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Abstract
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1 Introduction
With Markov’s truncation method, Kolmogorov got a weak law of large numbers for in-
dependent identically random variables with a necessary and sufficient condition, which
is called the Kolmogorov–Feller weak law of large numbers.

Theorem 1.1 ([1]) Let {Xi, i ≥ 1} be a sequence of i.i.d. random variables with partial sums
Sn = X1 + · · · + Xn. Then

Sn – nEX11{|X1| ≤ n}
n

P−→ 0, as n → ∞,

if and only if

xP
(|X1| > x

) → 0, as x → ∞. (1.1)

The theorem states the condition of the mean’s existence is not necessary, and St. Peters-
burg game (see [2]) and Feller game (see [3]), which are well known as the typical examples,
are formulated by a nonnegative random variable X with the tail probability

P(X > x) � x–α (1.2)

for each fixed 0 < α ≤ 1, where an � bn denotes

0 < lim inf
n→∞

an

bn
≤ lim sup

n→∞
an

bn
< ∞.
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Nakata [4] considered truncated random variables and studied strong laws of large num-
bers and central limit theorems in this situation. In [5], Nakata studied the weak laws of
large numbers for weighted independent random variables with the tail probability (1.2)
and explored the case that the decay order of the tail probability is –1. In this paper, we
shall consider the more general random sequence with infinite mean.

Let us recall the concept of negative quadrant dependent (NQD) random variables,
which was introduced by Lehmann [6].

Definition 1.1 Two random variables X and Y are said to be NQD if for any x, y ∈ R

P(X ≤ x, Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y).

A sequence of random variables {Xn, n ≥ 1} is said to be pairwise NQD if, for all i, j ∈ N ,
i �= j, Xi and Xj are NQD.

Because pairwise NQD includes the independent, NA (negatively associated), NOD
(negatively orthant dependent) and LNQD (linearly negative quadrant dependent), it is
a more general dependence structure. It is necessary to study its probabilistic properties.

Definition 1.2 A finite sequence {X1, . . . , Xn} of random variables is said to be NA if for
any disjoint subsets A, B of {1, . . . , n} and any real coordinatewise nondecreasing functions
f on R

|A| and g on R
|B|,

Cov
(
f (Xk , k ∈ A), g(Xk , k ∈ B)

) ≤ 0 (1.3)

whenever the covariance exists, where |A| denotes the cardinality of A. An infinite family
of random variables is NA if every finite subfamily is NA.

The concept of a NA sequence was introduced by Joag-Dev and Proschan [7], and it is
easy to see that a sequence of NA random variables is a pairwise NQD sequence.

In the present paper, we suppose that all random variables satisfy the condition

P
(|X| > x

) � x–α for a fixed 0 < α ≤ 1. (1.4)

In Sect. 2, we will investigate weak laws of large numbers for weighted pairwise NQD
random variables with the common distribution (1.4). The almost sure upper and lower
bounds for a particular normalized weighted sum of pairwise NQD nonnegative random
variables will be established in Sect. 3. Throughout this paper, the symbol C represents
positive constants whose values may change from one place to another.

2 Weak law of large numbers
In this section, we extend the corresponding results in Nakata [5] from the case of i.i.d.
random variables to pairwise NQD random variables.

2.1 Main results
We state our weak law of large numbers for different weighted sums of pairwise NQD
random variables.



Ma et al. Journal of Inequalities and Applications  (2018) 2018:62 Page 3 of 11

Theorem 2.1 Let {Xi, i ≥ 1} be a sequence of pairwise NQD random variables whose dis-
tributions satisfy

P
(|Xj| > x

) � x–α for j ≥ 1

and

lim sup
x→∞

sup
j≥1

xα
P
(|Xj| > x

)
< ∞.

If there exist two positive sequences {aj} and {bj} satisfying

n∑

j=1

aα
j = o

(
bα

n
)
, (2.1)

then it follows that

lim
n→∞

1
bn

n∑

j=1

aj

(
Xj – EXj1

{
|Xj| ≤ bn

aj

})
= 0 in probability. (2.2)

In particular, if there exists a constant A such that

lim
n→∞

1
bn

n∑

j=1

ajEXj1
{
|Xj| ≤ bn

aj

}
= A,

then we have

lim
n→∞

1
bn

n∑

j=1

ajXj = A in probability.

From Theorem 2.1 and by using the same methods as in Nakata [5] to calculate the
constant A, we can obtain the following four corollaries for the pairwise NQD random
variables.

Corollary 2.1 Under the assumptions of Theorem 2.1, if 0 < α < 1, then we have

lim
n→∞

1
bn

n∑

j=1

ajXj = 0 in probability.

Corollary 2.2 Let {Xi, i ≥ 1} be a sequence of nonnegative pairwise NQD random variables
whose distributions satisfy

P
(|Xj| > x

)
= (x + qj)–1 for x ≥ 0.

If qj ≥ 1 for any positive integer j ,and

Qn :=
n∑

j=1

q–1
j → ∞, as n → ∞. (2.3)
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Then we have

lim
n→∞

∑n
j=1 q–1

j Xj

Qn log Qn
= 1 in probability.

Corollary 2.3 Let us suppose the assumptions of Corollary 2.2 and qj = j in Eq. (2.3). Then,
for any γ > –1 and real δ, we have

lim
n→∞

∑n
j=1 j–1(log j)γ (log log j)δXj

(log n)γ +1(log log n)δ+1 =
1

γ + 1
in probability.

Corollary 2.4 Let {Xi, i ≥ 1} be a sequence of pairwise NQD random variables whose com-
mon distribution satisfies (1.4) with α = 1. If there exists a real Q such that

lim
x→∞

EX1(|X| ≤ x)
log x

= Q.

Then, for each real β > –1 and slowly varying sequence l(n), it follows that

lim
n→∞

∑n
j=1 jβ l(j)Xj

nβ+1l(n) log n
=

Q
1 + β

in probability.

Theorem 2.2 Let {Xi, i ≥ 1} be a sequence of pairwise NQD random variables whose dis-
tributions satisfy

P
(|Xj| > x

) � x–α for j ≥ 1

and

lim sup
x→∞

sup
j≥1

xα
P
(|Xj| > x

)
< ∞.

If there exist two positive sequences {aj} and {bj} satisfying

(
log2 n

) n∑

j=1

aα
j = o

(
bα

n
)
. (2.4)

Then it follows that

lim
n→∞

1
bn

max
1≤k≤n

∣∣
∣∣
∣

k∑

j=1

aj

(
Xj – EXj1

{
|Xj| ≤ bn

aj

})∣∣
∣∣
∣

= 0 in probability. (2.5)

Corollary 2.5 Under the assumptions of Theorem 2.2, if 0 < α < 1, then we have

lim
n→∞

1
bn

max
1≤k≤n

∣
∣∣∣
∣

k∑

j=1

ajXj

∣
∣∣∣
∣

= 0 in probability.

Remark 2.1 If {Xi, i ≥ 1} is a sequence of NA random variables satisfying the assumptions
of Theorem 2.2, then from the maximal inequality of NA random variables (see [8, Theo-
rem 2]), the condition (2.4) can be weakened by (2.1).
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2.2 Proofs of Theorem 2.1 and Theorem 2.2
We first give some useful lemmas.

Lemma 2.1 ([5]) If a random variable X satisfies (1.4), then it follows that

E
(|X|1(|X| ≤ x

)) �
⎧
⎨

⎩
x1–α , if 0 < α < 1,

log x, if α = 1,

and

E
(|X|21

(|X| ≤ x
)) � x2–α for 0 < α ≤ 1.

Lemma 2.2 ([6]) Let {Xn, n ≥ 1} be a sequence of pairwise NQD random variables. Let
{fn, n ≥ 1} be a sequence of increasing functions. Then {fn(Xn), n ≥ 1} is a sequence of pair-
wise NQD random variables.

Lemma 2.3 ([9]) Let {Xn, n ≥ 1} be a sequence of pairwise NQD random variables with
mean zero and EX2

n < ∞, and Tj(k) =
∑j+k

i=j+1 Xi, j ≥ 0. Then

E
(
Tj(k)

)2 ≤ C
j+k∑

i=j+1

EX2
i , E max

1≤k≤n

(
Tj(k)

)2 ≤ C log2 n
j+n∑

i=j+1

EX2
i .

Proof of Theorem 2.1 For any 1 ≤ i ≤ n, let us define

Yni = –bn1(aiXi < –bn) + aiXi1
(
ai|Xi| ≤ bn

)
+ bn1(aiXi > bn)

and

Zni = (aiXi + bn)1(aiXi < –bn) + (aiXi – bn)1(aiXi > bn).

Then from Lemma 2.2 it follows that {Yni, 1 ≤ i ≤ n, n ≥ 1} and {Zni, 1 ≤ i ≤ n, n ≥ 1} are
both pairwise NQD, and

n∑

i=1

aiXi =
n∑

i=1

(Yni + Zni).

Furthermore, let us define Xni = Xi1(ai|Xi| ≤ bn), then the limit (2.2) holds if we show

lim
n→∞

1
bn

n∑

i=1

(Yni – EYni) = 0 in probability, (2.6)

lim
n→∞

1
bn

n∑

i=1

(aiXi – Yni) = 0 in probability, (2.7)

and

lim
n→∞

1
bn

n∑

i=1

(aiEXni – EYni) = 0. (2.8)
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Using the proof of Lemma 2.2 in [4], we get

1
b2

n

n∑

i=1

a2
i E

[
X2

i 1
(
ai|Xi| ≤ bn

)] → 0

and

n∑

i=1

P
(
ai|Xi| ≥ bn

) → 0.

From Lemma 2.1 and Lemma 2.3, we have

1
b2

n
Var

( n∑

i=1

(Yni – EYni)

)

≤ C
b2

n

n∑

i=1

EY 2
ni

≤ C
b2

n

n∑

i=1

a2
i E

[
X2

i 1
(
ai|Xi| ≤ bn

)]

+ C
n∑

i=1

P
(
ai|Xi| ≥ bn

) → 0,

which implies (2.6). Similarly, for any r > 0, we have

P

(
1
bn

∣∣
∣∣
∣

n∑

i=1

Zni

∣∣
∣∣
∣

> r

)

≤ P

( n⋃

i=1

{
ai|Xi| > bn

}
)

≤
n∑

i=1

P
(
ai|Xi| > bn

) → 0,

which yields (2.7). Finally, (2.8) holds since

1
bn

∣∣
∣∣
∣

n∑

i=1

(aiEXni – EYni)

∣∣
∣∣
∣
≤ C

n∑

i=1

P
(
ai|Xi| > bn

) → 0.

Based on the above discussions, the desired results are obtained. �

Proof of Theorem 2.2 By a proof similar to that of Theorem 2.1, it is enough to show

lim
n→∞

1
bn

max
1≤k≤n

∣
∣∣∣
∣

k∑

i=1

(Yni – EYni)

∣
∣∣∣
∣

= 0 in probability, (2.9)

lim
n→∞

1
bn

max
1≤k≤n

∣
∣∣
∣∣

k∑

i=1

(aiXi – Yni)

∣
∣∣
∣∣

= 0 in probability, (2.10)

and

lim
n→∞

1
bn

max
1≤k≤n

∣
∣∣
∣∣

k∑

i=1

(aiEXni – EYni)

∣
∣∣
∣∣

= 0. (2.11)
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From Lemma 2.1 and Lemma 2.3, we have

1
b2

n
E

(

max
1≤k≤n

∣∣
∣∣∣

k∑

i=1

(Yni – EYni)

∣∣
∣∣∣

2)

≤ C log2 n
b2

n

n∑

i=1

EY 2
ni

≤ C log2 n
b2

n

n∑

i=1

a2
i E

[
X2

i 1
(
ai|Xi| ≤ bn

)]
+ C log2 n

n∑

i=1

P
(
ai|Xi| ≥ bn

)

≤ C log2 n
b2

n

n∑

i=1

a2
i (bn/ai)2–α +

C log2 n
bα

n

n∑

i=1

aα
i → 0,

which implies (2.9). Similarly, for any r > 0, we have

P

(
1
bn

max
1≤k≤n

∣∣∣
∣∣

k∑

i=1

Zni

∣∣∣
∣∣

> r

)

≤ P

( n⋃

i=1

{
ai|Xi| > bn

}
)

≤
n∑

i=1

P
(
ai|Xi| > bn

) → 0,

which yields (2.10). At last

1
bn

max
1≤k≤n

∣∣
∣∣
∣

k∑

i=1

(aiEXni – EYni)

∣∣
∣∣
∣
≤ C

n∑

i=1

P
(
ai|Xi| > bn

) → 0.

Based on the above discussions, the desired result is obtained. �

3 One side strong law
Adler [10] considered the almost sure upper and lower bounds for a particular normalized
weighted sum of independent nonnegative random variables (see Corollary 2.2). In this
section, we extend his work from the independent case to pairwise NQD nonnegative
random variables.

3.1 Main results
Theorem 3.1 Let {Xi, i ≥ 1} be a sequence of nonnegative pairwise NQD random variables
whose distributions satisfy

P
(|Xj| > x

)
= (x + qj)–1 for x ≥ 0

where qj ≥ 1 for any positive integer j, and

Qn :=
n∑

j=1

q–1
j → ∞, as n → ∞. (3.1)

If

∞∑

n=1

q–1
n

Qn log Qn
= ∞, (3.2)
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then we have

lim sup
n→∞

∑n
j=1 q–1

j Xj

Qn log Qn
= ∞ almost surely.

Theorem 3.2 Let {Xi, i ≥ 1} be a sequence of nonnegative pairwise NQD random variables
whose distributions satisfy

P(Xj > x) = (x + qj)–1 for x ≥ 0

where qj ≥ 1 for any positive integer j, and

Qn :=
n∑

j=1

q–1
j → ∞, as n → ∞. (3.3)

If there is a sequence {dn, n ≥ 1} such that

lim
n→∞

1
Qn log Qn

n∑

j=1

q–1
j log

(
q–1

j dj
)

= 1 (3.4)

and

∞∑

n=1

q–2
n dn log2 n

Q2
n log2 Qn

< ∞, (3.5)

then we have

lim inf
n→∞

1
Qn log Qn

n∑

j=1

q–1
j Xj = 1 almost surely.

Remark 3.1 For the independent case, the assumption (3.5) can be weakened by the fol-
lowing condition (see [10]):

∞∑

n=1

q–2
n dn

Q2
n log2 Qn

< ∞. (3.6)

If {Xi, i ≥ 1} is a sequence of NA random variables, then from the maximal inequality of
NA random variables (see [8, Theorem 2]), the condition (3.5) can be weakened by (3.6).

Remark 3.2 Let us give an example to show that the conditions (3.4) and (3.5) can be
satisfied. If we choose q–1

j = jα , dj = j/ log2 j where α > –1, then it is easy to show

Qn ∼ nα+1

α + 1
, Qn log Qn ∼ nα+1 log n,

n∑

i=1

q–1
i log q–1

i = α

n∑

i=1

iα log i ∼ α

α + 1
nα+1 log n,
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and

n∑

i=1

q–1
i log di =

n∑

i=1

iα(log i – 2 log log i) ∼ 1
α + 1

nα+1 log n.

Hence we have

1
Qn log Qn

n∑

j=1

q–1
j log

(
q–1

j dj
) → 1

and

∞∑

n=1

q–2
n dn log2 n

Q2
n log2 Qn

=
∞∑

n=1

n2αn
n2(α+1) log2 n

< ∞.

3.2 Proofs of Theorem 3.1 and Theorem 3.2
Before giving our proofs, we need the following useful lemmas.

Lemma 3.1 ([11]) Let {An, n ≥ 1} be a sequence of events, such that
∑∞

n=1 P(An) = ∞. Then

P(An, i.o.) ≥ lim sup
n→∞

(
∑n

k=1 P(Ak))2
∑n

i,k=1 P(AiAk)
.

Lemma 3.2 ([9]) Let {Xn, n ≥ 1} be pairwise NQD random sequences. If

∞∑

n=1

log2 n Var(Xn) < ∞,

then we have

∞∑

n=1

(Xn – EXn) converges almost surely.

Proof of Theorem 3.1 For any M > 0, we have

∞∑

n=1

P

(
q–1

n Xn

Qn log Qn
> M

)
=

∞∑

n=1

P

(
Xn >

MQn log Qn

q–1
n

)
= ∞.

Let us define An = {Xn > MQn log Qn
q–1

n
}, then we have

P(AiAk) ≤ P(Ai)P(Ak),

where we used the fact that {Xn, n ≥ 1} is a sequence of nonnegative pairwise NQD ran-
dom variables. Hence from Lemma 3.1, we get

lim sup
n→∞

q–1
n Xn

Qn log Qn
= ∞ almost surely,



Ma et al. Journal of Inequalities and Applications  (2018) 2018:62 Page 10 of 11

which yields

lim sup
n→∞

∑n
i=1 q–1

i Xi

Qn log Qn
≥ lim sup

n→∞
q–1

n Xn

Qn log Qn
= ∞ almost surely. �

Proof Theorem 3.2 For n ≥ 1, let us define

Yn = Xn1(Xn ≤ dn) + dn1(Xn > dn)

and

Zn = (Xn – dn)1(Xn > dn).

Then from Lemma 2.2 it follows that {Yn, n ≥ 1} and {Zn, n ≥ 1} are both pairwise NQD,
and

n∑

i=1

q–1
i Xi =

n∑

i=1

q–1
i (Yi + Zi) =

n∑

i=1

q–1
i (Yi – EYi) +

n∑

i=1

q–1
i Zi +

n∑

i=1

q–1
i EYi. (3.7)

Since

EY 2
n ≤ C

(
EX2

n1(Xn ≤ dn) + d2
nP(Xn > dn)

)

= C
(∫ dn

0

x2

(x + qn)2 dx + d2
n

∫ ∞

dn

1
(x + qn)2 dx

)
≤ Cdn,

then from the condition (3.5), we have

∞∑

n=1

q–2
n log2 n Var(Yn)

Q2
n log2 Qn

≤
∞∑

n=1

q–2
n log2 ndn

Q2
n log2 Qn

< ∞.

Thus by Lemma 3.2, we have

∞∑

n=1

q–1
n (Yn – EYn)
Qn log Qn

converges almost surely,

which, by the Kronecker lemma, implies that

lim
n→∞

n∑

i=1

q–1
i (Yi – EYi)
Qn log Qn

= 0 almost surely. (3.8)

Furthermore, since

EYn = EXn1(Xn ≤ dn) + dnP(Xn > dn)

=
∫ dn

0

x
(x + qn)2 dx + dn

∫ ∞

dn

1
(x + qn)2 dx

=
∫ dn+qn

qn

1
x

dx – qn

∫ dn+qn

qn

1
x2 dx + dn

∫ ∞

dn

1
(x + qn)2 dx
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= log(1 + dn/qn) – 1 +
qn

dn + qn
+

dn

dn + qn

= log(1 + dn/qn)

then by the condition (3.4) we have

lim
n→∞

n∑

i=1

q–1
i EYi

Qn log Qn
= 1 almost surely. (3.9)

Hence, from (3.7), (3.8) and (3.9), we have

lim inf
n→∞

n∑

i=1

q–1
i Xi

Qn log Qn
≥ lim

n→∞

n∑

i=1

q–1
i (Yi – EYi)
Qn log Qn

+ lim
n→∞

n∑

i=1

q–1
i EYi

Qn log Qn
= 1. (3.10)

By Corollary 2.2, we have

lim inf
n→∞

n∑

i=1

q–1
i Xi

Qn log Qn
≤ 1 almost surely. (3.11)

So, from (3.10) and (3.11), we have

lim inf
n→∞

n∑

i=1

q–1
i Xi

Qn log Qn
= 1 almost surely. �
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