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Abstract
The atom-bond connectivity (ABC) index and geometric–arithmetic (GA) index are
two well-studied topological indices, which are useful tools in QSPR and QSAR
investigations. In this paper, we first obtain explicit formulae for the expected values
of ABC and GA indices in random spiro chains, which are graphs of a class of
unbranched polycyclic aromatic hydrocarbons. Based on these formulae, we then
present the average values of ABC and GA indices with respect to the set of all spiro
chains with n hexagons and make a comparison between the expected values of ABC
and GA indices in random spiro chains.
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1 Introduction
A connected graph with maximum vertex degree at most 4 is said to be a molecular graph.
Its graphical representation may resemble a structural formula of some (usually organic)
molecule. That was a primary reason for employing graph theory in chemistry. Nowa-
days this area of mathematical chemistry is called chemical graph theory [1]. Molecular
descriptors play a significant role and have found wide applications in chemical graph the-
ory especially in investigations of the quantitative structure-property relations (QSPR) and
quantitative structure-activity relations (QSAR). Among them, topological indices have a
prominent place [2]. There exists a legion of topological indices that have some applica-
tions in chemistry [2, 3]. One of the best known and widely used topological indices is the
connectivity index (Randić index) introduced in 1975 by Randić [4], who has shown that
this index can reflect molecular branching. Some results on molecular branching can be
found in [5–9] and the references therein. However, many physico-chemical properties
depend on factors rather different from branching.

All graphs considered in this paper are simple, undirected, and connected. The notation
not defined in this paper can be found in the book [10]. Let G be a graph with vertex set
V (G) = {v1, v2, . . . , vn} and edge set E(G). Denote by di the degree of the vertex vi in G. If an
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edge connects a vertex of degree i and a vertex of degree j in G, then we call it an (i, j)-edge.
Let mij(G) denote the number of (i, j)-edges in G.

In 1998, Estrada et al. [11] proposed a topological index of a graph G, known as the
atom-bond connectivity index, which is abbreviated as ABC(G) and defined as

ABC(G) =
∑

vivj∈E(G)

√
di + dj – 2

didj
, (1)

where the summation goes over all edges of G. The ABC index has been proven to be a
valuable predictive index in the study of the heat of formation in alkanes and has been
applied up to now to study the stability of alkanes and the strain energy of cycloalkanes
[11, 12]. For some recent contributions on the ABC index, we refer to [13–17].

As an analogue to the ABC index, a new topological index of a graph G, named the
geometric–arithmetic index and abbreviated GA(G), was considered by Vukićević and Fur-
tula [18] in 2009. The GA index is defined as follows:

GA(G) =
∑

vivj∈E(G)

2
√

didj

di + dj
, (2)

where the summation goes over all edges of G. It is noted in [18] that the GA index is well
correlated with a variety of physico-chemical properties and the predictive power of GA
index is somewhat better than the Randić index. Up to now, many mathematical properties
of GA index were investigated in [15, 19–23] and the references therein.

Polyphenyls and their derivatives, which can be used in organic synthesis, drug synthe-
sis, heat exchanger, and so on, attracted the attention of chemists for many years [24–26].
A polyphenyl chain of length n is obtained from a sequence of hexagons h1, h2, . . . , hn by
adding a cut edge to each pair of consecutive hexagons, which is denoted by PPCn. The
hexagon hi is called the ith hexagon of PPCn for 1 ≤ i ≤ n. Figure 1(a) shows a general
polyphenyl chain, where vn–1 is a vertex of hn–1 in PPCn–1. Note that, there are three ways
to add a cut edge between two consecutive hexagons. So PPCn is not unique when n ≥ 3.
Let hn–1 = x1x2x3x4x5x6 in PPCn–1 for n ≥ 3. There is a cut edge connecting x1 and vn–2,
which is a vertex in hn–2. By symmetry there are three ways to add a cut edge between the
(n – 1)th hexagon hn–1 of PPCn–1 to the extra hexagon hn. Precisely, let PPC1

n, PPC2
n, and

PPC3
n be the graphs obtained by adding a cut edge connecting a vertex of the extra hexagon

hn with vertex xi+1 of hn–1 (see Figure 2), where i = 1, 2, 3. Many results on matching and
independent set, Wiener index, Merrified–Simmons index, Kirchhoff index, and Hosoya
index of polyphenyl chains were reported in [27–32] and the references therein.

Figure 1 A polyphenyl chain PPCn and the corresponding spiro chain SPCn with n hexagons
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Figure 2 Three types of local arrangements in a polyphenyl chain

Figure 3 Spiro chains for n = 1, 2, 3

Figure 4 Three types of local arrangements in the spiro chain corresponding to a polyphenyl chain

A spiro chain of length n, denoted SPCn, can be obtained from a polyphenyl chain PPCn

by contracting each cut edge between each pair of consecutive hexagons in PPCn. Figure 3
shows the unique spiro chains for n = 1, 2 and all spiro chains for n = 3, and Figure 1(b)
shows a general case, where vn–1 is a vertex of hn–1 in SPCn–1. Similarly to the construction
of a polyphenyl chain PPCn, it is clear that SPCn is also not unique when n ≥ 3 and has
three types of local arrangements, which are denoted by SPC1

n, SPC2
n, and SPC3

n (Figure 4).
We may assume that getting an SPCn from a fixed SPCn–1 is a random process. Namely,
the probabilities of getting SPC1

n, SPC2
n, and SPC3

n from a fixed SPCn–1 are p1, p2, and
1 – p1 – p2, respectively. We also assume that the probabilities p1 and p2 are constants and
independent of n, that is, the process described is a zeroth-order Markov process. After
associating probabilities, such a spiro chain is called a random spiro chain and denoted by
SPC(n; p1, p2). For some contributions on spiro chains, the readers are referred to [27, 28,
33–35]. In 2015, Huang et al. [30] considered the expected value of the Kirchhoff index
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in a random spiro chain. For more results concerning other random chains, we refer to
[36–42] and the references therein.

The rest of this paper is organized as follows. In Section 2, we present explicit formulae
for the expected values of the ABC and GA indices of random spiro chains. Based on these
formulae, we then give the average values of the ABC and GA indices with respect to the
set of all spiro chains with n hexagons in Section 3 and make a comparison between the
expected values of the ABC and GA indices in random spiro chains in Section 4.

2 The ABC and GA indices in random spiro chains
In this section, we consider the ABC and GA indices in a random spiro chain. We keep
the notation defined in Section 1. Let SPCn be the spiro chain obtained by attaching a
new hexagon hn to SPCn–1 as described in Figure 1(b). Assume that hn = x1x2x3x4x5x6 as
shown in Figure 2. Clearly, there are only (2, 2)-, (2, 4)-, and (4, 4)-edges in a spiro chain
SPCn. By the definitions of the ABC and GA indices we can directly check that

ABC(SPCn) =
√

2
2

m22(SPCn) +
√

2
2

m24(SPCn) +
√

6
4

m44(SPCn) (3)

and

GA(SPCn) = m22(SPCn) +
2
√

2
3

m24(SPCn) + m44(SPCn). (4)

Thus, to compute the ABC and GA indices of SPCn, we just need to determine m22(SPCn),
m24(SPCn), and m44(SPCn).

Recall that SPC(n; p1, p2) is a random spiro chain of length n. Clearly, both ABC(SPC(n;
p1, p2)) and GA(SPC(n; p1, p2)) are random variables. For convenience, denote their ex-
pected values by Ea

n = E[ABC(SPC(n; p1, p2))] and Eg
n = E[GA(SPC(n; p1, p2))], respectively.

We first give a formula for the expected value of the ABC index of a random spiro chain.

Theorem 2.1 Let SPC(n; p1, p2) be a random spiro chain of length n ≥ 1. Then

E
[
ABC

(
SPC(n; p1, p2)

)]
=

[(√
6

4
–

√
2

2

)
p1 + 3

√
2
]

n +
(√

2
2

–
√

6
4

)
p1.

Proof When n = 1, there is only one hexagon. So Ea
1 = 6 ×

√
2

2 = 3
√

2.
When n ≥ 2, it is obvious that m22(SPCn), m24(SPCn), and m44(SPCn) depend on the

three possible constructions as shown in Figure 3.
(i) If SPCn–1 → SPC1

n with probability p1, then we have

m22
(
SPC1

n
)

= m22(SPCn–1) + 3, m24
(
SPC1

n
)

= m24(SPCn–1) + 2

and

m44
(
SPC1

n
)

= m44(SPCn–1) + 1.

Therefore by (3) we have

ABC
(
SPC1

n
)

= ABC(SPCn–1) +
5
√

2
2

+
√

6
4

.
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(ii) If SPCn–1 → SPC2
n with probability p2, then we have

m22
(
SPC2

n
)

= m22(SPCn–1) + 2, m24
(
SPC2

n
)

= m24(SPCn–1) + 4

and

m44
(
SPC2

n
)

= m44(SPCn–1).

Therefore by (3) we have

ABC
(
SPC2

n
)

= ABC(SPCn–1) + 3
√

2.

(iii) If SPCn–1 → SPC3
n with probability 1 – p1 – p2, then we have

m22
(
SPC3

n
)

= m22(SPCn–1) + 2, m24
(
SPC3

n
)

= m24(SPCn–1) + 4

and

m44
(
SPC3

n
)

= m44(SPCn–1).

Therefore by (3) we have

ABC
(
SPC3

n
)

= ABC(SPCn–1) + 3
√

2.

Thus we obtain

Ea
n = E

[
ABC

(
SPC(n, p1, p2)

)]

= p1ABC
(
SPC1

n
)

+ p2ABC
(
SPC2

n
)

+ (1 – p1 – p2)ABC
(
SPC3

n
)

= ABC(SPCn–1) +
(√

6
4

–
√

2
2

)
p1 + 3

√
2.

Note that E[Ea
n] = Ea

n . Applying the expectation operator to the last equation, we get

Ea
n = Ea

n–1 +
(√

6
4

–
√

2
2

)
p1 + 3

√
2 for n ≥ 2. (5)

Since equation (5) is a first-order nonhomogeneous linear difference equation with con-
stant coefficients. It is clear that the general solution of the homogeneous part of equation
(5) is Ea = c, a constant.

Let Ea∗ = an be a particular solution of equation (5). Substituting Ea∗ into equation (5)
and comparing the constant term, we have

a =
(√

6
4

–
√

2
2

)
p1 + 3

√
2.

Consequently, the general solution of equation (5) is

Ea
n = Ea∗ + Ea = E

[
ABC

(
SPC(n; p1, p2)

)]
=

[(√
6

4
–

√
2

2

)
p1 + 3

√
2
]

n + C for n ≥ 1.
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Substituting the initial condition, we obtain

C =
(√

2
2

–
√

6
4

)
p1.

Therefore we have

Ea
n =

[(√
6

4
–

√
2

2

)
p1 + 3

√
2
]

n +
(√

2
2

–
√

6
4

)
p1.

This completes the proof. �

We now give the formula for the expected value of the GA index of a random spiro chain.

Theorem 2.2 Let SPC(n; p1, p2) be a random spiro chain of length n ≥ 1. Then

E
[
GA

(
SPC(n; p1, p2)

)]
=

[(
2 –

4
√

2
3

)
p1 + 2 +

8
√

2
3

]
n +

(
4
√

2
3

– 2
)

p1 +
(

4 –
8
√

2
3

)
.

Proof When n = 1, there is only one hexagon. So Eg
1 = E[GA(SPC(1; p1, p2))] = 6.

When n ≥ 2, it is obvious that m22(SPCn), m24(SPCn), and m44(SPCn) depend on the
three possible constructions as shown in Figure 3.

(i) If SPCn–1 → SPC1
n with probability p1, then we get

m22
(
SPC1

n
)

= m22(SPCn–1) + 3, m24
(
SPC1

n
)

= m24(SPCn–1) + 2

and

m44
(
SPC1

n
)

= m44(SPCn–1) + 1.

Therefore by (4) we have

GA
(
SPC1

n
)

= GA(SPCn–1) + 4 +
4
√

2
3

.

(ii) If SPCn–1 → SPC2
n with probability p2, then we get

m22
(
SPC2

n
)

= m22(SPCn–1) + 2, m24
(
SPC2

n
)

= m24(SPCn–1) + 4

and

m44
(
SPC2

n
)

= m44(SPCn–1).

Therefore by (4) we have

GA
(
SPC2

n
)

= GA(SPCn–1) + 2 +
8
√

2
3

.
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(iii) If SPCn–1 → SPC3
n with probability 1 – p1 – p2, then we have

m22
(
SPC3

n
)

= m22(SPCn–1) + 2, m24
(
SPC3

n
)

= m24(SPCn–1) + 4

and

m44
(
SPC3

n
)

= m44(SPCn–1).

Therefore by (4) we have

GA
(
SPC3

n
)

= GA(SPCn–1) + 2 +
8
√

2
3

.

Thus we obtain

Eg
n = E

[
GA

(
SPC(n, p1, p2)

)]

= p1GA
(
SPC1

n
)

+ p2GA
(
SPC2

n
)

+ (1 – p1 – p2)GA
(
SPC3

n
)

= GA(SPCn–1) +
(

2 –
4
√

2
3

)
p1 +

(
2 +

8
√

2
3

)
.

Note that E[Eg
n] = Eg

n. Applying the expectation operator to the last equation, we get

Eg
n = Eg

n–1 +
(

2 –
4
√

2
3

)
p1 +

(
2 +

8
√

2
3

)
, for n ≥ 2. (6)

Since equation (6) is a first-order nonhomogeneous linear difference equation with con-
stant coefficients, it is clear that the general solution of the homogeneous part of equation
(6) is Eg = c, a constant.

Let Eg∗ = an be a particular solution of equation (6). Substituting Eg∗ into equation (6)
and comparing the constant term, we have

a =
(

2 –
4
√

2
3

)
p1 +

(
2 +

8
√

2
3

)
.

Consequently, the general solution of equation (6) is

Eg
n = Eg∗ + Eg = E

[
GA

(
SPC(n; p1, p2)

)]

=
[(

2 –
4
√

2
3

)
p1 +

(
2 +

8
√

2
3

)]
n + C for n ≥ 1.

Substituting the initial condition, we obtain

C =
(

4
√

2
3

– 2
)

p1 +
(

4 –
8
√

2
3

)
.

Therefore we have

Eg
n =

[(
2 –

4
√

2
3

)
p1 +

(
2 +

8
√

2
3

)]
n +

(
4
√

2
3

– 2
)

p1 +
(

4 –
8
√

2
3

)
,

and the proof is completed. �
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In Theorems 2.1 and 2.2, we observe that both E[ABC(SPC(n; p1, p2))] and E[GA(SPC(n;
p1, p2))] are asymptotic to n and linear in p1. Therefore, by Theorems 2.1 and 2.2 we can
easily obtain the ABC and GA indices of spiro meta-chain On, spiro orth-chain Mn, and
spiro para-chain Pn (defined in [30]).

Corollary 2.3 The ABC indices of the spiro meta-chain On, the spiro orth-chain Mn, and
the spiro para-chain Pn are

ABC(On) =
(√

6
4

+
5
√

2
2

)
n +

√
2

2
–

√
6

4

and

ABC(Mn) = ABC(Pn) = 3
√

2n.

Corollary 2.4 The GA indices of the spiro meta-chain On, the spiro orth-chain Mn, and
the spiro para-chain Pn are

GA(On) =
(

4 +
4
√

2
3

)
n + 2 –

4
√

2
3

and

GA(Mn) = GA(Pn) =
(

2 +
8
√

2
3

)
n + 4 –

8
√

2
3

.

3 The average values of ABC and GA indices
In this section, we present the average values of the ABC and GA indices with respect to
the set of all spiro chains with n hexagons.

Let SP n be the set of all spiro chains with n hexagons. The average values of the ABC
and GA indices of SP n are defined by

ABCavr(SP n) =
1

|SP n|
∑

G∈SP n

ABC(G)

and

GAavr(SP n) =
1

|SP n|
∑

G∈SP n

GA(G),

respectively. In fact, this is the population mean of the ABC and GA indices of all elements
in SP n. Since every element occurring in SP n has the same probability, we have p1 = p2 =
1 – p1 – p2. Thus we can apply Theorems 2.1 and 2.2 by putting p1 = p2 = 1 – p1 – p2 = 1

3
and obtain the following result.

Theorem 3.1 The average values of the ABC and GA indices with respect to SP n are

ABCavr(SP n) =
(√

6
12

+
17

√
2

6

)
n +

√
2

6
–

√
6

12
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and

GAavr(SP n) =
(

8
3

+
20

√
2

9

)
n +

10
3

–
20

√
2

9
.

From Theorem 3.1, as well as from Corollaries 2.3 and 2.4, it is no difficult to see that
the average values of the ABC and GA indices with respect to {On, Mn, Pn} are

ABC(On) + ABC(Mn) + ABC(Pn)
3

=
(√

6
12

+
17

√
2

6

)
n +

√
2

6
–

√
6

12

and

GA(On) + GA(Mn) + GA(Pn)
3

=
(

8
3

+
20

√
2

9

)
n +

10
3

–
20

√
2

9
,

which indicate that the average values of the ABC and GA indices with respect to SP n are
exactly equal to the average values of the ABC and GA indices with respect to {On, Mn, Pn},
respectively.

4 A comparison between the expected values of ABC and GA indices
Das and Trinajstić [15] compared the first GA index and ABC index for chemical trees,
molecular graphs, and simple graphs with some restricted conditions. Recently, Ke
[40] also compared the expected values of the GA index and ABC index for a random
polyphenyl chain. Using Theorems 2.1 and 2.2, we now make a comparison between the
expected values for the ABC and GA indices of a random spiro chain with the same prob-
ability pi (i = 1, 2).

Theorem 4.1 Let SPC(n; p1, p2) be a random spiro chain with n hexagons. Then

E
[
GA(SPC(n; p1, p2)

]
> E

[
ABC(SPC(n; p1, p2)

]
.

Proof When n = 1, it is clear that

E
[
GA(SPC(1; p1, p2)

]
= 6 > 3

√
2 = E

[
ABC(SPC(1; p1, p2)

]
.

When n ≥ 2, by Theorems 2.1 and 2.2 we have

E
[
GA(SPC(n; p1, p2)

]
– E

[
ABC(SPC(n; p1, p2)

]

=
[(

2 –
√

6
4

–
4
√

2
3

+
√

2
2

)
p1 + 2 +

8
√

2
3

– 3
√

2
]

n

+
(

4
√

2
3

– 2 –
√

2
2

+
√

6
4

)
p1 + 4 –

8
√

2
3

.
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Noting that 2 –
√

6
4 – 4

√
2

3 +
√

2
2 > 0 and 0 ≤ p1 ≤ 1, we get

E
[
GA(SPC(n; p1, p2)

]
– E

[
ABC(SPC(n; p1, p2)

]

≥
(

2 +
8
√

2
3

– 3
√

2
)

n +
(

4
√

2
3

– 2 –
√

2
2

+
√

6
4

)
× 1 + 4 –

8
√

2
3

=
(

2 –
√

2
3

)
n + 2 +

√
6

4
–

11
√

2
6

≥
(

2 –
√

2
3

)
× 2 + 2 +

√
6

4
–

11
√

2
6

> 0,

as desired. This completes the proof. �

Theorem 4.1 states that the expected value of the ABC index is less than the expected
value of the GA index for a random spiro chain, which is similar to the result for a random
polyphenyl chain [40].

5 Conclusions
In this paper, we mainly study the ABC and GA indices in random spiro chains. Firstly, we
study explicit formulae for the expected values of the ABC and GA indices in random spiro
chains, similar to the results obtained in [30, 33]. Secondly, we present the average values of
the ABC and GA indices with respect to the set of all spiro chains with n hexagons. Finally,
we compare the expected values of the ABC and GA indices in random spiro chains and
show that the expected value of the ABC index is less than the expected value of the GA
index.
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