
Kim et al. Journal of Inequalities and Applications  (2018) 2018:40 
https://doi.org/10.1186/s13660-018-1636-8

R E S E A R C H Open Access

A note on some identities of derangement
polynomials
Taekyun Kim1,2, Dae San Kim3, Gwan-Woo Jang2 and Jongkyum Kwon4*

*Correspondence:
mathkjk26@gnu.ac.kr
4Department of Mathematics
Education and ERI, Gyeongsang
National University, Jinju, Republic
of Korea
Full list of author information is
available at the end of the article

Abstract
The problem of counting derangements was initiated by Pierre Rémond de
Montmort in 1708 (see Carlitz in Fibonacci Q. 16(3):255–258, 1978, Clarke and Sved in
Math. Mag. 66(5):299–303, 1993, Kim, Kim and Kwon in Adv. Stud. Contemp. Math.
(Kyungshang) 28(1):1–11 2018. A derangement is a permutation that has no fixed
points, and the derangement number dn is the number of fixed-point-free
permutations on an n element set. In this paper, we study the derangement
polynomials and investigate some interesting properties which are related to
derangement numbers. Also, we study two generalizations of derangement
polynomials, namely higher-order and r-derangement polynomials, and show some
relations between them. In addition, we express several special polynomials in terms
of the higher-order derangement polynomials by using umbral calculus.
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1 Introduction
Let C be the complex number field, and let F be the set of all formal power series in the
variable t with coefficients in C:

F =

{
f (t) =

∞∑
k=0

ak
tk

k!

∣∣∣ ak ∈C

}
. (1.1)

Let P = C[x], and let P∗ be the vector space of all linear functionals on P. We denote the
action of a linear functional L ∈ P∗ on polynomials p(x) ∈ P by 〈L | p(x)〉, and it is known
that vector space operations on P

∗ are defined by

〈
L + M | p(x)

〉
=

〈
L | p(x)

〉
+

〈
M | p(x)

〉
,

〈
cL | p(x)

〉
= c

〈
L | p(x)

〉
, (1.2)

where c is a complex constant (see [3–5]).
For f (t) =

∑∞
k=0 ak

tk

k! , we define a linear functional on P by setting

〈
f (t) | xn〉 = an (n ≥ 0) (see [6, 7]). (1.3)
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From (1.3), we note that

〈
tk | xn〉 = n!δn,k (n, k ≥ 0) (see [8]), (1.4)

where δn,k is the Kronecker symbol.
The order o(f (t)) of a power series f (t)(�= 0) ∈ F is the smallest integer k such that the

coefficients of tk do not vanish. For f (t), g(t) ∈ F , with o(f (t)) = 1 and o(g(t)) = 0, there
exists a unique sequence Sn(x) of polynomials such that 〈g(t)f (t)k|Sn(x)〉 = n!δn,k for n, k ≥
0 (see [5, 8]). The sequence Sn(x) is called the Sheffer sequence for (g(t), f (t)), which is
denoted by Sn(x) ∼ (g(t), f (t)). It is known that Sn(x) ∼ (g(t), f (t)) if and only if

1
g(f̄ (t))

exf̄ (t) =
∞∑

n=0

Sn(x)
tn

n!
, (1.5)

where f̄ (t) is the compositional inverse of f (t) with

f
(
f̄ (t)

)
= f̄

(
f (t)

)
= t (see [8, 9]). (1.6)

For f (t) ∈F and p(x) ∈ P, by (1.4), we get

f (t) =
∞∑

k=0

〈
f (t)|xk 〉 tk

k!
, p(x) =

∞∑
k=0

〈
tk|p(x)

〉xk

k!
(see [9]). (1.7)

From (1.7), we note that

p(k)(0) =
〈
tk|p(x)

〉
=

〈
1|p(k)(x)

〉
(k ≥ 0), (1.8)

where p(k)(x) = ( d
dx )kp(x).

From (1.8), we easily get

tkp(x) = p(k)(x), eytp(x) = p(x + y),
〈
eyt|p(x)

〉
= p(y) (see [9]). (1.9)

Let Sn(x) ∼ (g(t), f (t)) and rn(x) ∼ (h(t), l(t)) (n ≥ 0). Then we have

Sn(x) =
n∑

m=0

Cn,mrm(x) (n ≥ 0) (see [8, 9]), (1.10)

where

Cn,m =
1

m!

〈
h(f̄ (t))
g(f̄ (t))

l
(
f̄ (t)

)m
∣∣∣xn

〉
(n, m ≥ 0). (1.11)

For u(�= 1) ∈C, the Frobenius-Euler numbers are defined by the generating function

1 – u
et – u

=
∞∑

n=0

Hn(u)
tn

n!
(see [10–12]). (1.12)

When u = –1, Hn(–1) = En are the ordinary Euler numbers.
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The Bernoulli polynomials are given by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
(see [3, 12, 13]). (1.13)

When x = 0, Bn = Bn(0) are the Bernoulli numbers.
We know that the Euler polynomials are defined by

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
(see [10, 11]). (1.14)

When x = 0, En = En(0) are the Euler numbers.
The falling factorial sequence is defined as

(x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1) (n ≥ 1). (1.15)

The Stirling numbers of the first kind are defined by

(x)n =
n∑

l=0

S1(n, l)xl (n ≥ 0) (see [8]), (1.16)

and the Stirling numbers of the second kind are given by

xn =
n∑

l=0

S2(n, l)(x)l (n ≥ 0) (see [8, 14, 15]). (1.17)

The Stirling numbers of the second kind are also given by the exponential generating
function (see [8, p.59])

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
. (1.18)

It is well known that the Bell polynomials are defined by the generating function

ex(et–1) =
∞∑

n=0

Beln(x)
tn

n!
(see [9]). (1.19)

When x = 1, Beln = Beln(1) (n ≥ 0) are the Bell numbers.
From (1.19), we have

Beln(x) =
n∑

k=0

S2(n, k)xk (n ≥ 0) (see [9]). (1.20)

A derangement is a permutation that has no fixed points. The derangement number
dn is the number of fixed-point-free permutations on an n element set (see [1–3]). The
problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708
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(see [1–3]). The first few terms of the derangement number sequence {dn}∞n=0 are d0 = 1,
d1 = 0, d2 = 1, d3 = 2, d4 = 9, d5 = 44, d6 = 265, d7 = 1854, . . . .

Indeed, dn is given by the closed form formula:

dn = n!
n∑

k=0

(–1)k

k!
(see [3]). (1.21)

From (1.21), we note that the generating function of derangement numbers is given by

1
1 – t

e–t =
∞∑

n=0

dn
tn

n!
(see [9]). (1.22)

By using (1.22), it is not difficult to show that

dm = (m – 1)(dm–1 + dm–2) (m ≥ 2), d0 = 1, d1 = 0, (1.23)

and

dm = mdm–1 + (–1)m (m ≥ 1), d0 = 1 (see [1–3]). (1.24)

For r ∈N, the derangement numbers d(r)
n of order r (n ≥ 0), are defined by the generating

function

(
1

1 – t

)r

e–t =
∞∑

n=0

d(r)
n

tn

n!
(see [3]). (1.25)

The umbral calculus comes under the heading of combinatorics, the calculus of finite
differences, the theory of special functions, and formal solutions to differential equations.
Also, formal power series play a predominant role in the umbral calculus. In this paper,
we study the derangement polynomials and investigate some interesting properties which
are related to derangement numbers. Further, we study two generalizations of derange-
ment polynomials, namely higher-order and r-derangement polynomials, and show some
relations between them. In addition, we express several special polynomials in terms of
the higher-order derangement polynomials by using umbral calculus.

2 Some identities of derangement polynomials arising from umbral calculus
Now, we define the derangement polynomials by

∞∑
n=0

dn(x)
tn

n!
=

1
1 – t

ext . (2.1)

We note here that, for x = –1, dn = dn(–1) are the derangement numbers.
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We observe that

1
1 – t

ext = e– log(1–t)ext =

( ∞∑
m=0

(–1)m 1
m!

(
log(1 – t)

)m
)( ∞∑

l=0

xl tl

l!

)

=

( ∞∑
k=0

( k∑
m=0

(–1)k–mS1(k, m)

)
tk

k!

)( ∞∑
l=0

xl tl

l!

)

=
∞∑

n=0

( n∑
k=0

k∑
m=0

(
n
k

)
(–1)k–mS1(k, m)xn–k

)
tn

n!
. (2.2)

By (2.1) and (2.2), we get

dn(x) =
n∑

k=0

k∑
m=0

(
n
k

)
(–1)k–mS1(k, m)xn–k (n ≥ 0), (2.3)

and

dn =
n∑

k=0

k∑
m=0

(
n
k

)
(–1)n–mS1(k, m) (n ≥ 0). (2.4)

Therefore we obtain the following lemma.

Lemma 2.1 For n ≥ 0, we have

dn(x) =
n∑

k=0

k∑
m=0

(
n
k

)
(–1)k–mS1(k, m)xn–k

and

dn =
n∑

k=0

k∑
m=0

(
n
k

)
(–1)n–mS1(k, m).

From (2.1), we have

∞∑
n=0

dn(x)
tn

n!
=

(
1

1 – t
e–t

)
e(x+1)t

=

( ∞∑
m=0

dm
tm

m!

)( ∞∑
l=0

(x + 1)l tl

l!

)

=
∞∑

n=0

( n∑
m=0

(
n
m

)
dm(x + 1)n–m

)
tn

n!
. (2.5)

Therefore, we obtain the following proposition.
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Proposition 2.2 For n ≥ 0, we have

dn(x) =
n∑

m=0

(
n
m

)
dm(x + 1)n–m = (d + x + 1)n,

with the usual convention about replacing dn by dn.

From Proposition 2.2, we have

d
dx

dn(x) =
d

dx
(d + x + 1)n = n(d + x + 1)n–1 = ndn–1(x) (n ≥ 1). (2.6)

By (1.5) and (2.1), we get

dn(x) ∼ (1 – t, t). (2.7)

That is, dn(x) (n ≥ 0) is an Appell sequence.
Now, we note that

∞∑
n=0

dn(x)
tn

n!
=

(
1

1 – t
et

)
e(x–1)t

=
∞∑

n=0

( n∑
l=0

(
n
l

)
al(x – 1)n–l

)
tn

n!
, (2.8)

where an are the arrangement numbers defined by

1
1 – t

et =
∞∑

n=0

an
tn

n!
. (2.9)

Replacing t by et – 1 in (2.1), we get

∞∑
k=0

dk(x)
1
k!

(
et – 1

)k =
(

1
2 – et

)
ex(et–1)

=

( ∞∑
l=0

Hl(2)
tl

l!

)( ∞∑
m=0

Belm(x)
tm

m!

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
Hl(2)Beln–l(x)

)
tn

n!
. (2.10)

On the other hand,

∞∑
k=0

dk(x)
1
k!

(
et – 1

)k =
∞∑

k=0

dk(x)
∞∑

n=k

S2(n, k)
tn

n!

=
∞∑

n=0

( n∑
k=0

S2(n, k)dk(x)

)
tn

n!
. (2.11)

Therefore, by (2.10) and (2.11), we obtain the following theorem.
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Theorem 2.3 For n ≥ 0, we have

n∑
k=0

(
n
k

)
Hk(2)Beln–k(x) =

n∑
k=0

S2(n, k)dk(x).

For Sn(x) ∼ (g(t), t), from (1.5) we have

1
g(t)

ext =
∞∑

n=0

Sn(x)
tn

n!
. (2.12)

Thus, by (2.12), we get

1
g(t)

xn = Sn(x) (n ≥ 0) ⇐⇒ Sn(x) ∼ (
g(t), t

)
. (2.13)

In (2.13), we take g(t) = 1 – t, then we have

1
1 – t

xn = dn(x) (n ≥ 0), t dn(x) = n dn–1(x) (n ≥ 1). (2.14)

Now, we observe that

dn(x + y) = (d + x + y + 1)n =
n∑

l=0

(
n
l

)
(d + x + 1)lyn–l

=
n∑

l=0

(
n
l

)
dl(x)yn–l (n ≥ 0). (2.15)

From (2.15), we note that

1
n + 1

(
dn+1(x + y) – dn+1(x)

)
=

1
n + 1

n+1∑
k=1

(
n + 1

k

)
dn+1–k(x)yk

=
n+1∑
k=1

n(n – 1) · · · (n – k + 2)
k!

dn+1–kyk

=
n+1∑
k=1

yk

k!
tk–1dn(x). (2.16)

By (2.15) and (2.16), we get

∫ x+y

x
dn(u) du =

n+1∑
k=1

yk

k!
tk–1dn(x)

=
1
t

n∑
k=1

(
n
k

)
dn–k(x)yk =

1
t
(
eytdn(x) – dn(x)

)

=
1
t
(
eyt – 1

)
dn(x) (n ≥ 0). (2.17)
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From (2.17), we can derive the following equation.

dn(x) =
t

et – 1

∫ x+1

x
dn(u) du =

1
1 – t

xn (n ≥ 0). (2.18)

Theorem 2.4 For n ≥ 0, we have

dn(x) =
t

et – 1

∫ x+1

x
dn(u) du =

1
1 – t

xn.

From (1.10), we have

〈
eyt – 1

t

∣∣∣ dn(x)
〉

=
〈
eyt – 1

∣∣∣ 1
n + 1

dn+1(x)
〉

=
〈
1

∣∣∣ 1
n + 1

(
dn+1(x + y) – dn+1(x)

)〉

=
1

n + 1
(
dn+1(y) – dn+1(0)

)
=

∫ y

0
dn(u) du (n ≥ 0). (2.19)

In particular,

∞∑
n=0

dn(0)
tn

n!
=

(
1

1 – t
e–t

)
et

=

( ∞∑
l=0

dl
tl

l!

)( ∞∑
m=0

tm

m!

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
dl

)
tn

n!
. (2.20)

Comparing the coefficients on both sides of (1.17), we have

dn(0) =
n∑

l=0

(
n
l

)
dl (n ≥ 0). (2.21)

Therefore, we obtain the following corollary.

Corollary 2.5 For n ≥ 0, we have

dn(0) =
n∑

l=0

(
n
l

)
dl

and

〈
eyt – 1

t

∣∣∣ dn(x)
〉

=
∫ y

0
dn(u) du.



Kim et al. Journal of Inequalities and Applications  (2018) 2018:40 Page 9 of 17

For r ∈N, we define the derangement polynomials of order r by

(
1

1 – t

)r

ext =
∞∑

n=0

d(r)
n (x)

tn

n!
. (2.22)

When x = –1, d(r)
n (–1) = d(r)

n are the derangement numbers of order r.
For 0 ≤ r ≤ n, the r-derangement numbers, denoted by D(r)

n , are the number of derange-
ments on n+r elements under the restriction that the first r-elements are in disjoint cycles.
It is known that the generating function of the r-derangement numbers is given by

∞∑
n=0

D(r)
n

tn

n!
=

tr

(1 – t)r+1 e–t . (2.23)

We consider the r-derangement polynomials given by

tr

(1 – t)r+1 ext =
∞∑

n=0

D(r)
n (x)

tn

n!
(0 ≤ r ≤ n). (2.24)

From (2.24), we note that D(r)
n (–1) = D(r)

n are the r-derangement numbers. By (2.13) and
(2.22), we easily get

d(r)
n (x) ∼ (

(1 – t)r , t
)

(n ≥ 0) (2.25)

and

trd(r)
n (x) = (n)rd(r)

n–r(x) = r!
(

n
r

)
d(r)

n–r(x). (2.26)

From (2.22) and (2.24), we have

∞∑
n=0

D(r)
n (x)

tn

n!
= tr

∞∑
n=0

d(r+1)
n (x)

tn

n!

=
∞∑

n=r

(
n
r

)
r!d(r+1)

n–r (x)
tn

n!
. (2.27)

Comparing the coefficients on both sides of (2.27), we get

D(r)
n (x) =

(
n
r

)
r!d(r+1)

n–r (x) (n ≥ r). (2.28)

From (2.22), we have

∞∑
n=0

d(r)
n (0)

tn

n!
=

(
1

1 – t

)r

=
∞∑

n=0

(
n + r – 1

n

)
tn =

∞∑
n=0

(n + r – 1)n
tn

n!
. (2.29)

Thus, by (2.29), we get

d(r)
n (0) = (n + r – 1)n (n ≥ 0). (2.30)
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From (2.22) and (2.24), we have

tr
∞∑

n=0

d(r+1)
n (x)

tn

n!
=

tr

(1 – t)r+1 e–te(x+1)t

=

( ∞∑
l=0

D(r)
l

tl

l!

)( ∞∑
m=0

(x + 1)m tm

m!

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
D(r)

l (x + 1)n–l

)
tn

n!
. (2.31)

Therefore, by (2.27) and (2.31), we obtain the following theorem.

Theorem 2.6 For n ≥ r, we have

n∑
l=0

(
n
l

)
D(r)

l (x + 1)n–l =
(

n
r

)
r!d(r+1)

n–r (x).

Now, we observe that

tr–1

(1 – t)r ext +
tr

(1 – t)r+1 ext =
tr–1

(1 – t)r+1 ext

=
(

tr–1

(1 – t)r e–t
)(

1
1 – t

e–t
)

e(x+2)t

=
∞∑

n=0

( n∑
k=0

k∑
l=0

(
n
k

)(
k
l

)
D(r–1)

l dk–l(x + 2)n–k

)
tn

n!
. (2.32)

On the other hand, by (2.24), we get

tr–1

(1 – t)r ext +
tr

(1 – t)r+1 ext =
∞∑

n=0

(
D(r–1)

n (x) + D(r)
n (x)

) tn

n!
. (2.33)

From (2.32) and (2.33), we have

D(r–1)
n (x) + D(r)

n (x) =
n∑

k=0

k∑
l=0

(
n
k

)(
k
l

)
D(r–1)

l dk–l(x + 2)n–k . (2.34)

In particular, for x = –1, we get

D(r–1)
n + D(r)

n =
n∑

k=0

k∑
l=0

(
n
k

)(
k
l

)
D(r–1)

l dk–l. (2.35)

Therefore, by (2.34) and (2.35), we obtain the following theorem.

Theorem 2.7 For n ≥ 0, we have

D(r–1)
n (x) + D(r)

n (x) =
n∑

k=0

k∑
l=0

(
n
k

)(
k
l

)
D(r–1)

l dk–l(x + 2)n–k .
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Moreover,

D(r–1)
n + D(r)

n =
n∑

k=0

k∑
l=0

(
n
k

)(
k
l

)
D(r–1)

l dk–l.

By (2.22), we easily get

∞∑
n=0

d(r)
n (x)

tn

n!
=

(
1

1 – t

)r

e–te(x+1)t =

( ∞∑
l=0

d(r)
l

tl

l!

)( ∞∑
m=0

(x + 1)m tm

m!

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
d(r)

l (x + 1)n–l

)
tn

n!
. (2.36)

Comparing the coefficients on both sides of (2.36), we have

d(r)
n (x) =

n∑
l=0

(
n
l

)
d(r)

l (x + 1)n–l, (2.37)

with the usual convention about replacing (d(r))l by d(r)
l . Thus, by (2.37), we get

d(r)
n (x + y) =

(
d(r) + x + y + 1

)n =
(
d(r) + x + 1 + y

)n

=
n∑

l=0

(
n
l

)(
d(r) + x + 1

)lyn–l =
n∑

l=0

(
n
l

)
d(r)

l (x)yn–l (n ≥ 0). (2.38)

From (2.22), we can derive the following equation:

∞∑
n=0

d(r)
n (x)

tn

n!
=

(
1

1 – t

)r

ext =
(

1
1 – t

)r–1

e–t
(

1
1 – t

)
e(x+1)t

=

( ∞∑
l=0

d(r–1)
l

tl

l!

)( ∞∑
m=0

dm(x + 1)
tm

m!

)

=
∞∑

n=0

( n∑
l=0

(
n
l

)
d(r–1)

l dn–l(x + 1)

)
tn

n!
. (2.39)

Thus, by (2.39), we get

d(r)
n (x) =

n∑
l=0

(
n
l

)
d(r–1)

l dn–l(x + 1) (n ≥ 0). (2.40)

For x = –2, from (2.37) and (2.40) we have

d(r)
n (–2) =

n∑
l=0

(
n
l

)
d(r–1)

l dn–l

=
n∑

l=0

(
n
l

)
d(r)

l (–1)n–l (n ≥ 0). (2.41)
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From (2.17), we have

et – 1
t

d(r)
n (x) =

∫ x+1

x
d(r)

n (u) du =
1

n + 1
{

d(r)
n+1(x + 1) – d(r)

n+1(x)
}

=
1

n + 1

{ n+1∑
l=0

(
n + 1

l

)
d(r)

l (x) – d(r)
n+1(x)

}

=
1

n + 1

n∑
l=0

(
n + 1

l

)
d(r)

l (x)

=
1

n + 1

n+1∑
l=1

(
n + 1

l

)
d(r)

n+1–l(x) (n ≥ 0). (2.42)

By (2.37) and (2.42), we get

d(r)
n (x) =

1
n + 1

n+1∑
l=1

n+1–l∑
m=0

(
n + 1

l

)(
n + 1 – l

m

)
d(r)

m
t

et – 1
(x + 1)n+1–l–m

=
1

n + 1

n+1∑
l=1

n+1–l∑
m=0

(
n + 1

l

)(
n + 1 – l

m

)
d(r)

m Bm+1–l–m(x + 1). (2.43)

Therefore, by (2.43), we obtain the following theorem.

Theorem 2.8 For n ≥ 0, we have

d(r)
n (x) =

1
n + 1

n+1∑
l=1

n+1–l∑
m=0

(
n + 1

l

)(
n + 1 – l

m

)
d(r)

m Bm+1–l–m(x + 1).

For n ≥ 0, let

Pn =
{

p(x) ∈C[x]|deg p(x) ≤ n
}

.

Then Pn is an (n + 1)-dimensional vector space over C.
For p(x) ∈ Pn, we let

p(x) =
n∑

k=0

Ckdk(x). (2.44)

From (1.4), we have

〈
(1 – t)tk|p(x)

〉
=

n∑
l=0

Cl
〈
(1 – t)tk|dl(x)

〉

=
n∑

l=0

Cll!δk,l = Ckk! (k ≥ 0). (2.45)

Thus, we have

Ck =
1
k!

〈
(1 – t)tk|p(x)

〉
=

1
k!

〈
(1 – t)|p(k)(x)

〉
. (2.46)
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Therefore, by (2.44) and (2.46), we obtain the following theorem.

Theorem 2.9 For p(x) ∈ Pn, we have

p(x) =
n∑

k=0

Ckdk(x),

where Ck = 1
k! 〈(1 – t)tk|p(x)〉 = 1

k! 〈(1 – t)|p(k)(x)〉.

Let us take p(x) = d(r)
n (x) ∈ Pn. Then we have

p(x) =
n∑

l=0

Cldl(x), (2.47)

where

Cl =
1
l!
〈
1 – t|p(l)(x)

〉
=

1
l!
〈
1 – t|(n)ld(r)

n–l(x)
〉

=
(

n
l

)〈
1 – t|d(r)

n–l(x)
〉
=

(
n
l

)
d(r)

n–l(0) –
(

n
l + 1

)
(l + 1)d(r)

n–l–1(0). (2.48)

Hence, by (2.47) and (2.48), we get

d(r)
n (x) =

n∑
l=0

{(
n
l

)
d(r)

n–l(0) –
(

n
l + 1

)
(l + 1)d(r)

n–l–1(0)
}

dl(x).

Assume that p(x) =
∑n

k=0 C(r)
k d(r)

k (x) ∈ Pn. Then, by (2.25), we get

〈
(1 – t)rtk|p(x)

〉
=

n∑
l=0

C(r)
l

〈
(! – t)rtk|d(r)

l (x)
〉

=
n∑

l=0

C(r)
l l!δl,k = C(r)

k k! (k ≥ 0). (2.49)

Thus, from (2.49), we note that

C(r)
k =

1
k!

〈
(1 – t)rtk|p(x)

〉
=

1
k!

〈
(1 – t)r|p(k)(x)

〉
. (2.50)

Therefore, we obtain the following theorem.

Theorem 2.10 For n ≥ 0, we have

p(x) =
n∑

k=0

C(r)
k d(r)

k (x) ∈ Pn,

where

Ck =
1
k!

〈
(1 – t)rtk|p(x)

〉
=

1
k!

〈
(1 – t)r|p(k)(x)

〉
.
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Example 1 For p(x) = dn(x) ∈ Pn, we have

p(x) =
n∑

k=0

C(r)
k d(r)

k (x),

where

C(r)
k =

1
k!

〈
(1 – t)r|p(k)(x)

〉
=

(
n
k

)〈
(1 – t)r|dn–k(x)

〉

=
(

n
k

) r∑
j=0

(
r
j

)
(–1)j〈tj|dn–k(x)

〉
=

(
n
k

) r∑
j=0

(
r
j

)
(–1)j(n – k)jdn–k–j(0)

=
(

n
k

) r∑
j=0

(
r
j

)
(–1)j(n – k)j(n – k – j)! =

(
n
k

) r∑
j=0

(
r
j

)
(–1)j(n – k)!.

Thus, we note that

dn(x) =
n∑

k=0

( r∑
j=0

(
n
k

)
(n – k)!

(
r
j

)
(–1)j

)
d(r)

k (x).

Example 2 For p(x) = Bn(x) (n ≥ 0), we have

Bn(x) =
n∑

k=0

C(r)
k d(r)

k (x),

where

C(r)
k =

1
k!

〈
(1 – t)rtk|Bn(x)

〉
=

(
n
k

)〈
(1 – t)r|Bn–k(x)

〉

=
(

n
k

) r∑
j=0

(
r
j

)
(–1)j〈tj|Bn–k(x)

〉

=
(

n
k

) r∑
j=0

(
r
j

)
(–1)j(n – k)j

〈
1|Bn–k–j(x)

〉

=
(

n
k

) r∑
j=0

(
r
j

)
(–1)j

(
n – k

j

)
j!Bn–k–j.

Hence

Bn(x) =
n∑

k=0

((
n
k

) r∑
j=0

(
r
j

)
(–1)j

(
n – k

j

)
j!Bn–k–j

)
d(r)

k (x).

Example 3 For p(x) = En(x) ∈ Pn (n ≥ 0), we have

En(x) =
n∑

k=0

C(r)
k d(r)

k (x),
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where

C(r)
k =

1
k!

〈
(1 – t)tk|En(x)

〉
=

(
n
k

)〈
(1 – t)|En–k(x)

〉

=
(

n
k

)
En–k –

(
n
k

)
(n – k)En–k–1.

Thus, we get

En(x) =
n∑

k=0

{(
n
k

)
En–k –

(
n
k

)
(n – k)En–k–1

}
d(r)

k (x).

Example 4 For p(x) = Beln(x) ∈ Pn, we have

Beln(x) =
n∑

k=0

C(r)
k d(r)

k (x),

where

C(r)
k =

1
k!

〈
(1 – t)tk|Beln(x)

〉
=

1
k!

〈
(1 – t)tk

∣∣∣ n∑
m=0

S2(n, m)xm

〉

=
n∑

m=k

S2(n, m)
(

m
k

)〈
(1 – t)|xm–k 〉

= S2(n, k) –
n∑

m=k

S2(n, m)
(

m
k

)
(m – k)0m–k–1

= S2(n, k) – S2(n, k + 1)(k + 1) = 2S2(n, k) – S2(n + 1, k + 1).

Hence

Beln(x) =
n∑

k=0

(
2S2(n, k) – S2(n + 1, k + 1)

)
d(r)

k (x).

The ordered Bell polynomials are defined by the generating function

1
2 – et ext =

∞∑
n=0

bn(x)
tn

n!
. (2.51)

When x = 0, bn = bn(0) (n ≥ 0) are the ordered Bell numbers. From (2.12) and (2.51), we
note that bn(x) ∼ (2 – et , t) (n ≥ 0). For bn(x) ∼ (2 – et , t), dn(x) ∼ (1 – t, t), by (2.7) and
(2.13), we get

bn(x) =
n∑

m=0

Cn,mdm(x) (n ≥ 0), (2.52)
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where

Cn,m =
1

m!

〈
1 – t
2 – et tm

∣∣∣xn
〉

=
(

n
m

)〈
1 – t
2 – et

∣∣∣xn–m
〉

=
(

n
m

)〈
1 – t

∣∣∣ 1
2 – et xn–m

〉
=

(
n
m

)〈
1 – t|bn–m(x)

〉

=
(

n
m

){
bn–m – (n – m)bn–m–1

}
. (2.53)

Therefore, we obtain the following theorem.

Theorem 2.11 For n ≥ 0, we have

bn(x) =
n∑

m=0

(
n
m

)(
bn–m – (n – m)bn–m–1

)
dm(x).

For dn(x) ∼ (1 – t, t), (x)n ∼ (1, et – 1), we have

dn(x) =
n∑

m=0

Cn,m(x)m (n ≥ 0), (2.54)

where

Cn,m =
1

m!

〈
1

1 – t
(
et – 1

)m
∣∣∣xn

〉
=

n∑
l=m

S2(l, m)
1
l!

〈
tl

1 – t

∣∣∣xn
〉

=
n∑

l=m

S2(l, m)
(

n
l

)〈
1

1 – t

∣∣∣xn–l
〉

=
n∑

l=m

S2(l, m)
(

n
l

)〈
1|dn–l(x)

〉

=
n∑

l=m

S2(l, m)
(

n
l

)
dn–l(0). (2.55)

Therefore, by (2.54) and (2.55), we obtain the following theorem.

Theorem 2.12 For n ≥ 0, we have

dn(x) =
n∑

m=0

( n∑
l=m

S2(l, m)
(

n
l

)
dn–l(0)

)
(x)m.

3 Results and discussion
In this paper, as a natural companion to derangement numbers, we have investigated de-
rangement polynomials and derived several interesting properties on them which are re-
lated to derangement numbers. Also, we have considered two generalizations of derange-
ment polynomials, namely the higher-order and r-derangement polynomials, and showed
some relations between them and also with some other special polynomials. In addition,
by using umbral calculus, we derived a formula expressing any polynomials as linear com-
binations of higher-order derangement polynomials and illustrated this with several spe-
cial polynomials.
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4 Conclusion
The introduction of derangement numbers goes back to as early as 1708 when Pierre Ré-
mond de Montmort considered some counting problem on derangements. However, it
seems that the umbral calculus approach to the derangement polynomials and their gen-
eralizations has not yet been done. In this paper, we have used umbral calculus in order
to study some interesting properties on them, certain relations between them, and some
connections with several other special polynomials.
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