufficiently large integer which is still denoted by N such that, for any
integer i > N and i ∈ Fε , there is

μ((xi, xi–1])
μ([0, xi–1])

< 2ε.

Since ε is an arbitrary real number, we have

lim
k→∞

μ((xk , xk–1])
μ([0, xk–1])

= 0.

The proof is completed. �

After finishing our preparations, we can give the proof of the result (iii) of the main
theorem.

Proof Let

Ta,b(x) =

⎧⎨
⎩

tan( π
2 ( x–a

b–a )), 0 < b < ∞;

x – a, b = ∞.
(30)

By equality (30), we can obtain a new measure denoted by μT which is supported in [0,∞]
so that, for any open interval (x, y), we have

μT
(
(x, y)

)
= μ

((
T–1

a,b(x), T–1
a,b(y)

))
.

Then it is easy to get

sup
{
Rμf

∣∣f ∈ Lp(dμ)
}

= sup
{
RμT f

∣∣f ∈ Lp(dμT )
}

.

Thus it is enough to assume that the measure μ is supported in [0,∞].
We first consider Condition 1.
By Lemma 5.1, we can divide R

+ into a series of intervals

[0, x1], (x1, x2], . . . , (xk , xk+1], . . . ,

such that

lim
k→∞

μ((xk , xk+1])
μ([0, xk])

= 0.



Nie and Yan Journal of Inequalities and Applications  (2018) 2018:78 Page 12 of 18

For any ε > 0, if we can find a function fε such that R(fε) ≥ p
p–1 – O(ε), then the proof is

completed.
By the property of the partition, there exists an integer N satisfying

μ((xk , xk+1])
μ([0, xk])

< ε

for k ≥ N . This inequality is equivalent to

μ([0, xk+1])
μ([0, xk])

< 1 + ε. (31)

Let

fε =
∞∑

k=N

μ
(
[0, xk+1]

)– 1
p –ε

χ(xk ,xk+1].

First we estimate the norm of fε

‖fε‖Lp(dμ) =

( ∞∑
k=N

μ
(
[0, xk+1]

)–1–pε
μ

(
(xk , xk+1]

)) 1
p

≥
(

1
1 + ε

) 1
p +ε

( ∞∑
k=N

μ
(
[0, xk]

)–1–pε
μ

(
(xk , xk+1]

)) 1
p

=
(

1
1 + ε

) 1
p +ε

( ∞∑
k=N

∫ μ([0,xk+1])

μ([0,xk ])
μ

(
[0, xk]

)–1–pε dt

) 1
p

≥
(

1
1 + ε

) 1
p +ε(∫ ∞

μ([0,xN ])
t–1–pε dt

) 1
p

≥
(

1
1 + ε

) 1
p +ε( 1

pε

) 1
p
μ

(
[0, xN ]

)–ε . (32)

Next, we estimate the value of Hμfε(x). When k ≥ N and xk < x ≤ xk+1, we have

Hμfε(x) =
1

μ([0, x])

∫
[0,x]

fε(t) dμ(t)

≥ 1
μ([0, xk+1])

∫
[0,xk ]

fε(t) dμ(t)

=
1

μ([0, xk+1])

k–1∑
i=N

μ
(
[0, xi+1]

)– 1
p –ε

μ
(
(xi, xi+1]

)

≥
(

1
1 + ε

) 1
p +ε 1

μ([0, xk+1])

k–1∑
i=N

μ
(
[0, xi]

)– 1
p –ε

μ
(
(xi, xi+1]

)

=
(

1
1 + ε

) 1
p +ε 1

μ([0, xk+1])

k–1∑
i=N

∫ μ([0,xi+1])

μ([0,xi])
μ

(
[0, xi]

)– 1
p –ε dt
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≥
(

1
1 + ε

)1+ 1
p +ε 1

μ([0, xk])

∫ μ([0,xk ])

μ([0,xN ])
t– 1

p –ε dt

≥
(

1
1 + ε

)1+ 1
p +ε 1

1 – 1
p – ε

(
μ

(
[0, xk]

)– 1
p –ε –

μ([0, xN ])1– 1
p –ε

μ([0, xk])

)
. (33)

Set

f (1)
ε =

(
1

1 + ε

)1+ 1
p +ε 1

1 – 1
p – ε

∞∑
k=N

μ
(
[0, xk]

)– 1
p –ε

χ(xk ,xk+1]

=
(

1
1 + ε

)1+ 1
p +ε 1

1 – 1
p – ε

fε

and

f (2)
ε =

(
1

1 + ε

)1+ 1
p +ε 1

1 – 1
p – ε

∞∑
k=N

μ([0, xN ])1– 1
p –ε

μ([0, xk])
χ(xk ,xk+1].

Then we have

∥∥f (2)
ε

∥∥
Lp(dμ) =

(
1

1 + ε

)1+ 1
p +ε 1

1 – 1
p – ε

μ
(
[0, xN ]

)1– 1
p –ε

( ∞∑
k=N

μ
(
[0, xk]

)–p
μ

(
(xk , xk+1]

)) 1
p

≤
(

1
1 + ε

) 1
p +ε 1

1 – 1
p – ε

μ
(
[0, xN ]

)1– 1
p –ε

( ∞∑
k=N

μ
(
[0, xk+1]

)–p
μ

(
(xk , xk+1]

)) 1
p

≤
(

1
1 + ε

) 1
p +ε 1

1 – 1
p – ε

(
1

p – 1

) 1
p
μ

(
[0, xN ]

)–ε . (34)

By inequality (33), we have

‖Hμfε‖Lp(dμ) ≥ ∥∥f (1)
ε

∥∥
Lp(dμ) –

∥∥f (2)
ε

∥∥
Lp(dμ).

From this result and inequalities (32) and (34), we can get

R(fε) ≥ ‖f (1)
ε ‖Lp(dμ) – ‖f (2)

ε ‖Lp(dμ)

‖fε‖Lp(dμ)

=
(

1
1 + ε

)1+ 1
p +ε 1

1 – 1
p – ε

–
‖f (2)

ε ‖Lp(dμ)

‖fε‖Lp(dμ)

≥
(

1
1 + ε

)1+ 1
p +ε 1

1 – 1
p – ε

–
( 1

1+ε
)

1
p +ε 1

1– 1
p –ε

( 1
p–1 )

1
p

( 1
1+ε

)
1
p +ε( 1

pε
)

1
p

. (35)

Since ε is arbitrary, it is easy to imply supf �=0 R(f ) = p
p–1 .

To prove condition (ii), by Lemma 5.2, we can part the intervals (0, 1] to

(x1, 1], (x2, x1], . . . , (xk+1, xk], . . .
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such that

lim
k→∞

μ((xk+1, xk])
μ((0, xk])

= 0.

Then, for any ε > 0, there is a sufficiently large integer N such that

μ((xk+1, xk])
μ((0, xk])

< ε

for k ≥ N .
Thus, we have

μ((0, xk+1])
μ((0, xk])

≥ 1 – ε.

Let fε =
∑∞

k=N μ((0, xk])– 1
p +ε

χ(xk+1,xk ]. Then, for xk+1 < x ≤ xk and k ≥ N , we have

Hμfε(x) =
1

μ((0, x])

∫
(0,x]

fε(t) dμ(t)

≥ 1
μ((0, xk])

∫
(0,xk+1]

fε(t) dμ(t)

=
1

μ((0, xk])

∞∑
i=k+1

μ
(
(0, xi]

)– 1
p +ε

μ
(
(xi+1, xi]

)

≥ 1
μ((0, xk])

μ((0, xk+1])1– 1
p +ε

1 – 1
p + ε

≥ (1 – ε)1– 1
p +ε

1 – 1
p + ε

μ
(
(0, xk]

)– 1
p +ε (36)

=
(1 – ε)1– 1

p +ε

1 – 1
p + ε

fε(x). (37)

It follows from inequality (36) that

R(fε) ≥ (1 – ε)1– 1
p +ε

1 – 1
p + ε

.

Because ε is arbitrary, it is easy to know supf R(f ) ≥ p
p–1 . The proof of the suffice part of

Theorem 1.2 is then completed. �

6 Counterexample
In this section we give some counterexamples that make supf �=0,f ∈Lp R(f ) < p/(p – 1). The
following two lemmas tell us that we can limit our discussion to a special function set.

Lemma 6.1 Suppose μ is a positive measure on R+ and it has an atom x0. If {fn}, n =
1, 2, . . . , is a series of functions satisfying fn(x0) = 1 and

lim
n→∞Rμ(fn) =

p
p – 1

,
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then we have

lim
n→∞‖fn‖Lp(dμ) = ∞.

Proof Without loss of generality, we assume that μ({x0}) = 1. If the assertion does not hold,
then we can assume that there exists a constant C satisfying ‖fn‖Lp(dμ) ≤ C. Let f ∗

n be the
decreasing rearrangement of fn, then it is easy to get ‖f ∗

n ‖Lp(dm) ≤ C and f ∗
n (1) ≥ 1. Thus

we have f ∗(x) ≥ 1 for 0 < x ≤ 1. By Helly’s theorem, we can assume limn→∞ f ∗
n = f ∗ almost

everywhere. Since f ∗
n is decreasing, we have

Cp ≥ ∥∥f ∗
n
∥∥p

Lp(dm) ≥
∫

[0,R]

∣∣f ∗
n (t)

∣∣p dt ≥ R
∣∣f ∗

n (R)
∣∣p,

which is equivalent to f ∗
n (R) ≤ CR– 1

p . Thus, by the control convergence theorem,

lim
n→∞ Hf ∗

n (x) = lim
n→∞

1
x

∫
[0,x]

f ∗
n (t) dt = Hf ∗(x). (38)

However, by inequality (12), we have

Rm
(
f ∗
n
) ≥Rμ(fn),

it obviously shows that {f ∗
n } is a maximizing sequence for H , i.e.,

lim
n→∞R

(
f ∗
n
)

=
p

p – 1
.

By limn→∞ f ∗
n = f ∗ and equality (38), using Lemma 2.2, we get Rm(f ∗) = p

p–1 , which con-
tradicts the result about Hardy operator we have known. The proof is completed. �

Lemma 6.2 Suppose μ is a positive measure on R+ and it has an atom x0. If

sup
{
Rμf |f ∈ Lp(dμ)

}
=

p
p – 1

,

then there exists a series of functions {fk}, k = 1, 2, . . . , and fk(x0) = 0 such that

lim
k→∞

Rμ(fk) =
p

p – 1
.

Proof It is obvious that we can assume there exists a series of functions gk , gk(x0) = 1, such
that

lim
k→∞

Rμ(gk) =
p

p – 1
.

Let

fk(x) =

⎧⎨
⎩

gk(x), x �= x0,

0, x = x0.
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Then we have

Hμfk(x) =

⎧⎨
⎩

Hμgk(x), x < x0;

Hμgk(x) – μ({x0})/μ([0, x]), x ≥ x0.
(39)

By equality (39), we can get

∥∥Hμ(fk)
∥∥

Lp ≥ ∥∥Hμ(gk)
∥∥

Lp –
∥∥∥∥ μ({x0})
μ([0, ·])χ[x0,∞]

∥∥∥∥
Lp

. (40)

On the other hand, it is easy to obtain

‖fk‖Lp ≤ ‖gk‖ + μ
({x0}

) 1
p . (41)

By Lemma 6.1, we know that limk→∞ ‖gk‖Lp(dμ) = ∞ and limk→∞ Rμ(gk) = p/(p – 1). By
this result, together with inequalities (40) and (41), we can have

lim
k→∞

Rμ(fk) =
p

p – 1
. �

Now we can give some counterexamples.

Example 6.3 Suppose that μ is supported in [a, b), μ({a}) > 0, and μ(R+) < ∞. Then
supf �=0 Rμ(f ) < p/(p – 1).

Proof Suppose that the result is not valid. By Lemma 6.2, we can find a series of functions
{fk}, fk(a) = 0, such that

lim
k→∞

Rμ(fk) =
p

p – 1
.

Let A = μ({a}), B = μ(R+), and μ1 = μ – Aδa. Then we have

Hμfk(x) =
μ1([0, x])
μ([0, x])

1
μ1([0, x])

∫
[0,x]

fk dμ1 ≤ B – A
B

Hμ1 fk(x) (42)

and

‖fk‖Lp(dμ) = ‖fk‖Lp(dμ1). (43)

By inequalities (42) and (43), we obtain

Rμ(fk) ≤ B – A
B

Rμ1 (fk) ≤ B – A
B

p
p – 1

.

It contradicts with limk→∞ Rμ(fk) = p/(p – 1). Then the counterexample is valid. �

Example 6.4 If μ =
∑∞

k=–∞ λkδλk with λ > 1, then supf ∈Lp(dμ) Rf < p
p–1 .
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Proof By the definition of μ, we have

Hμf (λk) =
1

μ([0,λk])

∫
[0,λk ]

f (t) dμ(t)

=
(λ – 1)

∑k
i=–∞ λif (λi)

λk+1

=
λ – 1

λ

0∑
i=–∞

λif
(
λi+k) (44)

and

∥∥f
(
λi·)∥∥Lp(dμ) =

( ∞∑
k=–∞

∣∣f (λi+k)∣∣p
λk

) 1
p

=

( ∞∑
k=–∞

∣∣f (λk)∣∣p
λk–i

) 1
p

= λ
– i

p ‖f ‖Lp(dμ). (45)

By inequalities (44), (45), and Minkowski’s inequality, it follows

‖Hμf ‖Lp(dμ) =

∥∥∥∥∥
λ – 1

λ

0∑
i=–∞

λif
(
λi·)

∥∥∥∥∥
Lp(dμ)

≤ λ – 1
λ

0∑
i=–∞

λi∥∥f
(
λi·)∥∥Lp(dμ)

=
λ – 1

λ

0∑
i=–∞

λ
i– i

p ‖f ‖Lp(dμ)

=
λ – 1

λ – λ
1
p
‖f ‖Lp(dμ). (46)

It is easy to get λ–1

λ–λ
1
p

< p
p–1 . The proof is completed. �
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