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Abstract
We generalize cyclic refinements of Jensen’s inequality from a convex function to a
higher-order convex function by means of Lagrange–Green’s function and Fink’s
identity. We formulate the monotonicity of the linear functionals obtained from these
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regarding exponential convexity and mean value theorems.
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1 Introduction
Arising from the circumstantial analysis of geometrical observations, the theory regarding
convex functions serves to aid us in topics such as real analysis and economics. The theory
of convex functions has progressed to quite a substantial extent. Several reasons may be at-
tributed to this development: firstly, the application of convex functions is linked, directly
or indirectly, to many fields of modern analysis; secondly, convex functions are deeply as-
sociated with the philosophy of inequalities and vice versa (see [1]). Systematic study of
convex functions started over the period 1905–1906 by thought-provoking ideas and fas-
cinating work of Jensen. However, there also exists some literature about convex functions
even before Jensen because one may find the existence of the roots of their definition in the
work of Hölder (1889) and Hadamard (1893). The study of convex functions is used as a
major tool to solve optimization problems in analysis. However, the impact of inequalities
involving convex functions is magical as they solve many problems in different branches
of mathematics with a considerably high rate. That is why the study of such inequalities
has been given great importance in the literature. Higher-order convexity was introduced
by Popoviciu, who defined it under the context of divided differences of a function (see
Chap. 1, [1]). Inequalities of higher-order convex functions are very important, and many
physicists used them while dealing with higher dimensions. It is interesting to note that
the results for convex functions may not be true for convex functions of higher order.
There are remarkable changes in the results, which forces to think about the existence of
such results. Pečarić et al. in 2015 came up with a powerful idea to generalize suitable in-
equalities from convex to higher-order convex functions by using approximation theory.
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It not only generalizes the results to higher-order convex functions but also extends the
domain of interest from non-negative to real value (see [2–4]). The weight functions are
also improved from positive to real weights. Butt and Pečarić in their book [5] pay tribute
to the Romanian mathematician Professor Tiberiu Popoviciu for his famous Popoviciu’s
inequality. In the book [5], we consider Popoviciu’s inequality for convex function valid
for non-negative n-tuples and apply this method to generalize it for higher-order convex
functions valid for real n-tuples.

In the current paper, we need the following results of our interest. For φ(n–1) to be abso-
lutely continuous on [δ1, δ2] ⊂R, Fink in [6] proved the following famous identity:

φ(x) =
n

δ2 – δ1

∫ δ2

δ1

φ(ξ ) dξ

+
n–1∑
σ=1

(
n – σ

σ !

)(
φ(σ–1)(δ2)(x – δ2)σ – φ(σ–1)(δ1)(x – δ1)σ

δ2 – δ1

)

+
1

(n – 1)!(δ2 – δ1)

∫ δ2

δ1

(x – ξ )n–1Fδ2
δ1

(ξ , x)φ(n)(ξ ) dξ , (1)

where

Fδ2
δ1

(ξ , x) =

⎧⎨
⎩

ξ – δ1, ξ ≤ x ≤ δ2,

ξ – δ2, x < ξ ≤ δ2.
(2)

Consider the Lagrange–Green function GL : [δ1, δ2] × [δ1, δ2] →R defined as

GL(ξ , θ ) =

⎧⎨
⎩

(δ2–ξ )(δ1–θ )
δ2–δ1

, θ ≤ ξ ,
(δ2–θ )(δ1–ξ )

δ2–δ1
, ξ ≤ θ .

(3)

For any function λ ∈ C2([δ1, δ2]) (see [7]), we have

λ(ξ ) =
δ2 – ξ

δ2 – δ1
λ(δ1) +

ξ – δ1

δ2 – δ1
λ(δ2) +

∫ δ2

δ1

GL(ξ , θ )λ′′(θ ) dθ . (4)

The most important inequalities concerning convex functions are the following.

Theorem A (Classical Jensen’s inequality, see [8]) Let g be an integrable function on a
probability space (X,A,μ) taking values in an interval I ⊂R. Then

∫
X g dμ lies in I . If f is

a convex function on I such that f ◦ g is integrable, then

f
(∫

X
g dμ

)
≤

∫
X

f ◦ g dμ.

Theorem B (Discrete Jensen’s inequality, see [8]) Let C be a convex subset of a real vector
space Z, and let f : C →R be a convex function. If p1, . . . , pn are non-negative numbers with∑n

u=1 pu = 1 and z1, . . . , zn ∈ C, then

f

( n∑
u=1

puzu

)
≤

n∑
u=1

puf (zu).
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Next we consider cyclic refinements of discrete and classical Jensen’s inequalities (see
[9]). We say that the numbers p1, . . . , pn represent a (positive) discrete probability distri-
bution if (pu > 0) pu ≥ 0 (1 ≤ u ≤ n) and

∑n
u=1 pu = 1.

To refine the discrete Jensen’s inequality, we need the following hypotheses:
(H1) Let 2 ≤ k ≤ n be integers, and let p1, . . . , pn and λ1, . . . ,λk represent positive proba-

bility distributions.
(H2) Let C be a convex subset of a real vector space Z, and let f : C → R be a convex

function.

Theorem 1 Assume (H1) and (H2). If v1, . . . , vn ∈ C, then

f

( n∑
u=1

puzu

)
≤ Cdis = Cdis(f , z, p,λ)

:=
n∑

u=1

( k–1∑
v=0

λv+1pu+v

)
f
(∑k–1

v=0 λv+1pu+vzu+v∑k–1
v=0 λv+1pu+v

)

≤
n∑

u=1

puf (zu), (5)

where u + v means u + v – n in the case of u + v > n.

The previous result can be considered as the weighted form of Theorem 2.1 in [10].
To refine the classical Jensen’s inequality, we first introduce some hypotheses and nota-
tions.

(H3) Let (X,B,μ) be a probability space.
Let l ≥ 2 be a fixed integer. The σ -algebra in Xl generated by the projection mappings

prm : Xl → X (m = 1, . . . , l)

prm(x1, . . . , xl) := xm

is denoted by Bl . μl means the product measure on Bl : this measure is uniquely (μ is
σ -finite) specified by

μl(B1 × · · · × Bl) := μ(B1) · · ·μ(Bl), Bm ∈ B, m = 1, . . . , l.

(H4) Let g be a μ-integrable function on X taking values in an interval I ⊂R.
(H5) Let f be a convex function on I such that f ◦ g is μ-integrable on X .
Under conditions (H1) and (H3)–(H5), we define

Cint = Cint(f , g,μ, p,λ)

:=
n∑

u=1

( k–1∑
v=0

λv+1pu+v

)

×
∫

Xn
f
(∑k–1

v=0 λv+1pu+vg(xu+v)∑k–1
v=0 λv+1pu+v

)
dμn(x1, . . . , xn), (6)
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and for t ∈ [0, 1],

Cpar(t) = Cpar(t, f , g,μ, p,λ)

:=
n∑

u=1

( k–1∑
v=0

λv+1pu+v

)

×
∫

Xn
f
(

t
∑k–1

v=0 λv+1pu+vg(xu+v)∑k–1
v=0 λv+1pu+v

+ (1 – t)
∫

X
g dμ

)
dμn(x1, . . . , xn), (7)

where u + v means u + v – n in the case of u + v > n.

Remark 1 It follows from Lemma 2.1(b) in [11] that the integrals in (6) and (7) exist and
are finite.

Theorem 2 Assume (H1) and (H3)–(H5). Then

f
(∫

X
g dμ

)
≤ Cpar(t) ≤ Cint ≤

∫
X

f ◦ g dμ, t ∈ [0, 1].

In order to achieve our goals, we consider the following hypotheses for the following
sections.

(M1) Let I ⊂R be an interval, z := (z1, . . . , zn) ∈ In, and let p1, . . . , pn and λ1, . . . ,λk repre-
sent positive probability distributions for 2 ≤ k ≤ n.

(M2) Let f : I →R be a convex function.

Remark 2 Under conditions (M1), we define

J1(f ) = J1(z, p,λ; f ) :=
n∑

u=1

puf (zu) – Cdis(f , z, p,λ),

J2(f ) = J1(z, p,λ; f ) := Cdis(f , z, p,λ) – f

( n∑
u=1

puzu

)
,

where f : I →R is a function. The functionals f → Ji(f ) are linear, i = 1, 2, and Theorem 1
implies that

Ji(f ) ≥ 0, i = 1, 2

provided that f is a convex function.
Assume (H1) and (H3)–(H5). Then we have the following additional linear functionals:

J3(f ) = J3(f , g,μ, p,λ) :=
∫

X
f ◦ g dμ – Cint(f , g,μ, p,λ) ≥ 0,

J4(f ) = J4(t, f , g,μ, p,λ) :=
∫

X
f ◦ g dμ – Cpar(t, f , g,μ, p,λ) ≥ 0, t ∈ [0, 1],

J5(f ) = J5(t, f , g,μ, p,λ) := Cint(f , g,μ, p,λ) – Cpar(t, f , g,μ, p,λ) ≥ 0, t ∈ [0, 1],

J6(f ) = J6(t, f , g,μ, p,λ) := Cpar(t, f , g,μ, p,λ) – f
(∫

X
g dμ

)
≥ 0, t ∈ [0, 1].
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2 Generalization of cyclic refinements of Jensen’s inequality by Fink’s identity
First, we consider the discrete as well as continuous version of cyclic refinements of
Jensen’s inequality and construct the following identities having real weights utilizing
Fink’s identity.

Theorem 3 Let n, k ∈ N, p1, . . . , pn, and λ1, . . . ,λk be real tuples for 3 ≤ k ≤ n such that∑k–1
v=0 λv+1pu+v 	= 0 for u = 1, . . . , n with

∑n
u=1 pu = 1 and

∑k
v=1 λv = 1. Also, let [α1,α2] ⊂ R

and z ∈ [α1,α2]n. Consider the function φ : [α1,α2] → R such that φ(n–1) is absolutely con-
tinuous, φ(α1) = φ(α2) and Fα2

α1 (ξ , ·), GL(·, r) are the same as defined in (2), (3), respectively.

(a) For the linear functionals Ji(·) (i = 1, 2), assume further that
∑k–1

v=0 λv+1pu+vzu+v∑k–1
v=0 λv+1pu+v

∈ [α1,α2]
for u = 1, . . . , n.

(b) For the linear functionals Ji(·) (i = 3, . . . , 6), assume that (H3)–(H5) are valid and∑k–1
v=0 λv+1pu+vg(zu+v)∑k–1

v=0 λv+1pu+v
∈ [α1,α2] for u = 1, . . . , n. Then, for i = 1, . . . , 6, we have the following iden-

tities:
(i)

Ji(φ) =
n–l∑
σ=2

(
n – σ

σ !

)(
φ(σ–1)(α2)Ji((z – α2)σ ) – φ(σ–1)(α1)Ji((z – α1)σ )

(α2 – α1)

)

+
1

(n – 1)!(α2 – α1)

∫ α2

α1

Ji
(
(z – ξ )n–1Fα2

α1 (ξ , z)
)
φ(n)(ξ ) dξ . (8)

(ii)

Ji(φ) = (n – 2)
(

φ(1)(α2) – φ(1)(α1)
α2 – α1

)∫ α2

α1

Ji
(
GL(z, r)

)
dr

+
1

(α2 – α1)

∫ α2

α1

Ji
(
GL(z, r)

)

×
( n–3∑

σ=1

(
n – 2 – σ

σ !

)(
φ(σ+1)(α2)(r – α2)σ – φ(σ+1)(α1)(r – α1)σ

))
dr

+
1

(n – 3)!(α2 – α1)

∫ α2

α1

φ(n)(ξ )
(∫ α2

α1

Ji
(
GL(z, r)

)
(r – ξ )n–3Fα2

α1 (ξ , r) dr
)

dξ . (9)

Proof (i) Fix i = 1, . . . , 6. Using (1) in the Jensen-type functional Ji(·) and practicing the
linearity of Ji(·), we have

Ji(φ) = Ji

(
n

α2 – α1

∫ α2

α1

φ(ξ ) dξ

)

+
n–l∑
σ=1

(
n – σ

σ !

)(
φ(σ–1)(α2)Ji((z – α2)σ )

α2 – α1

)

–
n–l∑
σ=1

(
n – σ

σ !

)(
φ(σ–1)(α1)Ji((z – α1)σ )

α2 – α1

)

+
1

(n – 1)!(α2 – α1)

∫ α2

α1

Ji
(
(z – ξ )n–1Fα2

α1 (ξ , z)
)
φ(n)(ξ ) dξ .

After simplification, we get (8).
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(ii) Fix i = 1, . . . , 6. Testing (4) in the Jensen-type functional Ji(·) and employing the lin-
earity of Ji(·) along with the assumption φ(α1) = φ(α2), we have

Ji(φ) = φ(α1)Ji

(
α2 – z
α2 – α1

)
+ φ(α2)Ji

(
z – α1

α2 – α1

)
+

∫ α2

α1

Ji
(
GL(z, r)

)
φ′′(r) dr

= φ(α1)
Ji(α2 – z)
α2 – α1

+ φ(α2)
Ji(z – α1)
α2 – α1

+
∫ α2

α1

Ji
(
GL(z, r)

)
φ′′(r) dr

=
1

α2 – α1

(
φ(α1)Ji(α2) – φ(α1)Ji(z) + φ(α2)Ji(z) – φ(α2)Ji(α1)

)

+
∫ α2

α1

Ji
(
GL(z, r)

)
φ′′(r) dr

=
1

α2 – α1

(
φ(α2)Ji(z) – φ(α1)Ji(z)

)
+

∫ α2

α1

Ji
(
GL(z, r)

)
φ′′(r) dr

=
∫ α2

α1

Ji
(
GL(z, r)

)
φ′′(r) dr. (10)

Differentiating (1) twice with respect to variable r and by rearranging the indices, we get

φ′′(r) =
n–3∑
σ=0

(
n – 2 – σ

σ !

)(
φ(σ+1)(α2)(r – α2)σ – φ(σ+1)(α1)(r – α1)σ

α2 – α1

)

+
1

(n – 3)!(α2 – α1)

∫ α2

α1

(r – ξ )n–3Fα2
α1 (ξ , r)φ(n)(ξ ) dξ . (11)

Putting (11) in (10) and executing Fubini’s theorem in the obtained terms, we get (9).
More willingly, we adopt formula (1) with function φ′′ by substituting n → n – 2 (n ≥ 3)

to get

φ′′(r) = (n – 2)
(

φ(1)(α2) – φ(1)(α1)
α2 – α1

)

+
n–3∑
σ=1

(
n – 2 – σ

σ !

)(
φ(σ+1)(α2)(r – α2)σ – φ(σ+1)(α1)(r – α1)σ

α2 – α1

)

+
1

(n – 3)!(α2 – α1)

∫ α2

α1

(r – ξ )n–3Fα2
α1 (ξ , r)φ(n)(ξ ) dξ . (12)

Employing (12) in (10) and utilizing Fubini’s theorem in the obtained term, we get (9). �

Now we obtain generalizations of discrete and integral Jensen-type linear functionals
with real weights.

Theorem 4 Under the suppositions of Theorem 3, let φ be an n-convex function. Then we
conclude the following two results:

(i) If

Ji
(
(z – ξ )n–1Fα2

α1 (ξ , z)
) ≥ 0, ξ ∈ [α1,α2] (13)
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holds, then we have

Ji(φ) ≥
n–l∑
σ=2

(
n – σ

σ !

)(
φ(σ–1)(α2)Ji((z – α2)σ ) – φ(σ–1)(α1)Ji((z – α1)σ )

(α2 – α1)

)
(14)

for i = 1, . . . , 6.
(ii) If

∫ α2

α1

Ji
(
GL(z, r)

)
(r – ξ )n–3Fα2

α1 (ξ , r) dr ≥ 0, ξ ∈ [α1,α2] (15)

holds, then we have

Ji(φ) ≥ (n – 2)
(

φ(1)(α2) – φ(1)(α1)
α2 – α1

)∫ α2

α1

Ji
(
GL(z, r)

)
dr

+
1

(α2 – α1)

∫ α2

α1

Ji
(
GL(z, r)

)

×
( n–3∑

σ=1

(
n – 2 – σ

σ !

)(
φ(σ+1)(α2)(r – α2)σ – φ(σ+1)(α1)(r – α1)σ

))
dr (16)

for i = 1, . . . , 6.

Proof (i) Fix i = 1, . . . , 6.
As φ(n–1) is absolutely continuous on [α1,α2], φ(n) exists almost everywhere. Since φ is

n-convex, so φ(n)(x) ≥ 0 for almost everywhere on [α1,α2] (see [1], p. 16). Therefore, by
applying Theorem 3, we get (14).

(ii) Follow similar steps as in (i). �

We will finish the present section by stating the following theorem.

Theorem 5 If the assumptions of Theorem 3 are fulfilled with additional conditions that
p1, . . . , pn and λ1, . . . ,λk are non-negative tuples for 3 ≤ k ≤ n, such that

∑n
i=1 pi = 1,∑k

i=1 λi = 1. Then, for φ : [α1,α2] → R being n-convex function, we conclude the following
results:

(i) For even n > 3, (14) holds.
(ii) If inequality (14) is valid and the function

F(z) :=
n–1∑
σ=2

(
n – σ

σ !(α2 – α1)

)(
φ(σ–1)(α2)(z – α2)σ – φ(σ–1)(α1)(z – α1)σ

)
(17)

is convex, then the inequality

Ji(φ) ≥ 0, i = 1, . . . , 6. (18)

(iii) For even n > 3, (16) holds.
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(iv) If inequality (16) is true and

n–3∑
σ=0

(
n – 2 – σ

σ !

)(
φ(σ+1)(α2)(s – α2)σ – φ(σ+1)(α1)(s – α1)σ

) ≥ 0, (19)

then we have (18) for i = 1, . . . , 6.

Proof (i) Fix i = 1, . . . , 6.
For

ϑ(z) := (z – ξ )n–1Fα2
α1 (ξ , z) =

⎧⎨
⎩

(z – ξ )n–1(ξ – α1), ξ ≤ z ≤ α2,

(z – ξ )n–1(ξ – α2), z < ξ ≤ α2.

Applying the second derivative test on ϑ , it can be seen easily that it is convex for even
n > 3. Since the weights are non-negative, so by advantage of Remark 2, (13) holds. Pursu-
ing Theorem 4(i), (14) is evident.

(ii) Since Ji(·) is a linear functional for each i = 1, . . . , 6, so we can rewrite the R.H.S. of (14)
in the form Ji(F) where F is defined in (17). Since F is (assumed to be) convex, therefore
the R.H.S. of (14) is non-negative as a consequence of Remark 2 and (18) is evident.

(iii) Fix i = 1, . . . , 6.
Since Green’s function GL(z, r) is convex and the weights are assumed to be posi-

tive, thus, by practicing Remark 2, JiGL(z, r) ≥ 0. Moreover, if we analyze the function
(r – ξ )n–3Fα2

α1 (ξ , r), then by using small calculus it can be observed that it is positive for
even n > 3. Hence, (15) holds. By virtue of Theorem 4(ii), we can obtain (16).

(iv) Utilizing (19) in (16), one can obtain (18). �

3 Related inequalities for n-convex functions at a point
In the present section we formulate related results for the class of n-convex functions at a
point introduced by Pečarić et al. in [12].

Definition 1 Let I be an interval inR, d ∈ Io (interior of I) and n ∈N. A function φ : I →R

is said to be n-convex at point d if there exists a constant C such that the function

Φ(z) = φ(z) –
C

(n – 1)!
zn–1 (20)

is (n – 1)-concave on I ∩ (–∞, d] and (n – 1)-convex on I ∩ [d,∞). A function φ is said to
be n-concave at point d if the function –φ is n-convex at point d.

Pečarić et al. in [12] study necessary and sufficient conditions on two linear functionals
Ω : C([α1, d]) → R and Δ : C([d,α2]) → R so that the inequality Ω(φ) ≤ Δ(φ) holds for
every function φ that is n-convex at point d. In the present section we give inequalities
of such type for the particular linear functionals obtained from the inequalities in the
previous section. Let ζ i denote the monomials ζ i(x) = xi, i ∈N0. For the rest of this section,
Ωi(φ[α1,d]) and Δi(φ[d,α2]) will denote the linear functionals obtained as the difference of the
L.H.S. and R.H.S. of inequality (14), where i = 1, . . . , 6, applied to the intervals [α1, d] and
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[d,α2], respectively, i.e., for z ∈ [α1, d]n, p ∈ R
n, λ ∈ R

k , y ∈ [d,α2]m, q ∈ R
m, and λ̃ ∈ R

k̃ ,
let

Ωi(φ[α1,d]) := Ji(φ)

–
n–l∑
w=2

(
n – σ

σ !

)(
φ(σ–1)(d)Ji((z – d)σ ) – φ(σ–1)(α1)Ji((z – α1)σ )

(d – α1)

)
, (21)

Δi(φ[d,α2]) := Ji(φ)

–
n–l∑
σ=2

(
n – σ

σ !

)(
φ(σ–1)(α2)Ji((y – α2)σ ) – φ(σ–1)(d)Ji((y – d)σ )

(α2 – d)

)
. (22)

In a similar fashion, taking into account inequality (16), we can define linear functionals
for i = 1, . . . , 6 as follows:

Ω̂i(φ[α1,d]) := Ji(φ) –
∫ d

α1

Ji
(
GL(z, r)

)

×
n–3∑
σ=0

(
n – 2 – σ

σ !

)(
φ(σ+1)(d)(r – d)σ – φ(σ+1)(α1)(r – α1)σ

d – α1

)
dr, (23)

Δ̂i(φ[d,α2]) := Ji(φ) –
∫ α2

d
Ji
(
GL(y, r)

)

×
n–3∑
σ=0

(
n – 2 – σ

σ !

)(
φ(σ+1)(α2)(r – α2)σ – φ(σ+1)(d)(r – d)σ

α2 – d

)
dr. (24)

It is important to notify that by introducing new linear functionals Ωi(φ[α1,d]) and
Δi(φ[d,α2]), identity (8) for i = 1, . . . , 6, applied to the respective intervals [α1, d] and [d,α2],
takes the following shape:

Ωi(φ[α1,d]) =
1

(n – 1)!(d – α1)

∫ d

α1

Ji
(
(z – ξ )n–1Fd

α1 (ξ , z)
)
φ(n)(ξ ) dξ , (25)

Δi(φ[d,α2]) =
1

(n – 1)!(α2 – d)

∫ α2

d
Ji
(
(y – ξ )n–1Fα2

d (ξ , y)
)
φ(n)(ξ ) dξ . (26)

Moreover, identity (9) for i = 1, . . . , 6, applied to the respective intervals [α1, d] and [d,α2],
takes the following shape:

Ω̂i(φ[α1,d]) =
1

(n – 3)!(d – α1)

×
∫ d

α1

φ(n)(ξ )
(∫ d

α1

Ji
(
GL(z, r)

)
(r – ξ )n–3Fd

α1 (ξ , r) dr
)

dξ , (27)

Δ̂i(φ[d,α2]) =
1

(n – 3)!(α2 – d)

×
∫ α2

d
φ(n)(ξ )

(∫ α2

d
Ji
(
GL(y, r)

)
(r – ξ )n–3Fα2

d (ξ , r) dr
)

dξ . (28)

Now we are ready to state the following theorem for inequalities involving n-convex func-
tion at a point.
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Theorem 6 Let z ∈ [α1, d]n, p ∈ R
n, λ ∈R

k , y ∈ [d,α2]m, q ∈R
m, and λ̃ ∈ R

k̃ be such that
(i) For i = 1, . . . , 6, assume

Ji
(
(z – ξ )n–1Fd

α1 (ξ , z)
) ≥ 0, ξ ∈ [α1, d], (29)

Ji
(
(y – ξ )n–1Fα2

d (ξ , y)
) ≥ 0, ξ ∈ [d,α2], (30)

∫ d

α1

Ji
(
(z – ξ )n–1Fd

α1 (ξ , z)
)

dξ =
(

d – α1

α2 – d

)∫ α2

d
Ji
(
(y – ξ )n–1Fα2

d (ξ , y)
)

dξ , (31)

where Fα2
α1 (ξ , ·) is given by (2), and let Ωi(φ[α1,d]) and Δi(φ[d,α2]) be the linear

functionals given by (21) and (22). If φ : [α1,α2] →R is (n + 1)-convex at point d,
then

Ωi(φ[α1,d]) ≤ Δi(φ[d,α2]) for i = 1, . . . , 6. (32)

(ii) Analogously, for i = 1, . . . , 6, assume

∫ d

α1

Ji
(
GL(z, r)

)
(r – ξ )n–3Fd

α1 (ξ , r) dr ≥ 0, ξ ∈ [α1, d], (33)

∫ α2

d
Ji
(
GL(y, r)

)
(r – ξ )n–3Fα2

d (ξ , r) dr ≥ 0, ξ ∈ [d,α2], (34)

∫ d

α1

(∫ d

α1

Ji
(
GL(z, r)

)
(r – ξ )n–3Fd

α1 (ξ , r) dr
)

dξ

=
(

d – α1

α2 – d

)∫ α2

d

(∫ α2

d
Ji
(
GL(y, r)

)
(r – ξ )n–3Fα2

d (ξ , r) dr
)

dξ , (35)

where Fα2
α1 (ξ , ·), GL(·, r) are the same as defined in (2), (3), respectively, and let

Ω̂i(φ[α1,d]) and Δ̂i(φ[d,α2]) be the linear functionals given by (23) and (24). If
φ : [α1,α2] →R is (n + 1)-convex at point d, then

Ω̂i(φ[α1,d]) ≤ Δ̂i(φ[d,α2]) for i = 1, . . . , 6. (36)

Proof (i) Fix i = 1, . . . , 6. Using Definition 1, construct function Φ = φ – C
n!ζ

n in such a way
that the function Φ is n-concave on [α1, d] and n-convex on [d,α2]. Applying Theorem 4
to Φ on the interval [α1, d], we have

0 ≥ Ωi(Φ) = Ωi(φ[α1,d]) –
C

(n)!
Ωi

(
ζ n

[α1,d]
)
. (37)

Analogously, applying Theorem 4 to Φ on the interval [c,α2], we get

0 ≤ Δi(Φ) = Δi(φ[d,α2]) –
C

(n)!
Δi

(
ζ n

[d,α2]
)
. (38)

Moreover, identities (25) and (26) applied to the function xn give

Ωi
(
ζ n

[α1,d]
)

=
n

(d – α1)

∫ d

α1

Ji
(
(z – ξ )n–1Fd

α1 (ξ , z)
)

dξ , (39)



Mehmood et al. Journal of Inequalities and Applications  (2018) 2018:51 Page 11 of 21

Δi
(
ζ n

[d,α2]
)

=
n

(α2 – d)

∫ α2

d
Ji
(
(y – ξ )n–1Fα2

d (ξ , y)
)

dξ . (40)

Therefore assumption (31) is equivalent to

Ωi
(
ζ n

[α1,d]
)

= Δi
(
ζ n

[d,α2]
)
.

So, from (37) and (38), one can get

Ωi(φ[α1,d]) ≤ C
(n)!

Ωi
(
ζ n

[α1,d]
)

=
C

(n)!
Δi

(
ζ n

[d,α2]
) ≤ Δi(φ[d,α2]). (41)

So (32) is established for i = 1, . . . , 6.
(ii) We can employ the similar method as above using identities (27) and (28). So, by

deducing assumption (35), we get (36) for i = 1, . . . , 6. �

Remark 3 In fact, inequalities (32) and (36) still hold if we replace assumptions (31) and
(35) with the weaker assumptions that C(Δi(ζ n

[d,α2]) – Ωi(ζ n
[α1,d])) ≥ 0 and C(Δ̂i(ζ n

[d,α2]) –
Ω̂i(ζ n

[α1,d])) ≥ 0 for i = 1, . . . , 6, respectively.

4 New upper bounds for generalized cyclic refinements of Jensen’s inequalities
by Fink’s identity

In the present section we use Čebyšev functional defined for Lebesgue integrable functions
�1,�2 : [α1,α2] →R as

C(�1,�2) =
1

α2 – α1

∫ α2

α1

�1(ξ )�2(ξ ) dξ –
1

α2 – α1

∫ α2

α1

�1(ξ ) dξ .
1

α2 – α1

∫ α2

α1

�2(ξ ) dξ

to construct some new upper bounds.
The following inequalities of Grüss type were given in [13].

Theorem 7 Let �1 ∈ L[α1,α2] and �2 : [α1,α2] →R be an absolutely-continuous function
along with (· – α1)(α2 – ·)[�′

2]2 ∈ L[α1,α2]. Then the inequality

∣∣C(�1,�2)
∣∣ ≤ 1√

2

[
C(�1,�1)
(α2 – α1)

] 1
2
(∫ α2

α1

(z – α1)(α2 – z)
[
�

′
2(z)

]2 dz
) 1

2
(42)

holds with 1√
2 being the best possible constant.

Theorem 8 Let �1 : [α1,α2] → R be absolutely continuous with �
′
1 ∈ L∞[α1,α2] and �2 :

[α1,α2] →R be a monotonic nondecreasing function. Then the inequality

∣∣C(�1,�2)
∣∣ ≤ ‖�′

1‖∞
2(α2 – α1)

∫ α2

α1

(z – α1)(α2 – z) d�2(z) (43)

holds with best possible constant 1
2 .

For the current section, let us denote, for i = 1, . . . , 6,

Ri(ξ ) = Ji
(
(z – ξ )n–1Fα2

α1 (ξ , z)
) ≥ 0, ξ ∈ [α1,α2], (44)
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and

Oi(ξ ) =
∫ α2

α1

Ji
(
GL(z, r)

)
(r – ξ )n–3Fα2

α1 (ξ , r) dr ≥ 0, ξ ∈ [α1,α2]. (45)

Now we are in a position to formulate our new upper bounds both for discrete and integral
Jensen-type inequalities with real weights with the help of the above theorems.

Theorem 9 Consider the suppositions of Theorem 3 be fulfilled, let φ(n) be absolutely con-
tinuous with (· – α1)(α2 – ·)[φ(n+1)]2 ∈ L[α1,α2] such that Ri and Oi are defined in (44) and
(45), respectively.

(i) Then

Ji(φ) =
n–l∑
σ=2

(
n – σ

σ !

)(
φ(σ–1)(α2)Ji((z – α2)σ ) – φ(σ–1)(α1)Ji((z – α1)σ )

(α2 – α1)

)

+
φ(n–1)(α2) – φ(n–1)(α1)

(α2 – α1)2(n – 1)!

∫ α2

α1

Ri(ξ ) dξ + Kn,i(α1,α2;φ), (46)

where the remainder Kn,i(α1,α2;φ) satisfies the bound

∣∣Kn,i(α1,α2;φ)
∣∣ ≤ 1√

2(n – 1)!
[
C(Ri,Ri)

] 1
2

× 1√
α2 – α1

∣∣∣∣
∫ α2

α1

(ξ – α1)(α2 – ξ )
[
φ(n+1)(ξ )

]2 dξ

∣∣∣∣
1
2

(47)

for i = 1, . . . , 6.
(ii)

Ji(φ) =
1

(α2 – α1)

∫ α2

α1

Ji
(
GL(z, r)

)

×
( n–3∑

σ=0

(
n – 2 – σ

σ !

)(
φ(σ+1)(α2)(r – α2)σ – φ(σ+1)(α1)(r – α1)σ

))
dr

+
φ(n–1)(α2) – φ(n–1)(α1)

(α2 – α1)2(n – 3)!

∫ α2

α1

Oi(ξ ) dξ + Kn,i(α1,α2;φ), (48)

where the remainder Kn,i(α1,α2;φ) satisfies the bound

∣∣Kn,i(α1,α2;φ)
∣∣ ≤ 1√

2(n – 3)!
[
C(Oi,Oi)

] 1
2

× 1√
α2 – α1

∣∣∣∣
∫ α2

α1

(ξ – α1)(α2 – ξ )
[
φ(n+1)(ξ )

]2 dξ

∣∣∣∣
1
2

(49)

for i = 1, . . . , 6.

Proof (i) Fix i = 1, . . . , 6.
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Executing Theorem 7 for �1 →Ri and �2 → φ(n), we get
∣∣∣∣ 1
α2 – α1

∫ α2

α1

Ri(ξ )φ(n)(ξ ) dξ –
1

α2 – α1

∫ α2

α1

Ri(ξ ) dξ · 1
α2 – α1

∫ α2

α1

φ(n)(ξ ) dξ

∣∣∣∣

≤ 1√
2
[
C(Ri,Ri)

] 1
2 1√

α2 – α1

∣∣∣∣
∫ α2

α1

(ξ – α1)(α2 – ξ )
[
φ(n+1)(ξ )

]2 dξ

∣∣∣∣
1
2

. (50)

Dividing both sides of (50) by (n – 1)!, we have
∣∣∣∣ 1
(n – 1)!(α2 – α1)

∫ α2

α1

Ri(ξ )φ(n)(ξ ) dξ

–
1

(n – 1)!(α2 – α1)

∫ α2

α1

Ri(ξ ) dξ · φ(n–1)(α2) – φ(n–1)(α1)
(α2 – α1)

∣∣∣∣

≤ 1√
2(n – 1)!

[
C(Ri,Ri)

] 1
2 1√

α2 – α1

∣∣∣∣
∫ α2

α1

(ξ – α1)(α2 – ξ )
[
φ(n+1)(ξ )

]2 dξ

∣∣∣∣
1
2

. (51)

By denoting

Kn,i(α1,α2;φ) =
1

(n – 1)!(α2 – α1)

∫ α2

α1

Ri(ξ )φ(n)(ξ ) dξ

–
1

(n – 1)!(α2 – α1)

∫ α2

α1

Ri(ξ ) dξ · φ(n–1)(α2) – φ(n–1)(α1)
(α2 – α1)

(52)

in (51), we have (47). Hence, we have

1
(n – 1)!(α2 – α1)

∫ α2

α1

Ri(ξ )φ(n)(ξ ) dξ

=
φ(n–1)(α2) – φ(n–1)(α1)

(α2 – α1)2(n – 1)!

∫ α2

α1

Ri(ξ ) dξ + Kn,i(α1,α2;φ),

where the remainder Kn,i(α1,α2;φ) satisfies the bound (47). Utilizing identity (8), we get
(46).

(ii) Fix i = 1, . . . , 6.
Now applying similar method opted in (i) and then using identity (9) , we obtain (48),

where the remainder Kn,i(α1,α2;φ) satisfies estimation (49). �

Adopting Theorem 8, we deduced the following Grüss-type inequalities.

Theorem 10 Consider the suppositions of Theorem 3 be fulfilled. Let φ(n) be absolutely
continuous such that φ(n+1) ≥ 0 on [α1,α2] with Ri and Oi defined in (44) and (45), respec-
tively.

(i) Then illustration (46) along with remainder Kn,i(α1,α2;φ) satisfies the estimation

∣∣Kn,i(α1,α2;φ)
∣∣

≤ ‖R′
i‖∞

(n – 1)!

[
φ(n–1)(α2) + φ(n–1)(α1)

2
–

φ(n–2)(α2) – φ(n–2)(α1)
α2 – α1

]
(53)

for i = 1, . . . , 6.
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(ii) Illustration (48) along with remainder Kn,i(α1,α2;φ) satisfies the estimation

∣∣Kn,i(α1,α2;φ)
∣∣

≤ ‖O′
i‖∞

(n – 3)!

[
φ(n–1)(α2) + φ(n–1)(α1)

2
–

φ(n–2)(α2) – φ(n–2)(α1)
α2 – α1

]
, (54)

for i = 1, . . . , 6.

Proof (i) Fix i = 1, . . . , 6. Applying Theorem 8 for �1 →Ri and �2 → φ(n), we get

∣∣∣∣ 1
α2 – α1

∫ α2

α1

Ri(ξ )φ(n)(ξ ) dξ –
1

α2 – α1

∫ α2

α1

Ri(ξ ) dξ · 1
α2 – α1

∫ α2

α1

φ(n)(ξ ) dξ

∣∣∣∣

≤ 1
2(α2 – α1)

∥∥R′
i
∥∥∞

∫ α2

α1

(ξ – α1)(α2 – ξ )φ(n+1)(ξ ) dξ . (55)

Now, solving the integral part of R.H.S. of inequality (55) and taking into account identity
(8), we formulate (53).

(ii) Fix i = 1, . . . , 6. Now, applying similar method opted in (i) and then using identity (9),
we obtain (54). �

Now we express some Ostrowski-type inequalities affiliated with our generalized
Jensen-type inequalities.

Theorem 11 Consider the suppositions of Theorem 3 be fulfilled. Let |φ(n)|q : [α1,α2] →R

be an R-integrable function with q, q′ ∈ [1,∞] such that 1
q + 1

q′ = 1. Then, for i = 1, . . . , 6, we
have

(i)

∣∣∣∣∣Ji(φ) –
n–l∑
σ=2

(
n – σ

σ !

)(
φ(σ–1)(α2)Ji((z – α2)σ ) – φ(σ–1)(α1)Ji((z – α1)σ )

(α2 – α1)

)∣∣∣∣∣

≤ 1
(n – 1)!(α2 – α1)

∥∥φ(n)∥∥
q

(∫ α2

α1

∣∣Ji
(
(z – ξ )n–1Fα2

α1 (ξ , z)
)∣∣q′

dξ

)1/q′

, (56)

(ii)

∣∣∣∣∣Ji(φ) –
1

(α2 – α1)

∫ α2

α1

Ji
(
GL(z, r)

)

×
( n–3∑

σ=0

(
n – 2 – σ

σ !

)(
φ(σ+1)(α2)(r – α2)σ – φ(σ+1)(α1)(r – α1)σ

))
dr

∣∣∣∣∣
≤ 1

(n – 3)!(α2 – α1)
∥∥φ(n)∥∥

q

×
(∫ α2

α1

∣∣∣∣
∫ α2

α1

Ji
(
GL(z, r)

)
(r – ξ )n–3Fα2

α1 (ξ , r) dr
∣∣∣∣
q′

dξ

)1/q′

. (57)

The constants on the R.H.S. of (56) and (57) are sharp for q ∈ (1,∞] and best possible for
q = 1.
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Proof (i) Fix i = 1, . . . , 6. Let us denote

h =
1

(n – 1)!(α2 – α1)
(
Ji
(
(z – ξ )n–1Fα2

α1 (ξ , z)
))

, ξ ∈ [α1,α2].

Applying identity (8), we get

∣∣∣∣∣Ji(φ) –
n–l∑
σ=2

(
n – σ

σ !

)(
φ(σ–1)(α2)Ji((z – α2)σ ) – φ(σ–1)(α1)Ji((z – α1)σ )

(α2 – α1)

)∣∣∣∣∣

=
∣∣∣∣
∫ α2

α1

h(ξ )φ(n)(ξ ) dξ

∣∣∣∣. (58)

Employing Hölder’s inequality on the R.H.S. of (58) gives

∣∣∣∣
∫ α2

α1

h(ξ )φ(n)(ξ ) dξ

∣∣∣∣ ≤
(∫ α2

α1

∣∣φ(n)(ξ )
∣∣q dξ

) 1
q
(∫ α2

α1

∣∣h(ξ )
∣∣q′

dξ

) 1
q′

,

which combined together with (58) leads to (56).
In order to prove the sharpness of the constant (

∫ α2
α1

|h(ξ )|q′ dξ )1/q′ , we need to choose
an appropriate function φ so that we can obtain the equality case in (56).

For 1 < q ≤ ∞, let us define φ in such a way that

φ(n)(ξ ) = sgn h(ξ )
∣∣h(ξ )

∣∣ 1
q–1 .

For q = ∞, take φ(n)(ξ ) = sgn h(ξ ).
For q = 1, we prove that

∣∣∣∣
∫ α2

α1

h(ξ )φ(n)(ξ ) dξ

∣∣∣∣ ≤ max
ξ∈[α1,α2]

∣∣h(ξ )
∣∣
(∫ α2

α1

φ(n)(ξ ) dξ

)
(59)

is the best possible inequality. Suppose |h(ξ )| acquires its maximum at ξ0 ∈ [α1,α2]. To
move further, first assume h(ξ0) > 0 and define φλ(ξ ) by

φλ(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

0, α1 ≤ ξ ≤ ξ0,
1

λn! (ξ – ξ0)n, ξo ≤ ξ ≤ ξ0 + λ,
1
n! (ξ – ξ0)n–1, ξ0 + λ ≤ ξ ≤ α2.

Then, for λ small enough,

∣∣∣∣
∫ α2

α1

h(ξ )φ(n)(ξ ) dt
∣∣∣∣ =

∣∣∣∣
∫ ξ0+λ

ξ0

h(ξ )
1
λ

dξ

∣∣∣∣ =
1
λ

∫ ξ0+λ

ξ0

h(ξ ) dξ .

Now, from inequality (59), we have

1
λ

∫ ξ0+λ

ξ0

h(ξ ) dξ ≤ h(ξ0)
∫ ξ0+λ

ξ0

1
λ

dξ = h(ξ0).
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Since

lim
λ→0

1
λ

∫ ξ0+λ

ξ0

h(ξ ) dξ = h(ξ0),

the statement follows. The case when h(ξ0) < 0, we define φλ(ξ ) by

φλ(ξ ) =

⎧⎪⎪⎨
⎪⎪⎩

1
n! (ξ – ξ0 – λ)n–1, α1 ≤ ξ ≤ ξ0,
–1
λn! (ξ – ξ0 – λ)n, ξo ≤ ξ ≤ ξ0 + λ,

0, ξ0 + λ ≤ ξ ≤ α2,

and follow the same steps.
(ii) Fix i = 1, . . . , 6. Now, applying a similar method to that opted in (i) to identity (9), we

obtain the desired results. �

5 n-Exponential convexity and related results
We start this section by presenting some important results from [14, 15], and [16].

Definition 2 A function φ : I →R is n-exponentially convex in the Jensen sense on I if

n∑
j,l=1

μjμlφ

(
zl + zj

2

)
≥ 0

holds for all choices μ1, . . . ,μn ∈R and all choices z1, . . . , zn ∈ I . If φ is additionally contin-
uous on I , then it is n-exponentially convex.

Remark 4 If the function φ is n-exponentially convex in the Jensen sense (exponential con-
vex) for all n ∈ N, then it is exponentially convex in the Jensen sense (exponential convex)
on I .

Proposition 1 If φ : I → R is n-exponentially convex in the Jensen sense, then the matrix
[φ( zj+zl

2 )]k
j,l=1 is a positive semi-definite matrix for all k ∈N, k ≤ n. Particularly,

det

[
φ

(
zj + zl

2

)]k

j,l=1
≥ 0

for all k ∈N, k = 1, 2, . . . , n.

Remark 5 It is known that φ : I →R is log-convex in the Jensen sense if and only if

α2
1φ(z1) + 2α1α2φ

(
z1 + z2

2

)
+ α2

2φ(z2) ≥ 0

holds for every α1,α2 ∈ R and z1, z2 ∈ I . This shows that a positive function is log-convex
in the Jensen sense if and only if it is 2-exponentially convex in the Jensen sense.

Remark 6 As a consequence of Theorem 4, we define the positive linear functionals with
respect to n-convex function φ in the following way:
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(i) From (14), for i = 1, . . . , 6, we construct

Ωi(φ) := Ji(φ) –
n–l∑
σ=2

×
(

n – σ

σ !

)(
φ(σ–1)(α2)Ji((z – α2)σ ) – φ(σ–1)(α1)Ji((z – α1)σ )

(α2 – α1)

)

≥ 0. (60)

(ii) From (16), for i = 1, . . . , 6, we construct

Ξi(φ) := Ji(φ) –
1

(α2 – α1)

∫ α2

α1

Ji
(
GL(z, r)

)

×
( n–3∑

σ=0

(
n – 2 – σ

σ !

)(
φ(σ+1)(α2)(r – α2)σ – φ(σ+1)(α1)(r – α1)σ

))
dr

≥ 0. (61)

In the later part of the paper, we would like to establish our further results by consider-
ing the linear functionals Ωi(·) defined in (60). However, we can also formulate the same
results for the functionals Ξi(·) defined in (61) for i = 1, . . . , 6.

First of all, we will formulate mean value theorems of Lagrange and Cauchy type related
to defined functionals in the form of the following theorems.

Theorem 12 Let φ : [α1,α2] →R be such that φ ∈ Cn[α1,α2]. If the inequalities in (13) for
i = 1, . . . , 6 are valid, then there exist μi ∈ [α1,α2] such that

Ωi(φ) = φ(n)(μi) · Ωi(zn)
n!

, i = 1, . . . , 6,

where Ωi(·) are defined in Remark 6.

Proof Similar to the proof of Theorem 4.1 in [17] (see also [18]). �

Theorem 13 Let φ,ψ : [α1,α2] → R be such that φ,ψ ∈ Cn[α1,α2]. If the inequalities in
(13) for i = 1, . . . , 6 are valid, then there exist μi ∈ [α1,α2] such that

Ωi(φ)
Ωi(ψ)

=
φ(n)(μi)
ψ (n)(μi)

i = 1, . . . , 6,

with Ωi(·) as defined in Remark 6.

Proof Similar to the proof of Corollary 4.2 in [17] (see also [18]). �

As an application of Theorem 13, we can define Cauchy means of α1, α2 for given func-
tions φ and ψ in the following way:

μi =
(

φ(n)

ψ (n)

)–1(
Ωi(φ)
Ωi(ψ)

)
.
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Next we construct the nontrivial examples of n-exponentially and exponentially convex
functions from positive linear functionals Ωi(·) (i = 1, . . . , 6). We use the idea given in [16].
In the sequel I and J are intervals in R.

Theorem 14 Let Θ = {φh : h ∈ J} be a family of functions defined on I in such a way that for
every one of (n + 1) mutually different points z0, . . . , zn ∈ I the function h �→ [z0, . . . , zn;φh]
is n-exponentially convex in the Jensen sense on J . Then the following statements are valid
for each i = 1, . . . , 6 for the linear functionals Ωi(φh) as defined in Remark 6:

(i) The function h → Ωi(φh) is n-exponentially convex in the Jensen sense on J and the
matrix [Ωi(φ hj+hl

2
)]k

j,l=1 is positive semi-definite for all k ∈N, k ≤ n, h1, . . . , hk ∈ J .
Particularly,

det
[
Ωi(φ hj+hl

2
)
]k

j,l=1 ≥ 0

for all k ∈N, k = 1, 2, . . . , n.
(ii) If the function h → Ωi(φh) is continuous on J , then it is n-exponentially convex on J .

Proof The proof is similar to Theorem 4.6 in [4]. �

Remark 7 The results of Theorem 14 still hold, if we replace the family of functions Θ =
{φh : h ∈ J} from n-exponentially convex to exponentially convex functions.

The following corollary is an immediate consequence of the above theorem.

Corollary 1 Let Θ = {φh : h ∈ J} be a family of functions defined on I in such a way that for
every one of (n + 1) mutually different points z0, . . . , zn ∈ I the function h �→ [z0, . . . , zn;φh] is
2-exponentially convex in the Jensen sense on J . Let Ωi(·) (i = 1, . . . , 6) be linear functionals,
then the following statements are valid:

(i) If the function h �→ Ωi(φh) is continuous on J , then it is a 2-exponentially convex
function on J . If h �→ Ωi(φh) is additionally strictly positive, then it is also log-convex
on J . Furthermore, the following inequality holds true:

[
Ωi(φs)

]h–r ≤ [
Ωi(φr)

]h–s[
Ωi(φh)

]s–r

for every choice r, s, h ∈ J such that r < s < h.
(ii) If the function h �→ Ωi(φh) is strictly positive and differentiable on J, then for every

h, s, u, v ∈ J , such that h ≤ u and s ≤ v, we have

M(h, s,Ωi,Θ) ≤ M(u, v,Ωi,Θ), (62)

where

M(h, s,Ωi,Θ) =

⎧⎨
⎩

( Ωi(φh)
Ωi(φs) )

1
h–s , h 	= s,

exp(
d

dh Ωi(φh)
Ωi(φh) ), h = s,

(63)

for φh,φs ∈ Θ .

Proof The proof is similar to Corollary 4.8 in [4]. �
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6 Cauchy means
Finally, we choose special families of functions which empower us to establish new expo-
nentially convex functions and related results.

Example 1 For real h ∈ R, consider a family of functions Θ = {φh : (0,∞) → R} defined
by

φh(z) =

⎧⎨
⎩

zh

h(h–1)···(h–n+1) , h /∈ {0, 1, . . . , n – 1},
zw log z

(–1)n–1–ww!(n–1–w)! , h = w ∈ {0, 1, . . . , n – 1}.

As φ
(n)
h (z) = zh–n > 0, therefore the function φh is n-convex for z > 0 and h �→ dnφh

dzn (z) is
exponentially convex by definition. Now, employing Theorem 14, it is straightforward that
h �→ [z0, . . . , zn;φh] is exponentially convex. Therefore, by Remark 7, we deduce that h �→
Ωi(φh) (i = 1, . . . , 6) are exponentially convex. Thus, taking into account the present family
of functions M(h, s,Ωi,Θ) (i = 1, . . . , 6), from (63), are equal to

M(h, s,Ωi,Θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( Ωi(φh)
Ωi(φs) )

1
h–s , h 	= s,

exp( Ωi(φ0φh)
Ωi(φh) · (–1)n–1(n – 1)! +

∑n–1
t=0

1
t–h ), h = s /∈ {0, 1, . . . , n – 1},

exp( Ωi(φ0φh)
2Ωi(φh) · (–1)n–1(n – 1)! +

∑n–1
t=0
t 	=h

1
t–h ), h = s ∈ {0, 1, . . . , n – 1}.

For the case i = 1, the explicit expressions are as follows:

M(h, s,Ω1,Θ)

=
(

s(s – 1) · · · (s – n + 1)
h(h – 1) · · · (h – n + 1)

× J1(zh) –
∑n–l

σ=2( n–σ
σ !(α2–α1) )(

∏σ–2
r=0 (h – r)αh–(σ–1)

2 J1((z – α2)σ ) –
∏σ–2

r=0 (h – r)αh–(σ–1)
1 J1((z – α1)σ ))

J1(zs) –
∑n–l

σ=2( n–σ
σ !(α2–α1) )(

∏σ–2
r=0 (s – r)αs–(σ–1)

2 J1((z – α2)σ ) –
∏σ–2

r=0 (s – r)αs–(σ–1)
1 J1((z – α1)σ ))

) 1
h–s

,

for h 	= s /∈ {0, 1, . . . , n – 1};

whereas

J1
(
zh) = J1

(
z, p,λ; zh) :=

n∑
i=1

puzu
h – Cdis

(
zh, z, p,λ

)

and

Cdis
(
zh, z, p,λ

)
=

n∑
u=1

( k–1∑
v=0

λv+1pu+v

)(∑k–1
v=0 λv+1pu+vzu+v∑k–1

j=0 λv+1pu+v

)h

.

M(h, h,Ω1,Θ)

= exp

(
J1(zh log z) –

∑n–l
σ=2( n–σ

σ !(α2–α1) )( dσ–1

dzσ–1 (zh log z)|z=α2 J1((z – α2)σ ) – dσ–1

dzσ–1 (zh log z)|z=α1 J1((z – α1)σ ))

J1(zh) –
∑n–l

σ=2( n–σ
σ !(α2–α1) )(

∏σ–2
r=0 (h – r)αh–(σ–1)

2 J1((z – α2)σ ) –
∏σ–2

r=0 (h – r)αh–(σ–1)
1 J1((z – α1)σ ))

+
n–1∑
t=0

1
t – h

)
,

for h = s /∈ {0, 1, . . . , n – 1}.
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M(h, h,Ω1,Θ)

= exp

(
J1(zh log2 z) –

∑n–l
σ=2( n–σ

σ !(α2–α1) )( dσ–1

dzσ–1 (zh log2 z)|z=α2 J1((z – α2)σ ) – dσ–1

dzσ–1 (zh log2 z)|z=α1 J1((z – α1)σ ))

2(J1(zh log z) –
∑n–l

σ=2( n–σ
σ !(α2–α1) )( dσ–1

dzσ–1 (zh log z)|x=α2 J1((z – α2)σ ) – dσ–1

dzσ–1 (zh log z)|z=α1 J1((z – α1)σ )))

+
n–1∑
t=0
t 	=h

1
t – h

)
,

for h = s ∈ {0, 1, . . . , n – 1}.

Now, using Theorem 13, we conclude that

α1 ≤
(

Ωi(φh)
Ωi(φs)

) 1
h–s ≤ α2, i = 1, . . . , 6.

Hence M(h, s,Ωi,Θ) (i = 1, . . . , 6) are means, and their monotonicity is followed by (62).
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