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Abstract
This paper presents a practicable regional division and cut algorithm for minimizing
the sum of linear fractional functions over a polyhedron. In the algorithm, by using an
equivalent problem (P) of the original problem, the proposed division operation
generalizes the usual standard bisection, and the deleting and reduction operations
can cut away a large part of the current investigated region in which the global
optimal solution of (P) does not exist. The main computation involves solving a
sequence of univariate equations with strict monotonicity. The proposed algorithm is
convergent to the global minimum through the successive refinement of the
solutions of a series of univariate equations. Numerical results are given to show the
feasibility and effectiveness of the proposed algorithm.
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1 Introduction
Consider the following class of fractional programming:

(FP) :

⎧
⎨

⎩

min
∑N

i=1
c�i y+c0i
d�

i y+d0i

s.t. Ay ≤ b, y ≥ 0,

where A = (arj)m×n is a real matrix, ci = (cij)1×n and di = (dij)1×n are real vectors for each
i = 1, . . . , N , b = (br)m×1, c0i, d0i ∈ R. In addition, we assume that

D̄ =
{

y ∈ Rn | Ay ≤ b, y ≥ 0
}

is a nonempty compact set.
Since each d�

i y + d0i is a continuous function on D̄, by the intermediate value theorem
we can obtain that d�

i y + d0i > 0 or d�
i y + d0i < 0 for any y ∈ D̄. Consequently,

N∑

i=1

c�
i y + c0i

d�
i y + d0i

=
∑

i∈I+

c�
i y + c0i

d�
i y + d0i

+
∑

i∈I–

c�
i y + c0i

d�
i y + d0i

=
∑

i∈I+

c�
i y + c0i

d�
i y + d0i

+
∑

i∈I–

–(c�
i y + c0i)

–(d�
i y + d0i)

,
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where I+ = {i | d�
i y + d0i > 0, i = 1, . . . , N ,∀y ∈ D̄} and I– = {i | d�

i y + d0i < 0, i = 1, . . . , N ,∀y ∈
D̄}. Additionally, notice that

min
N∑

i=1

c�
i y + c0i

d�
i y + d0i

⇐⇒ min
N∑

i=1

(
c�

i y + c0i

d�
i y + d0i

+ M̄i

)

⇐⇒ min
N∑

i=1

c�
i y + c0i + M̄i(d�

i y + d0i)
d�

i y + d0i

by choosing a sufficiently large value M̄i (i = 1, . . . , N ) with c�
i y + c0i + M̄i(d�

i y + d0i) > 0 for
any y ∈ D̄. Therefore, in the following, without loss of generality, we suppose that c�

i y+c0i >
0 and d�

i y + d0i > 0, ∀y ∈ D̄, for each i = 1, . . . , N .
Problem (FP) is a well-known class among fractional programming problems. Theoret-

ically, it is NP-hard [1, 2]. The primary challenges in solving problem (FP) arise from a
lack of useful properties (convexity or otherwise) and from the number of ratios. In gen-
eral, problem (FP) possesses more local optimal solutions that are not globally optimal [3],
and so problem (FP) owns major theoretical and computational difficulties. From an ap-
plication point view, this problem has a large deal of applications; for instance, traffic and
economic domain [4, 5], multistage stochastic shipping problems [6], data envelopment
analysis [7], and queueing-location problems [8]. The reader is referred to a survey to find
many other applications [4, 5, 9–11].

Many algorithms have been proposed to solve problem (FP) with a limited number of
ratios [4, 12–19]. For instance, Wang and Shen [4] give an efficient branch and bound al-
gorithm by using a transformation technique and the linear relaxation programming of
the objective function. By applying Lagrangian duality theory, Benson [9] presents a sim-
plicial branch and bound duality-bounds algorithm. Carlsson and Shi [10] propose a lin-
ear relaxation algorithm with lower dimension which is performed on a 2N-dimensional
domain instead of the original n-dimensional one, the computational time is long with
larger N . Ji and Zhang [16] consider a deterministic global optimization algorithm by uti-
lizing a transformation technique and a linearizing method. Jiao et al. [17, 18] present the
branch and bound algorithms for globally solving sum of linear and generalized polyno-
mial ratios problems, by solving a sequence of linear relaxation programming problems.
In short, most of them (see [4, 9, 16–18] for example) are branch and bound algorithms.
The key idea behind such algorithms mentioned above is that the branch and bound op-
erator is performed on an N-dimensional region (or the correspondence relating to N and
n) rather than the native n-dimensional feasible set, that is, they all work on a space whose
dimension increases with the number N of ratios.

In this article, a new division and reduction algorithm is proposed for globally solv-
ing problem (FP). To solve problem (FP), an equivalent optimization problem (P), whose
objective function is just a simple univariate, is first presented by exploiting the feature of
this problem. Then, in order to design a more efficient algorithm, several basic operations:
division, deleting, and reduction, are incorporated into a similar branch and bound frame-
work by utilizing the particular structure of problem (P). Compared with the usual branch
and bound (BB) methods (e.g., [4, 5, 9, 10, 16]) mentioned above, the goal of this research
is three fold. First, the proposed bounding operation is simple since the lower bound of
the subproblem of each node can be achieved easily only by arithmetic computations, dis-
tinguishing it from the ones obtained by solving convex/linear programs in the usual BB
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methods. Second, the reduction operation that does not appear in other BB methods is
used to tighten the range of each variable, such that the growth of the branch tree can be
suppressed. Moreover, the main computational cost of the algorithm is to implement the
reduction operation which solves univariate equations with strict monotonicity. Third,
the problem in this paper is more general than the others considered in [10, 11], since we
only request d�

i y + d0i 	= 0 for each i. Further, the proposed adaptive division operation
both generalizes and is superior to the usual standard bisection in BB methods according
to the numerical computational result in Sect. 5. Also, the computational results of the
problem with the large number of ratio terms can be obtained to illustrate the feasibility
and validity of the proposed algorithm.

This paper is summarized as follows. In Sect. 2, by using a conversion strategies, the
original problem (FP) is transformed into an equivalent optimization problem (P). The
adaptive division, deleting, and reduction operations are shown in Sect. 3. In Sect. 4 we
give the proposed algorithm and its convergence. Some numerical results demonstrate the
feasibility and availability of the algorithm in Sect. 5.

2 Equivalent problem
For solving problem (FP), we first convert the primary problem (FP) into an equivalent
optimization problem (P), in which the objective function is a single variable and the con-
straint functions are the difference of two increasing functions. To see that such a refor-
mulation is possible, let us denote, for each i = 1, . . . , N ,

Li =
1

maxy∈D̄ d�
i y + d0i

, Ui =
1

miny∈D̄ d�
i y + d0i

.

Clearly, Li, Ui > 0 for each i. Additionally, by introducing some additional variables w =
(w1, w2, . . . , wN ) ∈ RN , from (FP) we then obtain the following equivalent problem:

(FP1) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
∑N

i=1 wi(c�
i y + c0i)

s.t. 1 – wi(d�
i y + d0i) ≤ 0, i = 1, . . . , N ,

Li ≤ wi ≤ Ui, i = 1, . . . , N ,

y ∈ D̄.

For simplicity, we denote

I+
0 = {i | c0i > 0, i = 1, . . . , N}, I–

0 = {i | c0i < 0, i = 1, . . . , N},
J+
i = {j | cij > 0, j = 1, . . . , n}, J–

i = {j | cij < 0, j = 1, . . . , n},
T+

i = {j | dij > 0, j = 1, . . . , n}, T–
i = {j | dij < 0, j = 1, . . . , n},

M+
r = {j | arj > 0, j = 1, . . . , n}, M–

r = {j | arj < 0, j = 1, . . . , n}.

Define a box as follows:

[y, ȳ] =
{

y ∈ Rn | yl
j � min

y∈D̄
yj ≤ yj ≤ yu

j � max
y∈D̄

yj, j = 1, . . . , n
}

.
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Based on the above notations, by introducing an extra variable y0 ∈ R+, we can convert the
above problem (FP1) into the form:

(FP2) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min y0

s.t.
∑N

i=1
∑

j∈J+
i

cijwiyj

+
∑

i∈I+
0

c0iwi –
∑N

i=1
∑

j∈J–
i

(–cij)wiyj –
∑

i∈I–
0

(–c0i)wi – y0 ≤ 0,

–
∑

j∈T+
i

dijwiyj +
∑

j∈T–
i

(–dij)wiyj – d0iwi + 1 ≤ 0, i = 1, . . . , N ,
∑

j∈M+
r

arjyj – br –
∑

j∈M–
r

(–arj)yj ≤ 0, r = 1, . . . , m,

Li ≤ wi ≤ Ui, i = 1, . . . , N ,

y ∈ [y, ȳ], y0 ∈ [yl
0, yu

0],

where

yl
0 =

N∑

i=1

n∑

j=1

min
{

cijLiyl
j , cijUiyu

j
}

+
N∑

i=1

min{c0iLi, c0iUi},

yu
0 =

N∑

i=1

n∑

j=1

max
{

cijLiyl
j , cijUiyu

j
}

+
N∑

i=1

max{c0iLi, c0iUi}.

Then problems (FP2) and (FP) are equivalent in the sense of the following result.

Proposition 2.1 y∗ ∈ Rn is a globally optimal solution for problem (FP) if and only if
(y∗

0, y∗, w∗) ∈ Rn+N+1 with y∗
0 ∈ R and w∗ ∈ RN is a globally optimal solution for problem

(FP2), where y∗
0 =

∑N
i=1 w∗

i (c�
i y∗ + c0i) and w∗

i = 1
di(y∗)+d0i

for each i = 1, . . . , N .

Proof The proof of this result is obvious. �

From Proposition 2.1, notice that, in order to globally solve problem (FP), we may glob-
ally solve problem (FP2) instead. Moreover, it is easy to see that the global optimal values
of problems (FP) and (FP2) are equal.

In addition, for convenience of the following discussion, let us denote x = (y0, y, w) ∈
Rn+N+1 with y ∈ Rn, w ∈ RN . Then problem (FP2) can be rewritten as problem (P):

(P) :

⎧
⎪⎪⎨

⎪⎪⎩

min F(x) = x0

s.t. Gk(x) ≤ 0, k = 0, . . . , m + N ,

x ∈ D0,

where

D0 = {x ∈ Rn+N+1 | xl
j ≤ xj ≤ xu

j , j = 0, 1, . . . , n + N}
=

{

x ∈ Rn+N+1

∣
∣
∣
∣
∣

xl
j � yl

j ≤ xj = yj ≤ xu
j � yu

j , j = 0, 1, . . . , n,
Lj–n ≤ xj = wj–n ≤ Uj–n, j = n + 1, . . . , n + N

}
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and Gk(x) = G+
k (x) – G–

k (x) with G+
k (x), G–

k (x) being increasing functions given by

G+
k (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑N
i=1

∑
j∈J+

i
cijxjxi+n +

∑
i∈I+

0
c0ixi+n, k = 0,

∑
j∈T–

k
(–dkj)xjxk+n + 1, k = 1, . . . , N ′,

∑
j∈T–

k
(–dkj)xjxk+n + (–d0k)xk+n + 1, k = N ′ + 1, . . . , N ,

∑
j∈M+

k–N
ak–N ,jxj – bk–N , k = N + 1, . . . , N + m,

and

G–
k (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑N
i=1

∑
j∈J–

i
(–cij)xjxi+n +

∑
i∈I–

0
(–c0i)xi+n, k = 0,

∑
j∈T+

k
dkjxjxk+n + d0kxk+n, k = 1, . . . , N ′,

∑
j∈T+

k
dkjxjxk+n, k = N ′ + 1, . . . , N ,

∑
j∈M–

k–N
(–ak–N ,j)xj, k = N + 1, . . . , N + m.

Note that both problem (FP) and problem (P) are equivalent according to Proposi-
tion 2.1, hence for globally solving problem (FP), the algorithm to be presented concen-
trates on how to solve problem (P).

3 Essential operations
For solving problem (P), we first give the following concept about an approximate optimal
solution.

Definition 3.1 For given ε,η ≥ 0, let

Dε =
{

x ∈ D0 | Gk(x) < ε, k = 0, 1, . . . , m + N
}

,

a point x ∈ Dε is said to be an ε-feasible solution to problem (P). If an ε-feasible solution
x̄ = (x̄0, x̄1, . . . , x̄n+N ) to problem (P) satisfies

x̄0 ≤ min{x0 | x ∈ Dε} + η,

x̄ is called an (ε,η)-optimal solution to problem (P).

Remark 3.1 All feasible solutions to problem (P) are ε-feasible. When η = 0, an (ε,η)-
optimal solution is optimal over all ε-feasible solutions of problem (P). When η > 0, an
(ε,η)-optimal solution is η-optimal for all ε-feasible solutions to problem (P).

For seeking an (ε,η)-optimal solution of problem (P), a division and cut algorithm to be
developed includes three essential operations: division operation, deleting operation, and
reduction operation.

First, the division operation consists in a sequential box division of the original box D0

following in an exhaustive subsection principle, such that any infinite nested sequence of
division sets generated through the algorithm reduces to a singleton. This paper takes an
adaptive division operation, which extends the standard bisection in the normally used
exhaustive subsection principle. Second, by using overestimation of the constraints, the
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deleting operation consists in eliminating each subbox D generated by the division opera-
tion, in which there is no feasible solution. In addition, the reduction operation is used to
reduce the size of the current partition set (referred to a node), aiming at tightening each
subbox which contains the feasible portion currently still of interest.

For any box D = [p, q] =
∏n+N

i=0 [pi, qi] ⊆ D0, for convenience, we will use the following
functions throughout this paper:

f i
k (α) = G+

k (p) – G–
k
(
q – α(qi – pi)ei), k = 0, 1, . . . , m + N ,

gi
k(β) = G+

k
(
p′ + β

(
qi – p′

i
)
ei) – G–

k (q), k = 0, 1, . . . , m + N ,

where α,β ∈ (0, 1), pi ≤ p′
i ≤ qi, and ei denotes the ith unit vector, i.e., a vector with 1 at

the ith position and 0 everywhere else, i = 0, 1, . . . , n + N .
At a given stage of the proposed algorithm for problem (P), let V represent the best cur-

rent objective function value to problem (P). Next, we will show these detailed operations.

3.1 Deleting operation
In this subsection, we will give a suitable deleting operation, which offers a possibility
to remove a subbox D of D0 without feasibility. Toward this end, we take into account a
subproblem of problem (P) over a given box D = [p, q] =

∏n+N
i=0 [pi, qi] ⊆ D0 as follows:

P(D) :

⎧
⎪⎪⎨

⎪⎪⎩

min x0,

s.t. F̄(x) � max{G+
k (x) – G–

k (x) | k = 0, 1, . . . , m + N} ≤ 0,

x = (x0, x1, . . . , xn+N ) ∈ D.

Given η > 0, for solving P(D), we need to seek out a feasible solution x̄ = (x̄0, x̄1, . . . ,
x̄n+N ) ∈ D of P(D) such that x̄0 ≤ V – η, or to draw a conclusion that there exists no such x̄,
where V is the best objective value to problem P(D) known so far. Obviously, if p0 > V – η,
there exists no x̄ ∈ D with x̄0 ≤ V –η. If p0 ≤ V –η and Gk(p) ≤ 0 for each k = 0, . . . , m + N ,
then update x̄ = p. Therefore, without loss of generality, in the following discussion we shall
suppose that

F̄(p) > ε, p0 ≤ V – η,
{

x ∈ D0 | F̄(x) < ε
} 	= ∅. (3.1)

Clearly, if F̄(x) > ε for any x ∈ D, there exists no feasible solution on D, and so D is deleted
for further discussion. However, since the judgement satisfying F̄(x) > ε is not easy, we
introduce an auxiliary problem of P(D) as follows:

Q(D) :

⎧
⎪⎪⎨

⎪⎪⎩

min F̄(x)

s.t. x0 ≤ V – η,

x = (x0, x1, . . . , xn+N ) ∈ D ⊆ D0.

Observe that the objective and constraint functions are interchanged in P(D) and Q(D).
Let V (P(D)) and V (Q(D)) be the optimal values of problems P(D) and Q(D), respectively.
Then we give the following results about problems P(D) and Q(D).
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Theorem 3.1 Let ε > 0, η > 0 be given, and let D be a box with D ⊆ D0. We have the
following result:

(i) A feasible solution to Q(D) satisfying F̄(x̂) < ε is an ε-feasible solution of P(D) with
x̂0 ≤ V – η.

(ii) If V (Q(D0)) > 0, consider the following two cases: (a) problem P(D0) has no feasible
solution if V = xu

0 + η, and (b) an ε-feasible solution x̃ = (x̃0, x̃1, . . . , x̃n+N ) of Q(D0) is
an (ε,η)-optimal solution of P(D0) if V = x̃0.

Proof (i) This result is obvious, and here it is omitted.
(ii) By utilizing the assumption V (Q(D0)) > 0, i.e.,

min
{

F̄(x) | x0 ≤ V – η, x ∈ D0} > 0, (3.2)

we have the following conclusions:
(a) If V = xu

0 + η, by (3.2) we get {x | F̄(x) ≤ 0, x ∈ D0} = ∅, which implies that problem
P(D) has no feasible solution.

(b) If V = x̃0, from (3.2) it is easy to see that

x0 > V – η = x̃0 – η,

for any x = (x0, x1, . . . , xn+N ) ∈ {x | F̄(x) ≤ 0 < ε, x ∈ D0}, which means that

min
{

x0 | Gk(x) < ε, k = 0, 1, . . . , m + N , x ∈ D0} ≥ x̃0 – η.

Consequently, x̃ is an (ε,η)-optimal solution of P(D), and this accomplishes the proof. �

Theorem 3.1 illustrates that by utilizing problem Q(D) one can know whether or not
there exists a feasible solution x̂ = (x̂0, x̂1, . . . , x̂n+N ) of P(D) with improving the current
objective function value V , i.e., x̂0 ≤ V – η. Further, if V (Q(D0)) ≥ ε > 0, then an (ε,η)-
optimal solution of P(D0) can be obtained, or it can be confirmed that problem P(D0) has
no feasible solution.

Additionally, if V (Q(D)) > ε, it is easy to see that a fathomed box D cannot contain the
feasible solutions for problem (P). Thus, D is excluded from further consideration by the
search. Unfortunately, solving problem Q(D) may be as difficult as solving the original
problem P(D). Hence, a lower bound LB(D) of V (Q(D)) is required for eliminating the
part of D0 which does not contain the solution to problem (P). Clearly, if LB(D) ≥ ε, D is
excluded from further consideration by the search. Since G+

k (x) and G–
k (x) are all increas-

ing, an apparent lower bound is

LB(D) = max
k=0,1,...,m+N

{
G+

k (p) – G–
k (q)

}
.

Although quite straightforward, the bound is sufficient to confirm convergence of the al-
gorithm, as we will see immediately. For strengthening the computational validity in solv-
ing problem P(D), some tighter lower bounds can be obtained by utilizing the following
Theorem 3.2. Especially, what is more important is that such tighter lower bounds can be
gained only by simple arithmetic computations, which is different from the ones in the
usual branch and bound methods for solving convex or linear programs [5, 6, 11, 12, 14].
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Theorem 3.2 For any D = [p, q] =
∏n+N

i=0 [pi, qi] ⊆ D0, under assumption (3.1), let

α =

⎧
⎨

⎩

q0–V +η

q0–p0
, if q0 > V – η,

0, otherwise.

Then a lower bound LB(D) satisfying LB(D) ≤ V (Q(D)) for problem Q(D) is given by

LB(D) = min
i=0,1,...,n+N

max
k=0,1,...,m+N

{
f i
k (α)

}
.

Proof (i) If α = 0, this result is obvious.
(ii) By the assumption it holds that p0 ≤ V –η < q0. Then we get 0 < α < 1, and there exists

x̃ = q–α(q–p) so that x̃0 = V –η with x̃0 = q0 –α(q0 –p0). Thus, for each x̂ = q–β(q–p) with
β < α, it is easy to find that x̂0 > x̃0 = V –η, that is, for each x > x̃, there exists x̂ = q–β(q–p)
with β < α such that x ≥ x̂, and so it holds that x0 ≥ x̂0 > V – η. Now, let us denote

�i =
{

x ∈ [p, q] | pi ≤ xi ≤ x̃i
}

,

then we can acquire that

{
x ∈ [p, q] | x0 ≤ V – η

} ⊂ [p, q] \ {x | x̃ < x ≤ q}

= [p, q]
∖ n+N⋂

i=0

{
x ∈ [p, q] | x̃i < xi

}

=
n+N⋃

i=0

{
x ∈ [p, q] | pi ≤ xi ≤ x̃i

}

=
n+N⋃

i=0

�i.

Let LB(�i) = maxk=0,1,...,m+N {f i
k (α)} and LB(D) = min{LB(�i) | i = 0, 1, . . . , n + N}. Obvi-

ously, we get LB(�i) ≤ min{F̄(x) | x ∈ ⋃n+N
i=0 �i},

LB(D) ≤ min

{

F̄(x)
∣
∣
∣ x ∈

n+N⋃

i=0

�i

}

≤ min
{

F̄(x) | x0 ≤ V – η, x ∈ [p, q]
}

.

Thus, the proof is complete. �

Notice that LB(D) in Theorem 3.2 satisfies

min
{

F̄(x) | x0 ≤ V – η, x ∈ D0} ≥ LB(D) ≥ max
k=0,1,...,m+N

{
G+

k (p) – G–
k (q)

}
. (3.3)

3.2 Adaptive division
The division operation repeatedly subdivides an (n + N + 1)-dimensional box D0 into (n +
N + 1)-dimensional subboxes. This operation helps the algorithm confirm the position of
a global optimal solution in D0 for problem (P). Throughout this algorithm, we take a new
adaptive subdivision principle as follows.
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Adaptive subdivision For given η > 0, consider any box D = [p, q] = {x ∈ Rn+N+1|pi ≤ xi ≤
qi, i = 0, 1, . . . , n + N} ⊆ D0.

(i) If q0 > V – η, then let α = q0–V +η

q0–p0
; otherwise let α = 0.

(ii) Denote t = argmax{qi – pi | i = 0, 1, . . . , n + N}. Let ut = pt and vt = qt – α(qt – pt). Set
x̄t = (ut + vt)/2.

(iii) By using x̄t , let us denote

D1 =
{

x ∈ Rn+N+1 | pi ≤ xi ≤ qi, i 	= t, pt ≤ xt ≤ x̄t , i = 0, 1, . . . , n + N
}

,

and

D2 =
{

x ∈ Rn+N+1 | pi ≤ xi ≤ qi, i 	= t, x̄t ≤ xt ≤ qt , i = 0, 1, . . . , n + N
}

.

Based on the above division operation, D is divided into two new boxes D1 and D2.
Especially, when α = 0, the adaptive subdivision simply reduces to the standard bisection.
As we will see from numerical experiments in Sect. 5, the adaptive subdivision is superior
to the standard bisection. Moreover, the subdivision can confirm the convergence of the
algorithm, and we have the following results.

Theorem 3.3 Suppose that the above adaptive division operation is infinite, then it gener-
ates a nested sequence {Dst } of partition sets {Ds} generated by the adaptive division oper-
ation, so that LB(Dst ) → V (Q(D0)) as t → +∞.

Proof By the adaptive division operation, for each box Ds = [ps, qs] ⊆ D0, we can acquire
the points us, vs(i) ∈ Ds (i = 0, 1, . . . , n + N ) satisfying

us = ps, vs(i) = qs – αs(qs
i – ps

i
)
ei with αs = 0 or αs =

qs
0 – V + η

qs
0 – ps

0
.

From Theorem 3.2, we can obtain

LB
(
Ds) = min

i=0,1,...,n+N
max

k=0,1,...,m+N

{
G+

k
(
us) – G–

k
(
vs(i)

)}
.

According to Ref. [18], this adaptive division ensures the existence of an infinite sub-
sequence {st} with Dst+1 ⊆ Dst and LB(Dst ) ≤ V (Q(D0)) for each t, so that for each i =
0, 1, . . . , n + N ,

vst (i) – ust → 0, as t → +∞,

lim
t→+∞ vst (i) = lim

t→+∞ ust = û ∈ D0.

Thus we can obtain that

lim
t→+∞ LB

(
Dst

)
= min

i=0,1,...,n+N
max

k=0,1,...,m+N

{
G+

k (û) – G–
k (û)

}
= F̄(û).

In addition, by assumption (3.1), since ust
0 = pst

0 ≤ V – η, it holds that

lim
t→+∞ ust

0 = û0 ≤ V – η,
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which implies that û is feasible to Q(D0), then we get

LB
(
Dst

) ≤ min
{

F̄(x) | u0 ≤ V – η, u ∈ D0} ≤ F̄(û).

Consequently, the limitation LB(Dst ) → V (Q(D0)) (t → +∞) holds and then we accom-
plish the proof. �

3.3 Reduction operation
At a given stage of the proposed algorithm for problem (P), let D = [p, q] ⊆ D0 be a box
generated by the division operation and still of interest. Clearly, the smaller this box D is,
the closer the feasible solution will be to the (ε,η)-optimal solution to problem (P). Hence,
to effectively tighten the variable bounds in a particular node, a valid range reduction
strategy is introduced by overestimation of the constraints, and by applying the monotonic
decompositions to problem (P). Based on the above discussion, for any box D = [p, q] ⊆ D0

generated by the division operation and still of interest, we intend to identify whether or
not the box D contains a feasible solution x̂ of P(D) such that x̂0 ≤ V – η. Consequently,
seeking such a point x̂ can be confined to the set D̂ ∩ D, where

D̂ =
{

x | x0 ≤ V – η, G+
k (x) – G–

k (x) < ε, k = 0, 1, . . . , m + N
}

.

The reduction operation is based on special cuts that exploit the monotonic structure
of problem (P), and it aims at substituting the box D = [p, q] with a smaller box D′ without
losing any valid point x ∈ D̂ ∩ D, i.e.,

D̂ ∩ D′ = D̂ ∩ D. (3.4)

This will suppress the fast growth of the branching tree in the division operation for seek-
ing the (ε,η)-optimal solution of problem (P).

For any D = [p, q] =
∏n+N

i=0 [pi, qi] ⊆ D0 generated by the division operation, the box D′

satisfying condition (3.4) is denoted by R[p, q]. To recognize how R[p, q] is acquired, we
first demand to know the parameters γ , αi

k , and β i
k computed for each k = 0, 1, . . . , m + N ,

i = 0, 1, . . . , n + N by utilizing the following rules.
Rule (i): Given the box [p, q] ⊆ D0, if f i

k (1) > ε, let αi
k be the solution to the equation

f i
k (αi

k) = ε about the univariate αi
k ; otherwise let αi

k = 1.
Rule (ii): For given boxes D = [p, q] and D′ = [p̄, q] with D′ ⊆ D ⊆ D0, if gi

k(1) > ε, one can
solve the univariate equation gi

k(β i
k) = ε to obtain β i

k ; otherwise let β i
k = 1. If p̄0 < V –η < q0,

then set γ = V –η–p̄0
q0–p̄0

; otherwise let γ = 1.
Notice that it is easy to get αi

k and β i
k , since the univariate functions f i

k (λ) and gi
k(μ) are

strictly monotonic in Rules (i) and (ii).
According to Rules (i) and (ii), let us denote

α̂i = min
k=0,1,...,m+N

{
αi

k
}

,

β̂ i = min
k=0,1,...,m+N

{
β i

k ,γ
}

, i = 0, 1, . . . , n + N , (3.5)

then R[p, q] can be obtained by Theorems 3.4 and 3.5.
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Theorem 3.4 Given the box D = [p, q] =
∏n+N

i=0 [pi, qi] ⊆ D0, it holds that
(i) If p0 ≤ V – η and F̄(p) < ε, then R[p, q] = [p, p], and

(ii) If p0 > V – η or max{f i
k (0)|k = 0, 1, . . . , m + N} > ε holds for some i ∈ {0, 1, . . . , n + N},

then R[p, q] = ∅.

Proof (i) The proof of this result is easy, here it is omitted.
(ii) The former of the conclusion is apparent, we only need to give the proof of the latter.
If there exists some i ∈ {0, 1, . . . , n + N} so that max{f i

k (0)|k = 0, 1, . . . , m + N} > ε, we can
obtain

F̄(x) > max
k=0,1,...,m+N

{
f i
k (0)

}
> ε for each x ∈ [p, q].

Therefore, we can acquire R[p, q] = ∅, and this accomplishes the proof. �

Theorem 3.5 For any D = [p, q] ⊆ D0, under Rule (i) and (3.5) and the assumption

p0 ≤ V – η and max
k=0,1,...,m+N

{
f i
k (0)

}
< ε for each i = 0, 1, . . . , n + N ,

let p̂ = q –
∑n+N

i=0 α̂i(qi – pi)ei. If the box [p̂, q] satisfies the assumption of Theorem 3.4, then
R[p, q] = [p̂, p̂] or R[p, q] = ∅. Otherwise, R[p, q] = [p̂, q̂], where q̂ = p̂ –

∑n+N
i=0 β̂ i(qi – pi)ei

with respect to Rule (ii) and (3.5).

Proof For any given x = (x0, . . . , xn+N )T ∈ [p, q], we first confirm that x ≥ p̂.
Assume that x � p̂, that is to say, there exists some i ∈ {0, 1, . . . , n + N} such that

xi < p̂i = qi – α̂i(qi – pi) i.e. xi = qi – α(qi – pi) with α > α̂i. (3.6)

Then we discuss as follows:
If α̂i = 1, we can obtain xi < p̂i = qi – α̂i(qi – pi) = pi from (3.6), contradicting x ∈ [p, q],

then x ≥ p̂.
If α̂i ∈ (0, 1), from Rule (i) and the definition of α̂i, there must exist some k such that

f i
k (α̂i) = ε, i.e.,

G+
k (p) – G–

k
(
q – α̂i(qi – pi)ei) = ε. (3.7)

In addition, through Rule (i) and the definition of G–
k (x), it holds from (3.6) and (3.7) that

G–
k
(
q – (qi – xi)ei) = G–

k
(
q – α(qi – pi)ei) < G–

k
(
q – α̂i(qi – pi)ei) = G+

k (p) – ε.

Consequently,

G–
k (x) ≤ G–

k
(
q – (qi – xi)ei) < G+

k (p) – ε ≤ G+
k (x) – ε,

contradicting G+
k (x) – G–

k (x) ≤ ε. According to the above discussions, we have demon-
strated that x ≥ p̂, i.e., x ∈ [p̂, q]. Next we will show that x ≤ q̂.
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Assume that x � q̂, then there exists some i such that

xi > q̂i = p̂i + β̂ i(qi – p̂i), i.e. xi = p̂i + β(qi – p̂i) with β > β̂ i. (3.8)

We discuss as follows:
If β̂ i = 1, from (3.8) we can acquire xi > q̂i = p̂i + α̂i(qi – p̂i) = qi, contradicting x ∈ [p, q].
If β̂ i ∈ (0, 1), from Rules (i) and (ii) and the definition of β̂ i, we can obtain gi

k(β̂ i) = ε, i.e.,

G+
k
(
p̂i + β̂ i(qi – p̂i)ei) – G–

k (q) = ε, (3.9)

or

p̂0 + β̂0(q0 – p̂0) = V – η. (3.10)

Suppose that (3.9) holds, due to Rule (ii) and the definition of G+
k (x), by (3.8) and (3.9) it

follows that

G+
k
(
p̂ + (xi – p̂i)ei) = G+

k
(
p̂ + β(qi – p̂i)ei) > G+

k
(
p̂ + β̂ i(qi – p̂i)ei) = G–

k (q) + ε;

therefore,

G+
k (x) ≥ G+

k
(
p̂ + (xi – p̂i)ei) > G–

k (q) + ε ≥ G–
k (x) + ε with xi = p̂i + β(qi – p̂i),

which contradicts G+
k (x) – G–

k (x) ≤ ε.
Suppose that (3.10) holds, from (3.8), (3.10), and Rule (ii), we can draw a conclusion that

x0 = p̂0 + β(q0 – p̂0) > p̂0 + β̂0(q0 – p̂0) = V – η,

which contradicts x0 ≤ V – η. According to the above discussions, we can acquire x ≤ q̂,
i.e., x ∈ [p̂, q̂], and the proof is complete. �

From Theorem 3.5, by Rules (i) and (ii) the main computational effort for deriving R[p, q]
is to solve some univariate equations about the variables α̂i

k and β̂ i
k , which is easy to solve,

for example, by using the bisection approach. What is more, as seen below, the cost of
main computation in the proposed algorithm is also to form R[p, q].

4 Algorithm and its convergence
According to the above discussions, the proposed algorithm is shown as follows.

Algorithm statement
Step (0) Given tolerances ε,η > 0, if there is no known feasible solution at present, set

V = xu
0 with D0 = [xl, xu]; otherwise let x∗ be the best feasible solution of problem (P), and

set V = x∗
0. Let M0 = {D0}, N0 = ∅, t = 0.

Step (1) For each D = [p, q] =
∏n+N

i=0 [pi, qi] ∈ Mt , compute R[p, q] according to Theo-
rems 3.4 and 3.5. Then:

(a) If R[p, q] = ∅, eliminate D.
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(b) If R[p, q] = [p, p], discard D and update x∗ = p, V = p0.
(c) If R[p, q] 	= ∅, set D = R[p, q] and compute the lower bound LB(D) by Theorem 3.5.

If LB(D) > ε, delete D.
Step (2) Denote M̄t to be the collection of boxes that results from Mt after accomplish-

ment of Step (1), and set N̄t = Nt ∪ M̄t .
(a) If N̄t = ∅, stop: (i) if V = xu

0 , problem (P) is infeasible; (ii) if V = x∗
0 , x∗ is an

(ε,η)-optimal solution of problem (P).
(b) If N̄t 	= ∅, Theorem 3.4 is applied to each D ∈ N̄t , then eliminate D and update

x∗ = p, V = p0 if necessary.
Step (3) Denote N̄t to be the collection of boxes after accomplishment of Step (2). Choose

Dt = [pt , qt] ∈ argmin{LB(D) | D ∈ N̄t}, and denote LBt = LB(N̄t). If LBt > 0, then termi-
nate: the conclusion is the same as situation (a) of Step (2); otherwise go to Step (4).

Step (4) If qt
0 > V – η, let st = pt + αt(qt – pt) with αt = q0–V +η

q0–p0
; otherwise set st = pt or

st = (pt + qt)/2. If F̄(st) < ε, update x∗ = st , V = st
0.

Step (5) Divide Dt into two subboxes by the adaptive division, and set Mt+1 to be the
collection of these two subboxes of Dt . Let Nt+1 = N̄t\{Dt}. Set t = t + 1, and return to
Step (1).

Remark By utilizing a local solver in Step (4) of the proposed algorithm, instead of eval-
uating one point, we may acquire a point with the better objective function value V , and
the iteration count of the algorithm may be reduced. However, because the computational
cost increases rapidly with the quality of the objective value V , the running time is not al-
ways decreasing. So a trade-off must be made, practically just one evaluating point as in
the above algorithm is used. Moreover, to implement the algorithm, all that is required is
the ability to solve univariate equations with monotonicity and to execute simple algebraic
steps.

The convergence of the algorithm is shown by the following theorem.

Theorem 4.1 For given tolerances ε,η > 0, the above algorithm always terminates after
finitely many iterations, obtaining an (ε,η)-optimal solution of problem (P), or a demon-
stration that the problem is infeasible.

Proof Since any feasible solution x = (x0, x1, . . . , xn+N ) to problem (P) with x0 ≤ V – η must
exist in some box D ∈ N̄t , case (a) of Step (2) implies that there exists no such solution x.
In addition, if LBt > 0 occurs in Step (3), then we can obtain V (MQ(D)) > 0. Consequently,
by Theorem 3.5 the conclusion is true if one of the following cases occurs:

N̄t = ∅ or LBt > 0,

that is to say, for extremely large t Steps (4) and (5) cannot appear. It remains to illustrate
that either N̄t = ∅ or LBt > 0 must take place for extremely large t.

By contradiction, assume that the algorithm is infinite. Because each appearance of Step
(4) reduces the current best objective function value V = x∗

0 at least by η > 0 if F̄(st) < ε, this
conflicts with the fact that x0 is bounded below if Step (4) takes place infinitely. In other
words, F̄(st) < ε in Step (4) cannot occur infinitely often. Therefore, for all t extremely
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large, x∗ is unaltered, and F̄(st) ≥ ε while LBt ≤ 0, and then Step (5) must be performed
infinitely. By the division operation of the algorithm, as t → +∞, qt – pt → 0, we have

lim
t→+∞ pt = lim

t→+∞ qt = lim
t→+∞ st = x̂ ∈ D0.

According to (3.5), it holds that

0 ≥ LBt ≥ max
k=0,1,...,m+N

{
G+

k
(
pt) – G–

k
(
qt)},

thus, it follows that

0 ≥ lim
t→+∞ LBt ≥ max

k=0,1,...,m+N

{
G+

k (x̂) – G–
k (x̂)

}
= F̄(x̂),

which conflicts with limt→+∞ F̄(st) = F̄(x̂) ≥ ε > 0. Consequently, the algorithm must be
finite, and the proof is finished. �

5 Numerical experiments
In this section, to verify the performance of the proposed algorithm, we give the computa-
tional results of six test examples and randomly generated problems. All tests are carried
out on an Intel 5 CPU 2.33 GHz with 2 GB memory microcomputer and the algorithm
is encoded in MATLAB. The numerical results are shown in Tables 1–2 and Figs. 1–4
to illustrate the feasibility and validity of the proposed algorithm. We first describe sev-
eral simple examples in order to compare them with Refs. [4, 16], and the corresponding
computational results are illustrated in Table 1. Additionally, we choose other problems
randomly generated to test further the proposed algorithm, and the numerical results are
shown in Figs. 1–4 and Table 2. As seen in the proposed algorithm, the main compu-
tational effort is to solve some univariate and monotonic equations to obtain α̂i

k and β̂ i
k

required in the numerical experiments.
The notation in Table 1 is as follows:
• Ref.: reference;

Table 1 Computational results for Examples 1–6

Ex. Ref. Solution ε η Optimum Iter. Lmax Time(s)

1 [ours] (0.0000, 1.66666667, 0.0000) 10–3 10–6 3.710919 8 4 0.1830
[4] (0.0000, 0.625, 1.875) 10–4 4.0000 58 18 2.968694
[17] (1.1111, 1.36577e–05, 1.35168e–05) 10–9

2 [ours] (5.0000, 0.0000,0.0000) 10–3 10–6 2.861905 16 8 0.1250
[4] (0, 3.3333, 0) 10–4 3.0029 80 64 8.566259

3 [ours] (1.5000, 1.5000) 10–3 10–6 4.9125874 56 14 1.0870
[4] (3.0000, 4.0000) 10–4 5 32 32 1.089285
[17] (3.0000, 4.0000) 10–6

4 [ours] (1.1111, 0.0000, 0.0000) 10–2 10–5 –4.090703 185 55 3.2510
[16] (1.0715, 0, 0) 10–6 –4.087412 17

5 [ours] (0.0000, 0.3333, 0.0000) 10–3 10–6 –3.0029 17 3 0.1290
[16] (0, 0.33329, 0) 10–6 –3.000042 30

6 [ours] (1.0000, 0.0000) 10–3 10–6 1.428571 6 2 0.0470
[16] (1.0000, 0.0000) 10–6 1.428571 10
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Table 2 Average performances of adaptive division and bisection when n = 3 and ε = 0.05

N 600 800 1000 1200 1500

Adaptive division CPU time (s) 305.709 479.106 563.286 754.851 1009.027

Bisection CPU time (s) 386.527 573.421 769.683 971.858 1227.389

Figure 1 Average computational time in seconds
when n = 3, N = 50 and ε = 0.05

Figure 2 Average computational time in seconds
when n = 3 and ε = 0.05

Figure 3 Average computational time in seconds
when n = 3 and N = 50

• Iter.: the number of the algorithm iterations;
• Time (s): CPU seconds required for solving a problem;
• Lmax: the maximal number of the active node necessary.
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Figure 4 Average computational time in seconds
when N = 50 and ε = 0.05

Example 1 (see [4, 17])

min
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50
4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50
x1 + 5x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≥ 10,

x1, x2, x3 ≥ 0.

Example 2 (see [4])

min
3x1 + 5x2 + 3x3 + 50
3x1 + 4x2 + 5x3 + 50

+
3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50
+

4x1 + 2x2 + 4x3 + 50
5x1 + 4x2 + 3x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≥ 10,

x1, x2, x3 ≥ 0.

Example 3 (see [4, 17])

min
37x1 + 73x2 + 13
13x1 + 13x2 + 13

+
63x1 – 18x2 + 39
13x1 + 26x2 + 13

s.t. 5x1 – 3x2 = 3,

1.5 ≤ x1 ≤ 3.

Example 4 (see [16])

min –
(

4x1 + 3x2 + 3x3 + 50
3x2 + 3x3 + 50

+
3x1 + 4x3 + 50

4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 5x3 + 50
x1 + 5x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

)
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s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 3x3 ≤ 10,

5x1 + 9x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≤ 10,

x1, x2, x3 ≥ 0.

Example 5 (see [16])

min –
(

3x1 + 5x2 + 3x3 + 50
3x1 + 4x2 + 5x3 + 50

+
3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50
+

4x1 + 2x2 + 4x3 + 50
5x1 + 4x2 + 3x3 + 50

)

s.t. 6x1 + 3x2 + 3x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,

x1, x2, x3 ≥ 0.

Example 6 (see [16])

min
x1 + 3x2 + 2
4x1 + x2 + 3

+
4x1 + 3x2 + 1

x1 + x2 + 4

s.t. –(x1 + x2) ≤ –1,

x1, x2 ≥ 0.

From Table 1, we can obtain that solving all of the examples by the proposed algo-
rithm yields the (ε,η)-optimal solutions with much better objective function values and
being feasible. In addition, for Example 2, it is observed that the computational solution
x∗ = (0, 3.3333, 0) of Ref. [4] does not satisfy the constraint x1 + 6x2 + 2x3 ≤ 10, i.e., x∗ is
infeasible.

Next, we are particularly interested in instances of problem (FP) with a small number of
variables and a lager number of ratios. The reason is that this case has many applications,
especially in layered manufacturing and material layout [20–22]. In the following, we will
show computational results of experimenting on the proposed algorithm for randomly
generated problems, which are of the following form:

(P) :

⎧
⎨

⎩

min
∑N

i=1
c�i y+c
d�

i y+c

s.t. Ay ≤ b, y ≥ 0,

where the elements of the matrix A ∈ Rm×n, ci, di ∈ Rn (i = 1, . . . , N ) are randomly gen-
erated in the unit interval [0, 1] and c ∈ R. As for the subdivision operation, except for
the proposed operation, we also test the usual bisection operation in branch and bound
methods (e.g., [4, 5, 16–18, 23]) for comparison, where their respective computer pro-
grams were referred to as adaptive division and bisection. During running procedures, η

is fixed on 10–5, then we obtain a few data up and down; ultimately we choose the average
result for running 10 times.



Shen and Lu Journal of Inequalities and Applications  (2018) 2018:63 Page 18 of 19

The comparison results between the adaptive division and bisection are shown in
Figs. 1–4. Figure 1 illustrates the variedness of average computational time (in seconds)
acquired by each item with c changing from 10 to 100 in 10 increments when n = 3, N = 50,
and ε = 0.05, by which one can see that the influence of the value of c on computational
time is slight, hence we let c be constant 3 in other experiments. Figure 2 gives the alter-
ation of the average computational time (in seconds) gained by each term with N ranging
from 50 to 400 when (n, ε) = (3, 0.05), by which one can observe that when N > 150 the
running time increases rapidly, so the effect of variedness of the number of ratios on com-
putational time is biggish. Figure 3 demonstrates the change of the average computational
time acquired by each item with ε ranging from 0.01 to 0.07 in 0.01 increments. It is obvi-
ous that this program is sensitive to changes in ε. From numerical results, we can see that
the adaptive division acquires less time required by bisection for each program.

For the adaptive division and bisection the computational time of solving examples with
larger N ranging from 600 to 1500 are listed in Table 2. We can see that even if it takes
about seventeen minutes to solve problem (P) of size (n, N) = (3, 1500), the adaptive divi-
sion takes less time required by bisection for each N , which confirms the feasibility and
availability of the proposed algorithm. We can draw a conclusion that the algorithm has
more than enough performance, at least for three dimensions.

How does the algorithm behave for instances with n > 3? Unfortunately, the perfor-
mance of the adaptive division rapidly deteriorates with increasing n, as shown in Fig. 3.
For the same set of instances as in Fig. 1, Fig. 4 shows the variation of average computa-
tional time obtained by each program with n varying from 10 to 100 when (N , ε) is fixed
at (50, 0.05), from which one can know that even though the running time is large, but the
impact of variedness of the number of variables is mild with increasing running time in a
nearly linear mode with increasing N .

Based on the above results, it is easy to see that the adaptive division has many advan-
tages over the usual bisection in the computation. Additionally, when n is not larger than
3, the algorithm can rapidly solve problems, even if N takes on values as high as 1500. On
the other hand, when the number of variables is as high as 100, with increasing n, we need
to solve more equations in reduction operation, therefore, it is reasonable that the com-
putational time is larger. Moreover, the lower bound is acquired only by simple arithmetic
computations, that is, by executing simple algebraic steps, which is different from the ones
used in solving convex or linear programs in common branch and bound methods. Finally,
the computation for obtaining α̂i

k and β̂ i
k is easy by solving the equations with univariate

and monotonicity in reduction operation, which is also the main computational cost of
the algorithm.

6 Results and discussion
In this article, a new division and reduction algorithm is proposed for globally solving
problem (FP). First, the original problem (FP) is converted into an equivalent optimiza-
tion problem (P), in which the objective function is a single variable and the constraint
functions are the difference of two increasing functions. Second, several basic operations
(i.e., division, deleting, and reduction) are presented for designing a more efficient algo-
rithm to problem (P). Finally, the numerical computational results show the feasibility and
efficiency of the proposed basic operations, compared with the usual branch and bound
(BB) methods (e.g., [4, 5, 9, 10, 16, 17]). Additionally, as further work, we think the ideas in
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this article can be extended to the sum of nonlinear ratios optimization problems; for ex-
ample, the numerator and denominator of each ratio in the objective function to problem
(FP) are replaced with a generalized polynomial function, respectively.
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