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1 Introduction
Let {Xn, n ≥ 1} be a sequence of random variables with an unknown marginal probability
density function f (x) and distribution function F(x). Assume that K(x) is a known kernel
function, the kernel estimate of f (x) and the empirical distribution function of F(x) are
given by

f̂n(x) =
1

nhn

n∑

j=1

K
(

x – Xj

hn

)
, Fn(x) = n–1

n∑

j=1

I(Xj < x), (1.1)

where {hn, n ≥ 1} is a sequence of positive bandwidths tending to zero as n → ∞, and
I(·) is the indicator of the event specified in the parentheses. Denote the hazard rate of
distribution F(x) by λ(t) = f (t)/(1 – F(t)), and it can be estimated by

λ̂n(x) =
f̂n(x)

1 – Fn(x)
. (1.2)

Works devoted to the estimation of probability density and hazard rate functions in-
clude the following. Izenman and Tran ([1], 1990) discussed the uniform consistency and
sharp rates of convergence under strong mixing and absolute regularity conditions. Cai
([2], 1998) established the asymptotic normality and the uniform consistency with rates
of the kernel estimators for density and hazard functions under a censored dependent
model. Liebscher ([3], 2002) derived the rates of uniform strong convergence for density
and hazard rate estimators for right censoring based on a stationary strong mixing se-
quence. Liang et al. ([4], 2005) obtained the optimal convergence rates of the nonlinear
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wavelet estimators of the hazard rate function when the survival times form a station-
ary strong mixing sequence. Bouezmarni et al. ([5], 2011) proposed new estimators based
on the gamma kernels for density and hazard rate functions which are free of bias, and
achieved the optimal rate of convergence in terms of integrated mean squared error, and
so on.

On the other hand, different from strong mixing and negatively associated random vari-
ables, widely orthant dependence random variables (defined below) were introduced by
Wang and Cheng ([6], 2011). Chen et al. ([7], 2016) proved a new type of Nagaev’s inequal-
ity and a refined inequality of widely dependent random variables, and as applications, in-
vestigated elementary renewal theorems and weighted elementary renewal theorem. Now,
let us recall the following definition of widely orthant dependence.

Definition 1.1 For random sequence {Xn, n ≥ 1}, if there exists a finite real sequence
{gU (n), n ≥ 1} satisfying, for each n ≥ 1 and for all xi ∈ (–∞,∞), 1 ≤ i ≤ n,

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ gU (n)
n∏

i=1

P(Xi > xi), (1.3)

and there also exists a finite real sequence {gL(n), n ≥ 1} satisfying, for each n ≥ 1 and for
all xi ∈ (–∞,∞), 1 ≤ i ≤ n,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ gL(n)
n∏

i=1

P(Xi ≤ xi), (1.4)

then a random sequence {Xn, n ≥ 1} is called widely orthant dependent (WOD) with dom-
inating coefficients g(n) = max{gU (n), gL(n)}.

Now, we will give two real examples of WOD sequences. The first example of WOD
that satisfies the conditions of the main results is given as follows (see Example 1.1) by the
framework of Farlie–Gumbel–Morgenstern (FGM) dependence (see Cambanis [8], 1991).
The second example (see Example 1.2) does not satisfy the conditions of the paper, but it
is useful as an example in the article.

Example 1.1 A sequence {Xn, n ≥ 1} of random variables on (�, B, P) is called FGM if for
any n ∈ N and (x1, . . . , xn) ∈ Rn,

P{X1 ≤ x1, . . . , Xn ≤ xn} =
n∏

i=1

Fi(xi)
(

1 +
∑

1≤j<k≤n

a(j, k)Fj(xj)Fk(xk)
)

, (1.5)

the constants a(·, ·) are admissible if the 2n inequalities 1 +
∑

1≤j<k≤n a(j, k)εjεk ≥ 0 for
all εj = –Mj or 1 – mj hold, where Mj and mj are the supremum and the infimum of
the set {{Fi(x), x ∈ R} \ {0, 1}}. If for some integer i the marginal Fi(·) is absolutely con-
tinuous, then Mj = 1 and mj = 0, hence εi = ±1. Next, by Hashorva and Hüsler ([9],
1999), we have

∑
1≤j<k≤n a(j, k) = O(n), n ∈ N . Hence, from (1.4) and (1.5), we can take

gL(n) = O(1+
∑

1≤j<k≤n a(j, k)) = O(n), then P{X1 ≤ x1, . . . , Xn ≤ xn} ≤ gL(n)
∏n

i=1 Fi(xi). This
implies that the FGM sequence is a WOD sequence, and the conditions of the main results
and lemmas are satisfied.
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Example 1.2 Assume that the random vectors (ξn,ηn), n = 1, 2, . . . , are independent and
for each integer n ≥ 1, the random variables ξn and ηn are dependent according to the
Farlie–Gumbel–Morgenstern copula with the parameter an ∈ [–1, 1]. Suppose that the
distributions of ξn and ηn, n = 1, 2, . . . , are absolutely continuous, denoted by Fξn and Fηn ,
n = 1, 2, . . . , respectively. By Sklar’s theorem (see Chap. 2 of Nelsen RB ([10], 2006)), for
each integer n ≥ 1 and any xn, yn ∈ (–∞, +∞), we can construct the cumulative distribu-
tion function of (ξn,ηn) as follows:

P(ξn ≤ xn,ηn ≤ yn) = Fξn (xn)Fηn (yn)
[
1 + anFξn (xn)Fηn (yn)

]

and

P(ξn > xn,ηn > yn) = Fξn (xn)Fηn (yn)
[
1 + anFξn (xn)Fηn (yn)

]
.

Therefore, for each n ≥ 1, we have

P(ξn ≤ xn,ηn ≤ yn) ≤ 2P(ξn ≤ xn)P(ηn ≤ yn),

P(ξn > xn,ηn > yn) ≤ 2P(ξn > xn)P(ηn > yn).

Then {(ξn,ηn)} is a sequence of independent bivariate WOD random variables. Thus, for
all xj, yj ∈ R,

P

[ n⋂

j=1

(ξj ≤ xj,ηj ≤ yj)

]
≤ 2n

n∏

j=1

P(ξj ≤ xj)P(ηj ≤ yj)

and

P

[ n⋂

j=1

(ξj > xj,ηj > yj)

]
≤ 2n

n∏

j=1

P(ξj > xj)P(ηj > yj).

From this, and by Definition 1.1, it is easy to see that the sequence {ξ1,η1, . . . , ξn,ηn, . . .} is
WOD with gL(n) = gU (n) = 2n, but the condition of Lemma 2.5 is not satisfied.

We can further refer to some large sample properties of nonparameter estimate based
on WOD samples. For instance, Wang et al. ([11], 2013) studied the strong consistency
of estimator of fixed design regression model for WOD samples. Shi and Wu ([12], 2014)
discussed the strong consistency of kernel density estimator for identically distributed
WOD samples. Li et al. ([13], 2015) studied the pointwise strong consistency for a kind of
recursive kernel estimator based WOD samples.

In this paper, we attempt to establish a Bernstein-type inequality and to derive the rates
of strong convergence for the estimators of density and hazard rate functions for WOD
samples. Throughout the paper, all limits are taken as n tends to ∞, and c, C, C1, C2, . . .
denote positive constants whose values may change from one place to another, unless
specified otherwise.
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2 Assumptions and some auxiliary results
For the sake of simplicity, some assumptions on kernel function K(·) and density function
f (x) are listed below.

(A1) K(u) ∈ L1,
∫ +∞

–∞ K(u) du = 1, supx∈R(1 + |x|)|K(x)| ≤ c < ∞.
(A2)

∫ +∞
–∞ urK(u) du = 0, r = 1, 2, . . . , s – 1,

∫ +∞
–∞ usK(u) du = M �= 0, where M is a positive

constant, s ≥ 2 is some positive integer.
(A3) f (x) ∈ C2,α , where α is a positive constant, C2,α implies that f (x) is 2nd

differentiable, f ′′(x) is a continuous function, and |f ′′(x)| ≤ α.
The following proposition for WOD random sequence comes from Corollary 3 in Shen

([3], 2013), which will be used in the following.

Lemma 2.1
(i) Let a random sequence {Xn, n ≥ 1} be WOD with dominating coefficients g(n). If

{Gn(·), n ≥ 1} is a nondecreasing (or nonincreasing) function sequence, then the
random sequence {Gn(Xn), n ≥ 1} is still WOD with the same dominating coefficients
g(n).

(ii) Let a random sequence {Xn, n ≥ 1} be WOD, then for each n ≥ 1 and any s > 0,

E exp

{
s

n∑

i=1

Xi

}
≤ g(n)

n∏

i=1

E exp{sXi}.

Remark 2.1 Condition (A1) is a reasonable condition, we can refer to condition (2) in Cai
([14], 1993) and condition (II) in Theorem S of Lin ([15], 1987). And by (A1), we can get
the following lemma.

Lemma 2.2 (see Lemma 3, [14], 1993, or [15], 1987) Let K (x) be satisfied (A1), and f (·) ∈
L1, then

(i) for the continuous point of f (x),

lim
hn→0

h–1
n

∫

R
K

(
x – u

hn

)
f (u) du = f (x),

lim
hn→0

h–1
n

∫

R
K2

(
x – u

hn

)
f (u) du = f (x)

∫

R
K2(u) du;

(ii) for all x, y ∈ R, x �= y,

lim
hn→0

h–1
n

∫

R
K

(
x – u

hn

)
K

(
y – u

hn

)
du = 0.

Lemma 2.3 By Lemma 3.4 of Li ([16], 2017), we obtain that

h–2
n

∣∣Ef̂n(x) – f (x)
∣∣ ≤ h–2

n

(
h2

n
2

∣∣∣∣
∫

R
K(u)f

′′
(x – ξhnu)u2 du

∣∣∣∣

)
≤ C.

Now, we will establish a Bernstein-type inequality for a WOD random sequence as fol-
lows.
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Lemma 2.4 Let a random sequence {Xn, n ≥ 1} be WOD with dominating coefficients g(n),
and EXi = 0, |Xi| ≤ di for i = 1, . . . , n, where {di, 1 ≤ i ≤ n} is a sequence of positive constants.
For t > 0, if t · max1≤i≤n di ≤ 1, then for any ε > 0,

P

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ > ε

)
≤ 2g(n) exp

{
–tε + t2

n∑

i=1

EX2
i

}
.

Proof By 1 ≤ i ≤ n, |tXi| ≤ 1 a.s. and noting that 1 + x ≤ ex for x ∈ R, we have that

E exp(tXi) =
∞∑

k=0

E(tXi)k

k!
≤ 1 + E(tXi)2

{
1
2!

+
1
3!

+ · · ·
}

≤ 1 + t2EX2
i ≤ exp

{
t2EX2

i
}

.

For any ε > 0, using Markov’s inequality and Lemma 2.1(ii), we can get

P

( n∑

i=1

Xi > ε

)
≤ exp (–tε)E exp

(
t

n∑

i=1

Xi

)
≤ g(n) exp (–tε)

n∏

i=1

E exp(tXi)

≤ g(n) exp

{
–tε + t2

n∑

i=1

EX2
i

}
. (2.1)

By Lemma 2.1(i), we see that the random sequence {–Xn, n ≥ 1} is still WOD with domi-
nating coefficients g(n), then

P

( n∑

i=1

Xi ≤ –ε

)
= P

( n∑

i=1

(–Xi) ≥ ε

)
≤ g(n) exp

{
–tε + t2

n∑

i=1

EX2
i

}
. (2.2)

Combining (2.1) and (2.2), we complete the proof of Lemma 2.4. �

Corollary 2.1 Let a random sequence {Xn, n ≥ 1} be WOD with dominating coefficients
g(n), and EXi = 0, |Xi| ≤ d, a.s. for i = 1, . . . , n, where d is a positive constant. Set σ 2

n =
n–1 ∑n

i=1 EX2
i , then for any ε > 0,

P

(
1
n

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ > ε

)
≤ 2g(n) exp

{
–

nε2

2(2σ 2
n + dε)

}
.

Proof By Lemma 2.4, taking t = ε/(2σ 2
n + dε), we can get Corollary 2.1 immediately. �

Remark 2.2 By comparison, the conditions of Lemma 2.4 are weaker than those of Theo-
rem 4 in Shen ([17], 2013). So, Lemma 2.4 is a generalization of Theorem 4 in Shen ([17],
2013), and it extends the Bernstein-type inequality in Wang ([18], 2015, Lemma 2.2) from
END to WOD sequence.

Lemma 2.5 Let a random sequence {Xn, n ≥ 1} be WOD with dominating coefficients g(n).
F(x) is a continuous distribution function. If there exists a positive constant {τn} such that
τn → 0 and nτ 2

n /[log(ng3(n))] → ∞, then

sup
x

∣∣Fn(x) – F(x)
∣∣ = o(τn), a.s.
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In particular, taking τn = n–1/2[log(ng3(n))(log log n)δ]1/2 for some δ > 0, we have

sup
x

∣∣Fn(x) – F(x)
∣∣ = o

(
n–1/2[log

(
ng3(n)

)
(log log n)δ

]1/2), a.s.

Proof The proof is based on a modification of the proof of Lemma 3.5 in Li ([16], 2017).
We only outline the difference. Let xn,k satisfy F(xn,k) = k/n, k = 1, 2, . . . , n – 1, and ξik =
I(Xi ≤ xn,k) – EI(Xi ≤ xn,k), then

P
(

sup
x∈R

∣∣Fn(x) – F(x)
∣∣ > ετn

)
≤

n–1∑

k=1

P

(
1
n

∣∣∣∣∣

n∑

i=1

ξik

∣∣∣∣∣ >
ετn

2

)
. (2.3)

By Lemma 2.1, it is easy to see that a random sequence {ξik , i ≥ 1} is WOD with Eξik = 0,
|ξik| ≤ 2 for fixed k. Thus, by Lemma 2.4, and by choosing t = ετn/4 for n large enough, we
have

P

(
1
n

∣∣∣∣∣

n∑

i=1

ξik

∣∣∣∣∣ >
ετn

2

)
≤ 2g(n) exp

{
–

ε2nτ 2
n

16

}
≤ 2g(n)

[
ng3(n)

]–3 ≤ 2n–3. (2.4)

By (2.3) and (2.4), we have

P
(

sup
x∈R

∣∣Fn(x) – F(x)
∣∣ > ετn

)
≤ 2

n–1∑

k=1

n–3 ≤ C3n–2.

Therefore, by the Borel–Cantelli lemma, we obtain the result of Lemma 2.5. �

3 Main results and proofs
Theorem 3.1 Let a random sequence {Xn, n ≥ 1} be WOD with dominating coefficients
g(n), and let (A1)–(A3) hold true. Let K (·) be a bounded monotonic density function, and
nh6

n/[log(ng2(n))(log log n)δ] → 0 for some δ > 0. Then, for f (x) ∈ C2,α ,

[
nh2

n/
[
log

(
ng2(n)

)
(log log n)δ

]]1/2(f̂n(x) – f (x)
) → 0, a.s.

Weakening the condition of density kernel K(·) from bounded monotonic density func-
tion to bounded variation function, we can get the result as follows.

Corollary 3.1 Let a random sequence {Xn, n ≥ 1} be WOD with dominating coefficients
g(n), and let (A1)–(A3) hold true. If the density kernel K(·) is a Borel measurable and
bounded variation function and nh6

n/[log(ng2(n))(log log n)δ] → 0 for some δ > 0, then, for
f (x) ∈ C2,α ,

[
nh2

n/
[
log

(
ng2(n)

)
(log log n)δ

]]1/2(f̂n(x) – f (x)
) → 0, a.s.

Theorem 3.2 If, in addition to the assumptions of Theorem 3.1 and Lemma 2.5, the dis-
tribution function F(x0) < 1, then for x ≤ x0,

[
nh2

n/
[
log

(
ng2(n)

)
(log log n)δ

]]1/2(
λ̂n(x) – λ(x)

) → 0, a.s.
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Corollary 3.2 If, in addition to the assumptions of Corollary 3.1 and Lemma 2.5, the dis-
tribution function F(x0) < 1, then for x ≤ x0,

[
nh2

n/
[
log

(
ng2(n)

)
(log log n)δ

]]1/2(
λ̂n(x) – λ(x)

) → 0, a.s.

Remark 3.1 From Theorems 3.1 and 3.2, Corollaries 3.1 and 3.2, the rates of strong con-
vergence can nearly reach O(n–2/5) by choosing bandwidth hn = O(n–1/5). So the rates in
here reach the same order of convergence as those in Li ([16], 2017) and Li and Yang ([19],
2005). Note that negative association implies WOD, and END also implies WOD, but the
converse does not hold. Then the results of this paper are the generalization of those in Li
([16], 2017) and Li and Yang ([19], 2005).

Proof of Theorem 3.1 Writing

nhn
[
f̂n(x) – Ef̂n(x)

]
=

n∑

j=1

[
K

(
x – Xj

hn

)
– EK

(
x – Xj

hn

)]
=

n∑

j=1

Yj, (3.1)

where

Yj = K
(

x – Xj

hn

)
– EK

(
x – Xj

hn

)
.

By Lemma 2.1, we see that a random sequence {Yj, 1 ≤ j ≤ n} is still WOD with dominating
coefficients g(n). And by K(x) is bounded, we can get that EYj = 0, |Yj| ≤ C3,

EY 2
j = EK

(
x – Xj

hn

)2

≤ C3 and σ 2
n = n–1

n∑

j=1

EY 2
j ≤ C3.

Set θn = {nh2
n/[log(ng2(n))(log log n)δ]}–1/2, by Corollary 2.1, for any ε > 0,

P

(
1
n

∣∣∣∣∣

n∑

j=1

Yj

∣∣∣∣∣ > hnθnε

)

≤ 2g(n) exp

{
–

n(θnhnε)2

2[2σ 2
n + C3(θnhnε)]

}

≤ 2g(n) exp

{
–

log(ng2(n))(log log n)δε2

2{2C3 + n–1/2[log(ng2(n))(log log n)δ]1/2C3ε}
}

≤ 2g(n)
(
ng2(n)

)–2 = 2n–2.

Thus, by the Borel–Cantelli lemma, we have

1
nhnθn

∣∣∣∣∣

n∑

j=1

Yj

∣∣∣∣∣ → 0, a.s. (3.2)

Hence, using (3.1) and (3.2), we get

θ–1
n

[
f̂n(x) – Ef̂n(x)

] → 0, a.s. (3.3)
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Note that

θ–1
n

[
f̂n(x) – f (x)

]
= θ–1

n
[
f̂n(x) – Ef̂n(x)

]
+ θ–1

n
[
Ef̂n(x) – f (x)

]
(3.4)

and

θ–1
n h2

n =
√

nh6
n√

log(ng2(n))(log log n)δ
→ 0.

Then, by Lemma 2.3, we have

θ–1
n

[
Ef̂n(x) – f (x)

]
=

h2
n

θn
· 1

h2
n

· [Ef̂n(x) – f (x)
] → 0. (3.5)

It follows by using (3.3)–(3.5) that

{
nh2

n/
[
log

(
ng2(n)

)
(log log n)δ

]}1/2[f̂n(x) – f (x)
] → 0, a.s.

This completes the proof of Theorem 3.1. �

Proof of Corollary 3.1 By K(x) is a bounded variation function, we can write that K(x) =
K1(x) – K2(x), where K1(x) and K2(x) are two monotone increasing functions. Then

nhn
[
f̂n(x) – Ef̂n(x)

]
=

n∑

j=1

Y1j –
n∑

j=1

Y2j, (3.6)

where

Yij = Ki

(
x – Xj

hn

)
– EKi

(
x – Xj

hn

)
for i = 1, 2.

Then the following proof of Corollary 3.1 is the same as the proof of Theorem 3.1, here it
is omitted. �

Proof of Theorem 3.2 Set S(x) = 1 – F(x), Sn(x) = 1 – Fn(x). By the hazard rate estimator
(1.2), we get

∣∣λ̂n(x) – λ(x)
∣∣ ≤ S(x)|f̂n(x) – f (x)| + f (x)|Sn(x) – S(x)|

S(x)Sn(x)
. (3.7)

Note that 0 < S(x0) ≤ S(x) ≤ 1 for x ≤ x0, and supx f (x) ≤ C5. It follows by Theorem 3.1 and
Lemma 2.5 that

[
nh2

n/
[
log

(
ng2(n)

)
(log log n)δ

]]1/2(f̂n(x) – f (x)
) → 0, a.s. (3.8)

and

n1/2/
[
(log

(
ng3(n)

)
(log log n)δ

]1/2
sup
x≤x0

∣∣Sn(x) – S(x)
∣∣ → 0, a.s. (3.9)
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On the other hand, for n large enough, as x ≤ x0, we have

Sn(x) > S(x) – S(x0) >
1
2

S(x0) > 0.

Hence, from (3.7), (3.8), and (3.9), we have

[
nh2

n/
[
log

(
ng2(n)

)
(log log n)δ

]]1/2(
λ̂n(x) – λ(x)

) → 0, a.s.

Then we obtain Theorem 3.2. �

Proof of Corollary 3.2 The proof is analogous to the one of Theorem 3.2 by Corollary 3.1,
and here it is also omitted. �

4 Conclusion
In Sect. 2, we give a Bernstein-type inequality for WOD random sequence which extends
the Bernstein-type inequality based END sequence. In Sect. 3, using the Bernstein-type in-
equality, we obtain the rates of strong convergence for the estimators of density and hazard
rate functions. By choosing the bandwidth hn = O(n–1/6), the rates of strong convergence
can nearly reach O(n–1/3).
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