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Abstract
The purpose of this paper is to solve fractional calculus of variational Herglotz
problem depending on an Atangana–Baleanu fractional derivative. Since the new
Atangana–Baleanu fractional derivative is non-singular and non-local, the
Euler–Lagrange equations are proposed for the problems of Herglotz. Fractional
variational Herglotz problems of variable order are considered and two cases are
shown. The Noether-type theorem with this new fractional derivative is proved.
Several typical examples of the results of this paper are expressed in this paper.
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1 Introduction
It is certain for the development of fractional calculus because the fractional derivative
has global correlation, which can reflect the historical process of the systematic func-
tion. Besides, a fractional derivative model can give better results by using fewer param-
eters than the classical integer order model. What is more, compared with the nonlinear
model, the physical meaning of the fractional order model is clearer and the expression is
more concise. Since the first monograph on fractional calculus was published by Oldham
and Spanier in 1974, fractional calculus has been widely used in science, engineering, and
many other fields [1–4].

With regard to the definition of fractional derivatives, many mathematicians studied
fractional derivatives from different aspects and advanced different definitions for them,
e.g., Riemann–Liouville (RL) derivative and Caputo derivative. Zhang et al. [5] used the
Riemann–Liouville fractional derivative to prove the stability of the linear degenerate frac-
tional differential system. Almeida [6] solved some fractional variational problems involv-
ing the Caputo fractional derivative. Nevertheless, both of them have some shortcomings.
For example, the Riemann–Liouville derivative cannot be employed without initial con-
ditions, which makes it hard to use in several practical problems. Besides, the fractional
calculus defined by Caputo has a singular kernel.

Recently, in 2015, Caputo and Fabrizio [7] proposed Caputo–Fabrizio (CF) fractional
derivative to overcome the drawback of the singular kernel. However, since the kernel in
the integral is still non-local, the CF fractional derivative also has shortcomings. Moreover,
in CF fractional derivatives, the associated integral is not a fractional operator. Herglotz
[8] introduced the generalized variational principle in 1930. Then Garra et al. [9], using
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Caputo derivative calculates, attained Euler–Lagrange equations and transversality con-
ditions for the problem of Herglotz.

In 2016, Atangana and Baleanu [10] introduced a new kind of fractional derivative. Atan-
gana et al. [11] studied the numerical approximation of the Riemann–Liouville deriva-
tives, which is called Atangana–Baleanu (AB) fractional derivative. Several comparative
studies of CF fractional derivative and AB fractional derivative have been presented in re-
cent years. Sheikh et al. [12] compared the CF fractional derivative with the AB fractional
derivative in the free convection of generalized Casson fluid. The differences between the
CF fractional derivative and the AB fractional derivative with respect to the Allen–Cahn
model are proposed by Algahtani et al. [13]. The research of Sheikh et al. [14] showed the
comparisons of CF fractional derivative with AB fractional derivative in the generalized
Casson fluid model, whose exact solutions can be attained by the Laplace transform [15–
17]. Khan et al. [18] analyzed the similarities and differences between the two fractional
derivatives.

In summary, the fractional derivatives defined in the previous papers have many draw-
backs. The derivative of the constant in RL sense does not equal zero. In addition, both RL
and Caputo fractional derivatives are singular. Some integral of CF fractional derivative is
not a fractional operator. Besides, the generalized Mittag-Leffler function was used by the
AB fractional derivative as a non-singular and non-local kernel. What is more, the AB
fractional derivative contains all the properties of fractional derivatives. Many researches
have tried to use the AB fractional derivative to solve some practical problems. Gómeza-
guilar et al. [19] utilized the AB fractional operator in dielectric media as an alternative
solution of the fractional waves. Alkahtani [20], using the AB fractional derivative, did nu-
merical research on the extension model of dynamics for Chua’s circuit. Gómez-Aguilar
et al. [21] attained the analytical solutions for the electrical series circuits RC, LC, and
RL with AB fractional derivative. Jan et al. [22] applied the AB fractional derivative into
the generalized model of Brinkman-type fluid. Abro et al. [23] solved partial differential
equations with AB fractional derivative in molybdenum disulfide nanofluids.

The main aim of this paper is to solve fractional calculus of variational Herglotz problem
depending on an AB fractional derivative. The structure of this paper is as follows. In
Sect. 2, the basic definitions and notations involving in the Atangana–Baleanu–Riemann–
Liouville and Atangana–Baleanu–Caputo fractional derivatives are presented. In Sect. 3,
the fractional differential equation of Herglotz is received. In Sect. 4, fractional variational
Herglotz problems of variable order are considered. In Sect. 5, the Noether theorem with
this new fractional derivative is proved. At last, the conclusion is presented in Sect. 6.

2 Preliminaries
In this section, we quote some basic definitions with respect to the Atangana–Baleanu–
Riemann–Liouville (ABR) fractional derivative and the Atangana–Baleanu–Caputo
(ABC) fractional derivative [24]. Let a function f (t) : [a, b] → R, the left ABR fractional
derivative is defined by

ABR
a Dα

t f (t) =
B(α)
1 – α

d
dt

∫ t

a
f (x)Eα

(
–α

(t – x)α

1 – α

)
dx, (1)
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and in the right ABR fractional derivative sense by

ABR
t Dα

b f (t) = –
B(α)
1 – α

d
dt

∫ b

t
f (x)Eα

(
–α

(x – t)α

1 – α

)
dx, (2)

where B(α) is a normalization function such that B(0) = B(1) = 1, 0 < α < 1, and Eα(z) =∑∞
k=0

zk

�(αk+1) (z ∈ C, Re(α) > 0) is a Mittag-Leffler function with one parameter [25].

Definition 1 (see [24, Definition 2.1 and Definition 2.5]) Define a Hilbert space(H), and let
a function f ∈ H1(a, b), b > a, α ∈ (0, 1), then the new ABC fractional derivative is defined
by

ABC
a Dα

t f (t) =
B(α)
1 – α

∫ t

a
f ′(x)Eα

(
–α

(t – x)α

1 – α

)
dx (3)

and

ABC
t Dα

b f (t) = –
B(α)
1 – α

∫ b

t
f ′(x)Eα

(
–α

(x – t)α

1 – α

)
dx. (4)

Definition 2 (see [24, Proposition 2.4]) Let g(t) be a continuous function and f (t) be of
class C1. Then we have

∫ b

a
g(t)ABC

a Dα
t f (t) dt =

∫ b

a
f (t)ABR

t Dα
b g(t) dt +

[
B(α)
1 – α

f (t)E1
α,1, –α

1–α ,b– g(t)
]t=b

t=a
(5)

and

∫ b

a
g(t)ABC

t Dα
b f (t) dt =

∫ b

a
f (t)ABR

a Dα
t g(t) dt –

[
B(α)
1 – α

f (t)E1
α,1, –α

1–α ,a+ g(t)
]t=b

t=a
. (6)

Besides, the left generalized fractional integral operator [24] is defined by

Eγ

ρ,μ,ω,a+ϕ(x) =
∫ x

a
(x – t)μ–1Eγ

ρ,μ
[
ω(x – t)ρ

]
ϕ(t) dt, x > a, (7)

and the right generalized fractional integral operator is defined by

Eγ

ρ,μ,ω,b–ϕ(x) =
∫ b

x
(t – x)μ–1Eγ

ρ,μ
[
ω(t – x)ρ

]
ϕ(t) dt, x < b, (8)

where the generalized Mittag-Leffler function [25] is defined by

Eγ
ρ,μ(z) =

∞∑
k=0

(γ )kzk

�(kρ + μ)k!
(
ρ,μ,γ ∈ C, Re(ρ) > 0

)
.

3 Fractional variational Herglotz problems
In this section, we consider fractional variational Herglotz problems with dependence on
ABC fractional derivatives and ABR fractional derivatives. According to the generalized
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variational principle of Herglotz in the shape space [26], the Herglotz problem of the non-
conservative system in the phase space can be defined as

dz
dt

= L
(
t, x(t), ABC

a Dα
t x(t), z(t)

)
, t ∈ [a, b], (9)

where the initial condition is z(a) = za, and za is a given real number. The aim of Herglotz
problems is to find a locus x ∈ C1([a, b], R) with the condition that z is the solution of the
above system.

The following hypothesis should be allowed:
1. x(a) = xa, x(b) = xb, xa, xb ∈ R;
2. ABC

a Dα
t x(t) ∈ C1([a, b], R);

3. L ∈ C1([a, b] × R3, R);
4. The map t �→ λ(t)∂3L[x, z](t) is such that ABC

t Dα
b (λ(t)∂3L[x, z](t)) exists and is

continuous on [a, b], where

[x, z](t) =
(
t, x(t), ABC

a Dα
t x(t), z(t)

)

and

λ(t) = exp

(
–

∫ t

a
∂4L[x, z](τ ) dτ

)
. (10)

Remark 1 The solution z of differential equation (9) lies on the variables x and t. We con-
sider the function h(t) ∈ C1([a, b], R) with the boundary conditions h(a) = h(b) = 0. In ad-
dition, we introduce any arbitrary small parameter ε ∈ R, and then x + εh ∈ C1([a, b], R)
exists in the neighborhood of x. Let x be replaced by x + εh, then the solution z relates to
ε and it is also differentiable with regard to ε.

Let z(t)|t=b be a minimum and the value of the function z(x, b) be an extremum for the
function x(t).

Theorem 1 Let x be such that z(x, b) defined by equation (9) reaches an extremum. Then
x is a solution of

λ(t)∂2L[x, z](t) + ABR
t Dα

b
(
λ(t)∂3L[x, z](t)

)
= 0 (11)

on [a, b].

Proof Since z(x, b) is a minimum, with any sufficiently small real number ε, the solution z
is given by

φ(t) =
d

dε
z(x + εh, t)

∣∣∣∣
ε=0

. (12)

Then we attain

d
dt

z(x + εh) = L
(
t, x(t) + εh(t), ABC

a Dα
t
[
x(t) + εh(t)

]
, z

(
x + εh(t), t

))
. (13)
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Therefore, we get

d
dt

φ(t) =
d
dt

d
dε

z(x + εh)
∣∣∣∣
ε=0

=
d

dε

d
dt

z(x + εh)
∣∣∣∣
ε=0

=
d

dε
L
(
t, x(t) + εh(t), ABC

a Dα
t
[
x(t) + εh(t)

]
, z

(
x + εh(t), t

))∣∣∣∣
ε=0

= ∂2L[x, z](t)h(t) + ∂3L[x, z](t)ABC
a Dα

t h(t) + ∂4L[x, z](t)φ(t).

We denote that

a(t) = ∂4L[x, z](t)

and

b(t) = ∂2L[x, z](t)h(t) + ∂3L[x, z](t)ABC
a Dα

t h(t).

Then we get

d
dt

φ(t) = b(t) + a(t)φ(t),

and considering λ(t) = exp(–
∫ t

a ∂4L[x, z](τ ) dτ ), we derive that

[
d
dt

φ(t) – a(t)φ(t)
]
λ(t) = b(t)λ(t),

then

∫ t

a
d
(
φ(τ )λ(τ )

)
=

∫ t

a
b(τ )λ(τ ) dτ .

According to the condition that z(b) is minimum, we obtain the solution for the last dif-
ferential equation:

φ(b)λ(b) – φ(a) =
∫ b

a
λ(t)

[
∂2L[x, z](t)h(t) + ∂3L[x, z](t)ABC

a Dα
t h(t)

]
dt

=
∫ b

a
λ(t)∂2L[x, z](t)h(t) dt +

∫ b

a
h(t)ABR

t Dα
b
[
λ(t)∂3L[x, z](t)

]
dt

+
B(α)
1 – α

h(t)E1
α,1, –α

1–α ,b–
[
λ(t)∂3L[x, z](t)

]∣∣t=b
t=a.

Since φ(a) = φ(b) = 0 and h(a) = h(b) = 0, we get

λ(t)∂2L[x, z](t) + ABR
t Dα

b
(
λ(t)∂3L[x, z](t)

)
= 0

for all t ∈ [a, b]. �
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Example 1 Consider this system

⎧⎨
⎩

dz
dt = [ABC

0 Dα
t x(t)]2 + t – 1, t ∈ [0, 1],

x(0) = 1, z(0) = 0,

where 0 < α < 1. Since the initial value x(0) = 1, let x ≡ 1, and according to Theorem 1, we
obtain

ABR
t Dα

1
[ABC

0 Dα
t x(t)

]
= 0.

4 Fractional variational Herglotz problems of variable order
In this section, the fractional operators of variable fractional order with two functions are
considered for the Herglotz problems. Then we show two cases: one with one independent
variable, another with several independent variables.

In the first part of this section, we discuss the case of one independent variable. Inspired
by the paper [27], we introduce a linear combination of the fractional derivatives of vari-
able fractional order by considering the previous concepts.

Definition 3 (see [27]) Let μ,γ : [a, b]2 �→ (0, 1) be two functions and η = (η1,η2) ∈ [0, 1]2

be a vector. We deduce that the combined ABR fractional derivative is defined by

ABRDμ,γ
η x(t) = η1

ABR
a Dμ

t x(t) + η2
ABR
t Dγ

b x(t). (14)

Therefore, the combined ABC fractional derivative is defined by

ABCDμ,γ
η x(t) = η1

ABC
a Dμ

t x(t) + η2
ABC
t Dγ

b x(t). (15)

The ABC fractional derivative of variable order is similar to (5) and (6). Then we denote
that the dual fractional derivatives of (14) and (15) are

ABRDγ ,μ
η = η2

ABR
a Dγ

t + η1
ABR
t Dμ

T

and

ABCDγ ,μ
η = η2

ABC
a Dγ

t + η1
ABC
t Dμ

T ,

where η = (η2,η1). Similar to equation (9), the differential equation with a combined ABC
fractional derivative of Herglotz is

dz
dt

= L
(
t, x(t), ABCDμ,γ

η x(t), z(t)
)
, t ∈ [a, b], (16)

and the initial condition is z(a) = za, and za is a given real number.

We assume that the following conditions:
1. x(a) = xa, xa ∈ R;
2. T ∈ ([a, b], R) extremizes the value of z(T);
3. ABCDμ,γ

η x(t) ∈ C1([a, b], R);
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4. L ∈ C1([a, b] × R3, R);
5. The map t �→ λ(t)∂3L[x, z]μ,γ

η (t) is such that ABR
T Dγ

t (λ(t)∂3L[x, z]μ,γ
η (t)),

ABR
a Dγ

t (λ(t)∂3L[x, z]μ,γ
η (t)), and ABRDγ ,μ

η (λ(t)∂3L[x, z]μ,γ
η (t)) exist and are continuous

on [a, b], where

[x, z]μ,γ
η (t) =

(
t, x(t), ABCDμ,γ

η x(t), z(t)
)

and

λ(t) = exp

(
–

∫ t

a
∂4L[x, z]μ,γ

η (τ ) dτ

)
(17)

are valid.

Theorem 2 Let x be such that z defined by equation (16) gains an extremum. Then x is a
solution of

λ(t)∂2L[x, z]μ,γ
η (t) + ABRDγ ,μ

η

(
λ(t)∂3L[x, z]μ,γ

η (t)
)

= 0 (18)

on [a, T], and

η2
(ABR

a Dγ
t
(
λ(t)∂3L[x, z]μ,γ

η (t)
)

– ABR
T Dγ

t
(
λ(t)∂3L[x, z]μ,γ

η (t)
))

= 0 (19)

on [T , b], where η = (η2,η1). In addition, the following condition is satisfied:

[
η1

B(μ)
1 – μ

E1
μ,1, –μ

1–μ ,T–
(
λ(t)∂3L[x, z]μ,γ

η (t)
)

– η2
B(γ )
1 – γ

E1
γ ,1, –γ

1–γ ,T+
(
λ(t)∂3L[x, z]μ,γ

η (t)
)]

t=T
= 0. (20)

If T < b, then L[x, z]μ,γ
η (T) = 0.

Proof Let x be a solution to the problem and consider an admissible variation of x, with
any sufficiently small real number ε. The solution z is given by

θ (t) =
d

dε
z(x + εh, t)

∣∣∣∣
ε=0

, (21)

where θ (T) = 0, because z(T) is an extremum.
Then we get

d
dt

θ (t) =
d
dt

d
dε

z(x + εh)
∣∣∣∣
ε=0

=
d

dε

d
dt

z(x + εh)
∣∣∣∣
ε=0

=
d

dε
L
(
t, x(t) + εh(t), ABCDμ,γ

η

[
x(t) + εh(t)

]
, z

(
x + εh(t), t

))∣∣
ε=0

= ∂2L[x, z]μ,γ
η (t)h(t) + ∂3L[x, z]μ,γ

η (t)ABCDμ,γ
η h(t) + ∂4L[x, z]μ,γ

η (t)θ (t).
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Considering λ(t) = exp(–
∫ t

a ∂4L[x, z]μ,γ
η (τ ) dτ ), we get the solution for the differential

equation

θ (T)λ(T) – θ (a) =
∫ T

a
λ(t)

[
∂2L[x, z]μ,γ

η (t)h(t) + ∂3L[x, z]μ,γ
η (t)ABCDμ,γ

η h(t)
]

dt.

Since θ (a) = 0 and z(T) is an extremum for x, θ (T) = 0 holds. Then we obtain

∫ T

a
λ(t)

[
∂2L[x, z]μ,γ

η (t)h(t) + ∂3L[x, z]μ,γ
η (t)ABCDμ,γ

η h(t)
]

dt = 0. (22)

Firstly, we consider the second part in (22) and the definition of combined ABC derivative.
We get

∫ T

a
λ(t)∂3L[x, z]μ,γ

η (t)ABCDμ,γ
η h(t) dt

=
∫ T

a
λ(t)∂3L[x, z]μ,γ

η (t)
(
η1

ABC
a Dμ

t h(t) + η2
ABC
t Dγ

b h(t)
)

dt

= η1

∫ T

a
λ(t)∂3L[x, z]μ,γ

η (t)ABC
a Dμ

t h(t) dt

+ η2

[∫ b

a
λ(t)∂3L[x, z]μ,γ

η (t)ABC
t Dγ

b h(t)) dt –
∫ b

T
λ(t)∂3L[x, z]μ,γ

η (t)ABC
t Dγ

b h(t)) dt
]

.

Considering η = (η2,η1) with Definition 2, and since h(a) = h(b) = 0, we derive that

∫ T

a
λ(t)∂3L[x, z]μ,γ

η (t)ABCDμ,γ
η h(t) dt

=
∫ T

a
h(t)ABRDγ ,μ

η

(
λ(t)∂3L[x, z]μ,γ

η (t)
)

dt

+
∫ b

T
η2h(t)

[ABR
a Dγ

t
(
λ(t)∂3L[x, z]μ,γ

η (t)
)

– ABR
T Dγ

t
(
λ(t)∂3L[x, z]μ,γ

η (t)
)]

dt

+ h(T)
[
η1

B(μ)
1 – μ

E1
μ,1, –μ

1–μ ,T–
(
λ(t)∂3L[x, z]μ,γ

η (t)
)

– η2
B(γ )
1 – γ

E1
γ ,1, –γ

1–γ ,T+
(
λ(t)∂3L[x, z]μ,γ

η (t)
)]

t=T
.

Secondly, from equation (22), we attain the following expression:

∫ T

a
h(t)

[
∂2L[x, z]μ,γ

η (t)λ(t) + ABRDγ ,μ
η

(
λ(t)∂3L[x, z]μ,γ

η (t)
)]

dt

+
∫ b

T
η2h(t)

[ABR
a Dγ

t
(
λ(t)∂3L[x, z]μ,γ

η (t)
)

– ABR
T Dγ

t
(
λ(t)∂3L[x, z]μ,γ

η (t)
)]

dt

+ h(T)
[
η1

B(μ)
1 – μ

E1
μ,1, –μ

1–μ ,T–
(
λ(t)∂3L[x, z]μ,γ

η (t)
)

– η2
B(γ )
1 – γ

E1
γ ,1, –γ

1–γ ,T+
(
λ(t)∂3L[x, z]μ,γ

η (t)
)]

t=T
= 0.
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Then we obtain the Euler–Lagrange equations (18)–(19) and the transversality conditions
(20).

In the second part of this section, we generalize the fractional variational principle
of Herglotz to the one involving several independent variables. Define the vector x =
(x1, x2, . . . , xn) ∈ � =

∏n
i=1[ai, bi] with n ∈ N . Consider u(t, x) such that give an extremum

to z[x, T], where z satisfies the differential equation

dz
dt

=
∫

�

L
(
t, x, u(t, x), ABCDμ,γ

η u(t, x),

ABCDμ1,γ1
η1 u(t, x), . . . , ABCDμn ,γn

ηn u(t, x), z(t)
)

dnx, t ∈ [a, b], (23)

where dnx = dx1 dx2 · · · dn, and assume that
1. P = [a, b] × �, u(t, x) = g(t, x) for all (t, x) ∈ ∂P, where ∂P is the boundary of P, and

g : ∂P → R is a given function;
2. μ,μi,γ ,γi ∈ (0, 1) and η,η1, . . . ,ηn ∈ [0, 1]2 with i = 1, 2, . . . , n;
3. L : P × Rn+3 → R is of class C1;
4. (t, x) �→ λ(t)∂n+2L[u, z]μ,γ

n,η (t, x) and (t, x) �→ λ(t)∂n+3L[u, z]μ,γ
n,η (t, x) are such that

ABCDμ,γ
η u(t, x), ABCDμ1,γ1

η1 u(t, x), ABCDμn ,γn
ηn u(t, x) exist and are continuous, where

[u, z]μ,γ
n,η (t, x) =

(
t, x, u(t, x), ABCDμ,γ

η u(t, x),
ABCDμ1,γ1

η1 u(t, x), . . . , ABCDμn ,γn
ηn u(t, x), z(t)

)
,

and

λ(t) = exp

(
–

∫ t

a

∫
�

∂2n+4L[u, z]μ,γ
n,η (τ , x) dnx dτ

)
. �

Theorem 3 If (u, z) attains an extremum of equation (23), then (u, z) is a solution of the
system of equations

λ(t)∂n+2L[u, z]μ,γ
n,η (t, x) + ABRDγ ,μ

η

(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)

+
n∑

i=1

ABRDγi ,μi
ηi

(
λ(t)∂n+3+iL[u, z]μ,γ

n,η (t, x)
)

= 0 (24)

on [a, T] × �, and

η2
(ABR

a Dγ
t
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)

– ABR
T Dγ

t
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
))

= 0 (25)

on [T , b] × �, where η = (η2,η1) and ηi = (ηi
2,ηi

1). What is more, the following condition is
satisfied:

[
η1

B(μ)
1 – μ

E1
μ,1, –μ

1–μ ,T–
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)

– η2
B(γ )
1 – γ

E1
γ ,1, –γ

1–γ ,T+
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)]

t=T
= 0. (26)

If T < b, then L[u, z]μ,γ
n,η (T , x) = 0.
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Proof Similar to the proof of Theorem 2, an admissible variation of u is considered. We
replace u(t, x) with u(t, x) + εh(t, x), where ε is any sufficiently small real number. Then the
solution z is given by

θ (t) =
d

dε
z(u + εh, t)

∣∣∣∣
ε=0

, (27)

where θ (T) = 0, because z(T) is an extremum. Then we obtain

d
dt

θ (t) =
d
dt

d
dε

z(u + εh)
∣∣∣∣
ε=0

=
d

dε

d
dt

z(u + εh)
∣∣∣∣
ε=0

=
d

dε

∫
�

L[u + εh, z]μ,γ
n,η (t, x) dnx

∣∣∣∣
ε=0

.

We conclude that

d
dt

θ (t) =
∫

�

(
∂n+2L[u, z]μ,γ

n,η (t, x)h(t, x) + ∂n+3L[u, z]μ,γ
n,η (t, x)ABCDμ,γ

η h(t, x)

+
n∑

i=1

∂n+3+iL[u, z]μ,γ
n,η (t, x)ABCDμi ,γi

ηi h(t, x) + ∂2n+4L[u, z]μ,γ
n,η (t, x)θ (t)

)
dnx.

Then we define

A(t) =
∫

�

∂2n+4L[u, z]μ,γ
n,η (t, x) dnx,

and

B(t) =
∫

�

(
∂n+2L[u, z]μ,γ

n,η (t, x)h(t, x) + ∂n+3L[u, z]μ,γ
n,η (t, x)ABCDμ,γ

η h(t, x)

+
n∑

i=1

∂n+3+iL[u, z]μ,γ
n,η (t, x)ABCDμi ,γi

ηi h(t, x)

)
dnx.

Considering λ(t) = exp(–
∫ t

a
∫
�

∂2n+4L[u, z]μ,γ
n,η (τ , x) dnx dτ ), we attain the solution for the

differential equation:

θ (T)λ(T) – θ (a) =
∫ T

a
B(t)λ(t) dt.

Since θ (a) = 0 and z(T) is an extremum, θ (T) = 0 holds. Then we obtain

∫ T

a
B(t)λ(t) dt = 0. (28)



Zhang et al. Journal of Inequalities and Applications  (2018) 2018:44 Page 11 of 16

We first consider only the second part in (28), then we get

∫ T

a

∫
�

∂n+3L[u, z]μ,γ
n,η (t, x)ABCDμ,γ

η h(t, x) dnx

=
∫ T

a

∫
�

λ(t)∂n+3L[u, z]μ,γ
n,η (t, x)

(
η1

ABC
a Dμ

t h(t, x) + η2
ABC
t Dγ

b h(t, x)
)

dnx dt

= η1

∫ T

a

∫
�

λ(t)∂n+3L[u, z]μ,γ
n,η (t, x)ABC

a Dμ
t h(t, x) dnx dt

+ η2

[∫ b

a
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)ABC
t Dγ

b h(t, x)) dnx dt

–
∫ b

T

∫
�

λ(t)∂n+3L[u, z]μ,γ
n,η (t, x)ABC

t Dγ

b h(t, x)) dnx dt
]

.

Besides, let η = (η2,η1) and h(a, x) = h(b, x) = 0 for all x ∈ �, we obtain

∫ T

a

∫
�

∂n+3L[u, z]μ,γ
n,η (t, x)ABCDμ,γ

η h(t, x) dnx

=
∫ T

a

∫
�

h(t, x)ABRDγ ,μ
η

(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)

dnx dt

+
∫ b

T
η2h(t, x)

[ABR
a Dγ

t
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)

– ABR
T Dγ

t
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)]

dnx dt

+
∫

�

h(T , x)
[
η1

B(μ)
1 – μ

E1
μ,1, –μ

1–μ ,T–
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)

– η2
B(γ )
1 – γ

E1
γ ,1, –γ

1–γ ,T+
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)]

t=T
.

Similarly, let ηi = (ηi
2,ηi

1) and h(ai) = h(bi) = 0, we get

∫ T

a

∫
�

λ(t)∂n+3+iL[u, z]μ,γ
n,η (t, x)

(
ηi

1
ABC
ai

Dμi
xi

h(t, x) + ηi
2

ABC
xi

Dγ i

bi
h(t, x)

)
dnx dt

=
∫ T

a

∫
�

h(t, x)ABRDγi ,μi
ηi

(
λ(t)∂n+3+iL[u, z]μ,γ

n,η (t, x)
)

dnx dt.

Substituting these relations into (28), we deduce that

∫ T

a

∫
�

h(t, x)

[
∂n+2L[u, z]μ,γ

n,η (t, x)λ(t) + ABRDγ ,μ
η

(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)

+
n∑

i=1

ABRDγi ,μi
ηi

(
λ(t)∂n+3+iL[u, z]μ,γ

n,η (t, x)
)]

dnx dt

+
∫ b

T
η2h(t, x)

[ABR
a Dγ

t
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)

– ABR
T Dγ

t
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)]

dnx dt
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+
∫

�

h(T , x)
[
η1

B(μ)
1 – μ

E1
μ,1, –μ

1–μ ,T–
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)

– η2
B(γ )
1 – γ

E1
γ ,1, –γ

1–γ ,T+
(
λ(t)∂n+3L[u, z]μ,γ

n,η (t, x)
)]

t=T
= 0.

So we get the Euler–Lagrange equations (24)–(25) and the transversality condition (26)
with appropriate choices of h. �

Example 2 Consider the system

⎧⎨
⎩

dz
dt = [ABCDμ,γ

η x(t)]2 + t2 – 1, t ∈ [0, 3],

x(0) = 1, z(0) = 0,

where 0 < α < 1 and 0 < β < 1. Since the initial condition x(0) = 1, we attain x ≡ 1. Accord-
ing to equation (18)–(19) in Theorem 2, we get

ABRDγ ,μ
η

[ABCDμ,γ
η x(t)

]
= 0.

Then we obtain
⎧⎨
⎩

dz
dt = t2 – 1, t ∈ [0, 3],

z(0) = 0,

whose solution is

z(t) =
1
3

t3 – t.

Besides, from equation (20), since L[x, z]μ,γ
η (T) = 0, we deduce

T2 – 1 = 0,

whose solution is

T = 1,

and the minimum of this system is

z(1) = –
2
3

.

Example 3 Consider the following system:

⎧⎨
⎩

dz
dt = [x3(t) + z(t) + 1](t – 2), t ∈ [0, 3],

x(0) = 0, z(0) = 0.

Let x ≡ 0 with the initial condition x(0) = 0, and as is shown in Theorem 2, we attain

(t – 2)x2(t) = 0, ∀t ∈ [0, T].



Zhang et al. Journal of Inequalities and Applications  (2018) 2018:44 Page 13 of 16

Then we get

⎧⎨
⎩

dz
dt = (t – 2)(z(t) + 1), t ∈ [0, 3],

z(0) = 0,

whose solution is

z(t) = exp

(
1
2

t2 – 2t
)

– 1.

Moreover, since L[x, z]μ,γ
η (T) = 0, we deduce

(T – 2)
(
z(T) + 1

)
= 0,

whose solution is

T = 2,

and the minimum value of z(t) is

z(2) = exp(–2) – 1.

5 Noether-type theorem
A Noether-type theorem, saying popularly, is symmetric principles. It expresses the cor-
respondence between successive symmetries and conservation laws, the solutions of the
Euler–Lagrange equation. In this section, we extend a Noether-type theorem to the one
that holds for fractional variational Herglotz-type problems with one (Theorem 4).

Let us discuss the condition with one variable. Consider the one-parameter group of
invertible transformations [28]

xj = hj(t, x, s), j = 1, 2, . . . , n, (29)

where s ∈ (–ε, ε) is a parameter, and hj are of class C2 such that hj(t, x, 0) = xj for all j ∈
1, 2, . . . , n and for all (t, x) ∈ [a, b] × R2. From Taylor’s formula, we get

hj(t, x, s) = hj(t, x, 0) + sξj(t, x) + o(s) = xj + sξj(t, x) + o(s), (30)

where ξj(t, x) = ∂hj(t,x,s)
∂s |s=0. Then we can see xj ≈ xj + sξj(t, x) by the linear approximation

to transformation.
By ψ = ψ(t), the total variation of the functional z = z(x, t), which is produced by the

family of transformations (29), is given by

ψ(t) =
d
ds

z(x + ξ s, t)
∣∣∣∣
s=0

. (31)

Remark 2 The functional z, defined by the differential equation (9), is invariant if ψ(t) ≡ 0.
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Remark 3 When s = 0, z(x, t) = z(x, t) holds.

Remark 4 Define the symbol D as

Dα[f , g] = f ABC
a Dα

t · g – g · ABR
t Dα

b f .

Theorem 4 Let the functional z, which is defined by differential equation (9), be invariant,
then we have

n∑
j=1

Dαj

[
λ(t)

∂L[x, z](t)
∂ABC

a Dαj
t xj

, ξj(t, x)
]

= 0, (32)

where λ(t) = exp(–
∫ t

a
∂L[x,z](τ )
∂z(x,τ ) dτ ) holds along the solutions of the generalized fractional

Euler–Lagrange equations (3).

Proof According to equations (9) and (30), we have

dz
dt

= L
(
t, x(t), ABC

a Dα
t x(t), z(t)

)
, t ∈ [a, b]. (33)

Let s = 0, we get

θ ′(t) =
d
dt

d
ds

z[x + sξ , t]
∣∣∣∣
s=0

,

then we obtain a differential equation for θ (t)

θ ′(t) –
∂L[x, z](t)

∂z
θ (t) =

n∑
j=1

(
∂L[x, z](t)

∂xj
ξj(t) +

∂L[x, z](t)
∂ABC

a Dαj
t xj

ABC
a Dαj

t ξj(t)
)

,

whose solution is

θ (t)λ(t) – θ (a) =
∫ t

a

n∑
j=1

(
∂L[x, z](τ )

∂xj
ξj(τ ) +

∂L[x, z](τ )
∂ABC

a Dαj
τ xj

ABC
a Dαj

τ ξj(τ )
)

λ(τ ) dτ .

Since λ(t) = exp(–
∫ t

a
∂L[x,z](τ )

∂z dτ ), θ (a) = 0, and for all τ , we have θ (τ ) = 0. Therefore, we
get

∫ t

a

n∑
j=1

(
∂L[x, z](τ )

∂xj
ξj(τ ) +

∂L[x, z](τ )
∂ABC

a Dαj
τ xj

ABC
a Dαj

τ ξj(τ )
)

λ(τ ) dτ = 0.

Let x = (x1, x2, . . . , xn) be such that z defined by equation (9) reaches the extremum. Ac-
cording to equation (11), we attain

λ(t)
∂L[x, z](t)

∂xj
+ ABR

t Dαj
b

(
λ(t)

∂L[x, z](t)
∂ABC

a Dαj
t xj

)
= 0. (34)
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Then we get

n∑
j=1

[
λ(t)

∂L[x, z](t)
∂ABC

a Dαj
t xj

ABC
a Dαj

t ξj(t, x) – ABR
t Dαj

b

(
λ(t)

∂L[x, z](t)
∂ABC

a Dαj
t xj

)
ξj(t, x)

]
= 0.

Then we obtain equation (32) with the definition of Dα[f , g]. �

6 Conclusions
In this paper, fractional calculus of variational Herglotz problem has been discussed with
an Atangana–Baleanu fractional derivative. The Euler–Lagrange equations have been re-
ceived for the Herglotz-type problems, and the necessary optimality conditions, which
rely on the reason that the Atangana–Baleanu fractional derivative is non-singular and
non-local, have been derived. Fractional variational Herglotz problems of variable order
have been considered, and a Noether-type theorem has been proved. However, this paper
has only studied a few aspects of fractional calculus. In the future research, we can study
what kind of fractional derivatives can be employed in the actual variational problems. As
it is difficult to solve the Euler–Lagrange equations, the effective numerical approximate
methods should be studied in the future.
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