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Abstract
Inequalities provide a way to study topological indices relatively. There are two major
classes of topological indices: degree-based and distance-based indices. In this paper
we provide a relative study of these classes and derive inequalities between
degree-based indices such as Randić connectivity, GA, ABC, and harmonic indices and
distance-based indices such as eccentric connectivity, connective eccentric,
augmented eccentric connectivity, Wiener, and third ABC indices.
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1 Introduction
Let G = (VG, EG) be a simple connected graph with a vertex set VG and an edge set EG.
The numbers of vertices and edges of G are respectively called the order n and the size
m of G. The number of edges incident to a vertex p ∈ VG is called the degree of p and is
denoted by dp. Mp represents the product of degrees of all vertices of G which are adjacent
to the vertex p, i.e., Mp =

∏
pq∈EG

dq. The minimum and maximum degrees of graph G are
respectively denoted by δ and �. If all the vertices of G are of the same degree d, then
G is termed a regular graph of degree d. The distance from a vertex p ∈ VG to a vertex
q ∈ VG is denoted by d(p, q) and is defined as the minimum number of edges lying between
them. The eccentricity of a given vertex p ∈ VG is denoted by εp and is defined as the
maximum distance between p and any other vertex q ∈ VG. The maximum and minimum
eccentricities of G are called the diameter dG and the radius rG of G. If all vertices of G are
of the same eccentricity, then G is termed a self-centered graph and otherwise a non-self-
centered graph.

A topological index is a numerical quantity which is uniquely determined for a graph and
invariant under graph isomorphism. Topological indices are extensively used in chemistry
as molecular descriptors. This molecular descriptor provides a convenient and efficient
way of translating the chemical constitution of a molecule into a numerical value by using
the graph representation of the molecule called the molecular graph. This graph invariant
can be used for correlation with the physical properties of that molecule. Several topolog-
ical indices are extensively used to study the quantitative structure–activity (QSAR) and
structure–property (QSPR) relationships [1–3].
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Generally, topological indices can be categorized in two major classes: one is degree-
based indices and the other is distance-based indices. The general expression for the class
of degree-based indices can be defined as

DTI(G) =
∑

pq∈EG

F(dp, dq). (1)

Milan Randić [4] presented the first degree-based topological index, called the Randić
connectivity index (χ ), which is defined from (1) by taking F(dp, dq) = 1/

√
dp · dq. Estrada

et al. [5] presented the atom-bond connectivity index (ABC) which is formulated by set-
ting F(dp, dq) =

√
(dp + dq – 2)/dp · dq in (1). Vukicevic et al. [6] presented another degree-

based topological index, called the geometric-arithmetic (GA) index, which is defined
from (1) by choosing the function F(dp, dq) = 2

√
dp · dq/(dp + dq). The harmonic index

(H) is presented in [7] and is defined from (1) by taking F(dp, dq) = 2/(dp + dq).
The first distance-based index was introduced by the chemist Harold Wiener [8] and is

called the Wiener index, defined as

W (G) =
∑

{p,q}⊆VG

d(p, q).

The eccentricity related topological indices belong to the class of distance-based indices.
The general expressions for these indices can be defined in the following ways:

ETI1(G) =
∑

p∈VG

F(dp, εp), (2)

ETI2(G) =
∑

p∈VG

F(Mp, εp), (3)

ETI3(G) =
∑

pq∈EG

F(εp, εq). (4)

The first eccentricity related topological index presented by Sharma et al. [9] is called the
eccentric connectivity index (ξ c) and is defined from (2) by taking F(dp, εp) = dp ·εp. Gupta
et al. [10] presented an eccentricity related index called the connective eccentric index
(Cξ ), which is also formulated from (2) by setting F(dp, εp) = dp/εp. Another eccentricity
related index, called the augmented eccentric connectivity index (ξac), was presented by
Dureja et al. [11] and is defined by choosing F(Mp, εp) = Mp/εp in (3). Dae-Won Lee [12]
presented the third atom-bond connectivity index (ABC3) which is defined from (4) by
taking the function F(εp, εq) =

√
(εp + εq – 2)/εp · εq.

Inequalities provide a way to study topological indices relatively. This relative study is
being conducted in three directions. One direction is to study inequalities for a topological
index; this includes upper/lower bounds of topological index and inequalities for topolog-
ical index between a graph and its associated transformed graph. Ji et al. [13] characterized
the upper and lower bounds for the reformulated Zagreb index for trees, unicyclic and
bicyclic graphs. Gao et al. [14] derived the sharp upper and lower bounds for the hyper-
Zagreb index for trees, unicyclic and bicyclic graphs. In [13, 14], they used the inequality
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relations between a graph and its associated transformed graphs for the said indices. Wang
et al. [15] presented the inequalities for general sum-connectivity indices between a graph
and its several graph transformations.

The second direction is to study inequality relations between two different topologi-
cal indices which belong to the same class. Lokesha et al. [16] derived some inequality
relations between Randić and GA indices. Ali et al. [17] studied the inequality relations
between various degree-based indices. From the class of distance-based indices, Dankel-
mann et al. [18] presented the inequality relation between Wiener and eccentric connec-
tivity indices. Das et al. [19] derived the inequality relation between eccentric connectivity
and Szeged indices.

The third and most significant direction is to study inequalities between topological
indices which belong to two different classes. Hua et al. [20] derived the inequality re-
lations of eccentric connectivity with the Zagreb indices. Zhou et al. [21] presented the
inequalities between Wiener, hyper-Wiener, and Zagreb indices. Das et al. [22] derived
the inequality relations between certain degree and distance-based topological indices.

In this paper we emphasize the relative study of topological indices belonging to two dif-
ferent classes. In this paper, we establish inequality relations of some degree-based indices
such as Randić, GA, ABC, and harmonic indices with various distance-based indices such
as eccentric connectivity, connective eccentric, augmented eccentric connectivity, Wiener,
and third ABC indices.

2 Preliminaries
In this section, we recall some preliminary results for the topological indices of a con-
nected graph related to some graph parameters, i.e., the order, the size, the radius, and the
diameter.

The relation between the diameter and the radius of a connected graph is presented in
the following theorem.

Theorem 1 ([23]) Consider a connected graph having radius rG and diameter dG, then

rG ≤ dG ≤ 2rG (5)

and the left equality holds iff G is a self-centered graph.

The lower and upper bounds of the eccentric connectivity index related to the radius
and the diameter, respectively, are given in the following theorem.

Theorem 2 ([24]) Consider a connected graph G having size m, radius rG, and diameter
dG, then

2mrG ≤ ξ c(G) ≤ 2mdG, (6)

and the equality holds iff G is a self-centered graph.

The lower and upper bounds of the connective eccentric index related to the diameter
and the radius, respectively, are given in the following result.
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Theorem 3 ([25]) Consider a connected graph G having size m, radius rG, and diameter
dG, then

2m
dG

≤ Cξ (G) ≤ 2m
rG

, (7)

and the equality holds iff G is a self-centered graph.

The lower and upper bounds of the augmented eccentric connectivity index related to
the diameter and the radius, respectively, are presented in the following result.

Theorem 4 ([26]) Consider a connected graph G having order n, radius rG, diameter dG,
minimum degree δ, and maximum degree �, then

δδ

dG
≤ 1

n
· ξac(G) ≤ ��

rG
, (8)

and the equality holds iff G is a regular self-centered graph.

Theorem 5 ([12]) Consider a connected graph G having size m, radius rG ≥ 2, and diam-
eter dG, then

√
2m

dG

√
dG – 1 ≤ ABC3(G) ≤

√
2m
rG

√
rG – 1, (9)

and the equality holds iff G is a self-centered graph.

The inequality between the eccentric connectivity index and the Wiener index is pre-
sented in the following result.

Theorem 6 ([18]) Consider a connected graph G having order n ≥ 3, then

W (G) ≤ 2
3

nξ c(G) – n + 1. (10)

The relation between the Randić connectivity index and the diameter is given in the
following result.

Theorem 7 ([27]) Consider a connected graph G having order n ≥ 3, then

R(G) –
1
2

dG ≥ √
2 – 1, (11)

and the equality holds iff G ∼= Pn.

The relation between the ABC index and the radius is given in the following result.

Theorem 8 ([28]) Consider a connected graph G having order n ≥ 2, then

ABC(G) – rG ≥ n – 1√
2

–
⌊

n
2

⌋

, (12)

and the equality holds iff G ∼= Pn for n ≥ 3.
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The relation between the harmonic index and the diameter is given in the coming result.

Theorem 9 ([29]) Consider a connected graph G having order n ≥ 4 and diameter dG,
then

H(G) – dG ≤ n
2

– 1, (13)

and the equality holds iff G � Kn.

The relations of GA index with Randić connectivity and harmonic indices are given in
the following results.

Theorem 10 ([17]) Consider a connected graph G having order n ≥ 3, then

√
4
3

R(G) ≤ GA(G) ≤ (n – 1)R(G), (14)

the left and right equalities hold iff G ∼= P3 and G ∼= Kn, respectively.

Theorem 11 ([17]) Consider a connected graph G having order n ≥ 2, then

H(G) ≤ GA(G) ≤ (n – 1)H(G), (15)

the left and right equalities hold iff G ∼= Pn and G ∼= Kn, respectively.

3 Main results
In this section, we establish the inequality relations between the class of some degree-
based indices with the class of certain distance-based indices.

3.1 Randić and GA indices in relation with distance-based indices
In the following theorem, we derive inequalities between the Randić connectivity index
and certain distance-based indices such as eccentric connectivity, connective eccentric,
augmented eccentric connectivity, and Wiener indices.

Theorem 12 Consider a connected graph G having order n ≥ 3 and size m, then

(a) R(G) >
ξ c(G)
4m

+
√

2 – 1,

(b) R(G) >
m

Cξ (G)
+

√
2 – 1,

(c) R(G) >
n · δδ

2ξac(G)
+

√
2 – 1,

(d) 8mnR(G) > 3W (G) + 8mn(
√

2 – 1) + 3(n – 1),

where δ denotes the minimum degree of G.
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Proof By considering the functions F(dp, εp) = dp · εp, F(dp, εp) = dp/εp and F(Mp, εp) =
Mp/εp in the general expressions for eccentricity related topological indices of any con-
nected graph G as given in (2) and (3), we have eccentric connectivity, connective eccen-
tric, and augmented eccentric connectivity indices of G, respectively, as follows:

ξ c(G) =
∑

p∈VG

dp · εp,

Cξ (G) =
∑

p∈VG

dp/εp,

ξac(G) =
∑

p∈VG

Mp/εp.

From (6)–(8), we have the relations of these indices with the diameter of G as follows:

ξ c(G)
2m

≤ dG, (16)

2m
Cξ (G)

≤ dG, (17)

and the equality holds in each of inequalities (16)–(17) iff G is a self-centered graph. Also,

n · δδ

ξac(G)
≤ dG, (18)

and the equality holds iff G is a regular self-centered graph.
Now, by considering the function F(dp, dq) = 1/

√
dp · dq in the general expression of

degree-based indices as given in (1), we have the Randić connectivity index of G as fol-
lows:

R(G) =
∑

pq∈EG

1
√

dp · dq
.

From (11), we have the relation of this index with the diameter of G as follows:

dG ≤ 2R(G) + 2 – 2
√

2, (19)

and the equality holds iff G ∼= Pn for n ≥ 3.
By combining inequality (19) with inequalities (16)–(18), we have

ξ c(G)
2m

< 2R(G) + 2 – 2
√

2,

2m
Cξ (G)

< 2R(G) + 2 – 2
√

2,

n · δδ

ξac(G)
< 2R(G) + 2 – 2

√
2.

The equality does not hold in each of these inequalities because if G ∼= Pn for n ≥ 3, then
G cannot be a self-centered graph. After simplification, we get the required results (a), (b),
and (c).
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Also, from (10) we have the relation between Wiener and eccentric connectivity indices
as follows:

ξ c(G) ≥ 3
2n

(
W (G) + n – 1

)
; (20)

and from result (a), we obtain

4mR(G) + 4m – 4
√

2m > ξ c(G).

By combining this inequality with inequality (20), we get the required result (d). �

In the following corollary, we establish inequalities between the GA index and certain
distance-based indices such as eccentric connectivity, connective eccentric, augmented
eccentric connectivity, and Wiener indices.

Corollary 1 Consider a connected graph G having order n ≥ 3 and size m, then

(a) GA(G) >
1√
12

ξ c(G)
m

+ 2
√

2
3

–
2√
3

,

(b) GA(G) >
2√
3

m
Cξ (G)

+ 2
√

2
3

–
2√
3

,

(c) GA(G) >
1√
3

n · δδ

ξac(G)
+ 2

√
2
3

–
2√
3

,

(d) 4mnGA(G) >
√

3W (G) +
8√
3

mn(
√

2 – 1) +
√

3(n – 1),

where δ denotes the minimum degree of G.

Proof By considering the function F(dp, dq) = 2
√

dp · dq/(dp + dq) in the general expression
of degree-based indices given in (1), we have the GA index of G as follows:

GA(G) =
∑

pq∈EG

2
√

dp · dq

dp + dq
.

From the compound inequality (14), we have the relation of this index with the Randić
connectivity index as follows:

√
3
4

GA(G) ≥ R(G).

With this inequality, Theorem 12 implies the required results. �

In the coming theorem, we derive an inequality between the Randić connectivity and
the third ABC indices.
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Theorem 13 Consider a connected graph G having order n ≥ 3, size m and diameter dG ≥
2, then

ABC3(G) >
m
dG

√
d2

G

R(G) + 1 –
√

2
– 2

Proof By considering the function F(εp, εq) =
√

(εp + εq – 2)/εp · εq in (4), we have the third
ABC index as

ABC3(G) =
∑

pq∈EG

√
εp + εq – 2

εp · εq
.

From the lower bound of (9), we have the relation of this index with the diameter of G as
follows:

2m2

d2
G

(dG – 1) ≤ (
ABC3(G)

)2,

where dG ≥ rG ≥ 2, and the equality holds iff G is a self-centered graph. It can be written
as

1
dG

–
1

d2
G

≤ (ABC3(G))2

2m2 . (21)

Now, from inequality (11) we have

1
2R(G) + 2 – 2

√
2

≤ 1
dG

,

and the equality holds iff G ∼= Pn for n ≥ 3. From this inequality, we also have

1
2R(G) + 2 – 2

√
2

–
1

d2
G

≤ 1
dG

–
1

d2
G

.

By combining it with inequality (21), we obtain

1
2R(G) + 2 – 2

√
2

–
1

d2
G

<
(ABC3(G))2

2m2 ,

where dG ≥ 2 and the equality does not hold because if G ∼= Pn for n ≥ 3, then G cannot
be a self-centered graph. After simplification, we get the required result. �

3.2 ABC index in relation with distance-based indices
In the following theorem, we derive inequalities between the ABC index and certain
distance-based indices such as eccentric connectivity, connective eccentric, augmented
eccentric connectivity, and Wiener indices.

Theorem 14 Consider a connected graph G having order n ≥ 2 and size m, then

(a) ABC(G) >
ξ c(G)
2m

+
1√
2

(n – 1) –
⌊

n
2

⌋

,
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(b) ABC(G) >
2m

Cξ (G)
+

1√
2

(n – 1) –
⌊

n
2

⌋

,

(c) ABC(G) >
n · δδ

ξac(G)
+

1√
2

(n – 1) –
⌊

n
2

⌋

,

(d) 4mnABC(G) > 3W (G) + 2
√

2mn(n – 1) – 4mn
⌊

n
2

⌋

+ 3(n – 1),

where δ represents the minimum degree of G.

Proof By considering the function F(dp, dq) =
√

(dp + dq – 2)/dp · dq in the general expres-
sion (1) for degree-based indices of G, we have the ABC index of G as follows:

ABC(G) =
∑

pq∈EG

√
dp + dq – 2

dp · dq
.

From (5) we have dG ≤ 2rG. Then, from (12), we obtain the relation of this index with the
diameter of G as follows:

dG ≤ 2ABC(G) + 2
⌊

n
2

⌋

–
√

2(n – 1), (22)

and the equality holds iff G ∼= Pn for n ≥ 3.
By combining inequality (22) with inequalities (16)–(18), we have

ξ c(G)
2m

< 2ABC(G) + 2
⌊

n
2

⌋

–
√

2(n – 1),

2m
Cξ (G)

< 2ABC(G) + 2
⌊

n
2

⌋

–
√

2(n – 1),

nδδ

ξac(G)
< 2ABC(G) + 2

⌊
n
2

⌋

–
√

2(n – 1),

and the equality does not hold in each of these inequalities because if G ∼= Pn for n ≥ 3,
then G cannot be a self-centered graph. After simplification, we get the required results
(a), (b), and (c).

Also, from result (a) we have

2mABC(G) + 2m
⌊

n
2

⌋

–
√

2m(n – 1) > ξ c(G).

By combining this inequality with inequality (20), we get the required result (d). �

In the coming theorem, we derive an inequality between the ABC and the third ABC
indices.

Theorem 15 Consider a connected graph G having order n ≥ 2, size m, and diameter
dG ≥ 2, then

ABC3(G) >
m
dG

√
√
√
√ d2

G

ABC(G) + 	 n
2 
 – 1√

2 (n – 1)
– 2.
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Proof From (22), we have

1
2ABC(G) + 2	 n

2 
 –
√

2(n – 1)
≤ 1

dG
,

and the equality holds iff G ∼= Pn for n ≥ 3.
From this inequality, we also have

1
2ABC(G) + 2	 n

2 
 –
√

2(n – 1)
–

1
d2

G
≤ 1

dG
–

1
d2

G
.

By combining it with inequality (21), we obtain

1
2ABC(G) + 2	 n

2 
 –
√

2(n – 1)
–

1
d2

G
<

(ABC3(G))2

2m2 ,

where dG ≥ 2 and the equality does not hold because if G ∼= Pn for n ≥ 3, then G cannot
be a self-centered graph. After simplification, we get the required result. �

3.3 Harmonic index in relation with distance-based indices
In the following theorem, we derive the inequalities between the harmonic index and
certain distance-based indices such as eccentric connectivity, connective eccentric, aug-
mented eccentric connectivity, and Wiener indices for any non-self-centered graph.

Theorem 16 Consider a non-self-centered graph G having order n and size m, then

(a) H(G) <
ξ c(G)

m
+

n
2

– 1,

(b) H(G) <
4m

Cξ (G)
+

n
2

– 1,

(c) H(G) <
2n · ��

ξac(G)
+

n
2

– 1,

(d) mn(n – 1)H(G) >
√

3
4

W (G) +
2√
3

m(
√

2 – 1) +
√

3
4

(n – 1),

where � represents the maximum degree.

Proof For a non-self-centered graph G, from (5) we have rG < dG ≤ 2 · rG. Then from the
compound inequalities (6)–(8), we obtain the relation of the diameter of G with the ec-
centric connectivity, connective eccentric, and augmented eccentric connectivity indices
as follows:

dG ≤ ξ c(G)
m

, (23)

dG ≤ 4m
Cξ (G)

, (24)

dG ≤ 2n · ��

ξac(G)
. (25)
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Now, by considering the function F(dp, dq) = 2/(dp + dq) in the general expression of
degree-based indices as given in (1), we have the harmonic index of G as follows:

H(G) =
∑

pq∈EG

2
dp + dq

.

From (13), we obtain the relation of this index with the diameter of G as follows:

H(G) –
n
2

+ 1 ≤ dG, (26)

and the equality holds iff G ∼= Kn for n ≥ 4.
By combining inequality (26) with inequalities (23)–(25), we obtain

H(G) –
n
2

+ 1 <
ξ c(G)

m
,

H(G) –
n
2

+ 1 <
4m

Cξ (G)
,

H(G) –
n
2

+ 1 <
2n · ��

ξac(G)
.

The equality does not exist in each of these inequalities because the complete graph Kn is
a self-centered graph. After simplification, we get the required results (a), (b), and (c).

Also, from the compound inequality (15), we obtain

(n – 1)H(G) ≥ GA(G), (27)

and from the result (d) of Corollary 1, we have

GA(G) >
√

3
4m

W (G) +
2√
3

(
√

2 – 1) +
√

3
4m

(n – 1).

By combining this inequality with inequality (27), we get the required result (d). �

In the coming theorem, we present the inequality relations of the harmonic index with
eccentric connectivity and connective eccentric indices for self-centered graphs.

Theorem 17 Consider a self-centered graph G having order n ≥ 4 and size m, then

(a) H(G) ≤ ξ c(G)
2m

+
n
2

– 1,

(b) H(G) ≤ 2m
Cξ (G)

+
n
2

– 1,

and the equality holds iff G ∼= Kn.

Proof For a self-centered graph G, from (5) we have dG = rG. Then, from the compound
inequalities (6)–(7), we obtain the equality relation of the diameter of G with the eccen-
tric connectivity, connective eccentric, and augmented eccentric connectivity indices as
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follows:

dG =
ξ c(G)
2m

,

dG =
2m

Cξ (G)
.

By using these relations in inequality (26), we get the required results. �

In the following theorem, we establish an inequality between harmonic and augmented
eccentric connectivity indices for regular self-centered graphs.

Theorem 18 Consider a regular self-centered graph G of degree d having order n ≥ 4 and
size m, then

H(G) ≤ ndd

ξac(G)
+

n
2

– 1,

and the equality holds iff G ∼= Kn.

Proof For a self-centered graph G, from (5) we have dG = rG. Then, from the compound
inequality (8), we obtain the equality relation of the diameter of G with the augmented
eccentric connectivity indices as follows:

dG =
ndd

ξac(G)
.

By using this relation in inequality (26), we get the required result. �

In the coming theorem, we derive an inequality relation between harmonic and third
ABC indices for non-self-centered graphs.

Theorem 19 Consider a non-self-centered graph G having order n ≥ 4, size m, and radius
rG ≥ 2, then

ABC3(G) <
m
rG

√
8r2

G
2H(G) – n + 2

– 2.

Proof For a non-self-centered graph G, from (5) we have rG < dG ≤ 2rG. By using this
relation, we obtain the inequality

1
rG

–
1
r2

G
≤ 2

dG
–

1
r2

G
. (28)

Now, from the compound inequality (9), we have

(
ABC3(G)

)2 ≤ 2m2

r2
G

(rG – 1).
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It can be written as

1
2m2

(
ABC3(G)

)2 ≤ 1
rG

–
1
r2

G
, (29)

where rG ≥ 2, and the equality holds iff G is a self-centered graph.
By combining inequality (28) with inequality (29), we have

1
4m2

(
ABC3(G)

)2 +
1

2r2
G

<
1

dG
, (30)

and the equality does not hold because G is a non-self-centered graph.
Also, from (13) we have

1
dG

≤ 1
H(G) – n

2 + 1
, (31)

and the equality holds if and only if G ∼= Kn for n ≥ 4.
By combining inequality (31) with inequality (30), we obtain

1
4m2

(
ABC3(G)

)2 +
1

2r2
G

<
1

H(G) – n
2 + 1

.

After simplification, we get the required result. �

In the following theorem, we derive an inequality between harmonic and third ABC
indices for self-centered graphs.

Theorem 20 Consider a self-centered graph G having order n ≥ 4, size m, and diameter
dG ≥ 2, then

ABC3(G) <
m
dG

√
4d2

G
2H(G) – n + 2

– 1.

Proof For a self-centered graph G, we have dG = rG. Then, from the compound inequality
(9), we have

1
2m2

(
ABC3(G)

)2 =
1

dG
–

1
d2

G
, (32)

where dG ≥ 2.
Also, from inequality (31) we have

1
dG

–
1

d2
G

≤ 1
H(G) – n

2 + 1
–

1
d2

G
,

and the equality holds iff G ∼= Kn for n ≥ 4.
By using (32), we obtain

1
2m2

(
ABC3(G)

)2 <
1

H(G) – n
2 + 1

–
1

d2
G

,
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where dG ≥ 2, and the equality does not hold because if G ∼= Kn for n ≥ 4, then dG = 1.
After simplification, we get the desired result. �

4 Conclusion
In this paper, some inequality relations have been studied between two topological indices
belonging to degree-based and distance-based indices. We derived the relations of Randić
connectivity, GA, ABC, and harmonic indices with eccentric connectivity, connective ec-
centric, augmented eccentric connectivity, Wiener, and third ABC indices. Our derived
inequality relations can be very helpful in the relative study of these indices.
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