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Abstract
In this paper we investigate the endpoint regularity of the discretem-sublinear
fractional maximal operator associated with �1-balls, both in the centered and
uncentered versions. We show that these operators map �1(Zd)× · · · × �1(Zd) into
BV(Zd) boundedly and continuously. Here BV(Zd) represents the set of functions of
bounded variation defined on Z

d .
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1 Introduction
1.1 Background
The regularity theory of maximal operators has been the subject of many recent articles
in harmonic analysis. The first work was contributed by Kinnunen [1] who investigated
the Sobolev regularity of the centered Hardy–Littlewood maximal functionM and proved
that M is bounded on the first order Sobolev spaces W 1,p(Rd) for all 1 < p ≤ ∞. It was no-
ticed that the W 1,p-bound for the uncentered maximal operator ˜M also holds by a simple
modification of Kinnunen’s arguments or [2, Theorem 1]. Subsequently, the above result
was extended to a local version in [3], to a fractional version in [4], to a multisublinear
version in [5, 6] and to a one-sided version in [7]. Due to the lack of sublinearity of weak
derivatives of the maximal function, the continuity of M : W 1,p → W 1,p for 1 < p < ∞
is a certainly non-trivial problem. This question was resolved by Luiro in [8]. Later on,
Luiro’s result was extended to the local version in [9] and to the multisublinear version
in [5, 10]. Another way to extend the regularity theory of maximal operators is to study
its behavior on different differentiable function spaces, such as fractional Sobolev spaces,
Triebel–Lizorkin spaces, Besov spaces and so on. We refer the readers to consult [9, 11–
13]. We notice that the Lp-bounds for M is the crux of the W 1,p-bounds for M for all
1 < p ≤ ∞. Due to the lack of the L1-bounds for M, the W 1,1-regularity of maximal op-
erators seems to be a deeper issue. A crucial question was posed by Hajłasz and Onninen
in [2]:

Question A ([2]) Is the operator f �→ |∇Mf | bounded from W 1,1(Rd) to L1(Rd)?
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This question was solved completely in dimension d = 1. Tanaka [14] first proved that
˜Mf is weakly differentiable and satisfies

∥

∥( ˜Mf )′
∥

∥

L1(R) ≤ 2
∥

∥f ′∥
∥

L1(R) (1.1)

if f ∈ W 1,1(R). The above result was later refined by Aldaz and Pérez Lázaro [15] who
showed that if f is of bounded variation on R, then ˜Mf is absolutely continuous and

Var( ˜Mf ) ≤ Var(f ), (1.2)

where Var(f ) denotes the total variation of f . The above result directly yields (1.1) with
constant C = 1 (see also [16]). For the centered version, Kurka [17] showed that if f is of
bounded variation on R, then (1.2) holds for M with constant C = 240,004. Kurka also
observed that if f ∈ W 1,1(R), then Mf is weakly differentiable and (1.1) also holds for
M with constant C = 240,004. Recently, inequalities (1.1) and (1.2) were extended to a
fractional setting in [18] and to a multisublinear setting in [19]. In the remarkable work
[20], Carneiro et al. proved that the operator f �→ ( ˜Mf )′ is continuous from W 1,1(R) to
L1(R). It is currently unknown whether the above continuity also holds for the centered
version. For the general case d ≥ 2, Question A remains open, and partial progress was
obtained by Hajłasz and Malý [21], Luiro [22] and Saari [23]. Other works on the endpoint
regularity of maximal operators include [7, 24, 25].

1.2 Discrete setting
We shall generally denote by 
n = (n1, n2, . . . , nd) a vector in Z

d . For a discrete function
f : Zd →R, we define the �p(Zd)-norm for 1 ≤ p < ∞ by ‖f ‖�p(Zd) = (

∑


n∈Zd |f (
n)|p)1/p and
the �∞(Zd)-norm by ‖f ‖�∞(Zd) = sup
n∈Zd |f (
n)|. We also let ‖
n‖p = (

∑d
i=1 |ni|p)1/p for all

1 ≤ p < ∞. Formally, we define the discrete analogue of the Sobolev spaces by

W 1,p(
Z

d) :=
{

f : Zd → R | ‖f ‖1,p = ‖f ‖�p(Zd) + ‖∇f ‖�p(Zd) < ∞}

,

where ∇f is the gradient of a discrete function f defined by ∇f (
n) = (D1f (
n), . . . , Ddf (
n))
and Dlf (
n) is the partial derivative of f denoted by

Dlf (
n) = f (
n + 
el) – f (
n)

and 
el = (0, . . . , 0, 1, 0, . . . , 0) is the canonical lth base vector, l = 1, 2, . . . , d. It is clear that

‖f ‖�p(Zd) ≤ ‖f ‖1,p ≤ (2d + 1)‖f ‖�p(Zd) ∀1 ≤ p ≤ ∞, (1.3)

which yields that the discrete Sobolev space W 1,p(Zd) is just �p(Zd) with an equivalent
norm. We also denote by BV(Zd) the set of all functions of bounded variation defined on
Z

d , where the total variation of f : Zd →R is defined by

Var(f ) =
d

∑

l=1

‖Dlf ‖�1(Zd).
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It follows that

‖∇f ‖�1(Zd) ≤ Var(f ) ≤ d‖∇f ‖�1(Zd). (1.4)

Recently, the study of the regularity properties of discrete maximal operators has also
attracted many scholars. This progress began with Bober et al. [26] who proved that

Var(˜Mf ) ≤ Var(f ) (1.5)

and

Var(Mf ) ≤
(

2 +
146
315

)

‖f ‖�1(Z), (1.6)

where M (resp., ˜M) is the usual discrete centered (resp., uncentered) Hardy–Littlewood
maximal operator. We notice that inequality (1.5) is sharp. Subsequently, Temur [27]
proved (1.5) for M (with constant C = 294,912,004) following Kurka’s breakthrough [17].
Inequality (1.6) is not optimal, and it was asked in [26] whether the sharp constant for
inequality (1.6) is in fact C = 2. This question was resolved in the affirmative by Madrid in
[28]. Recently, Carneiro and Madrid [18] extended inequality (1.5) to the fractional setting
(also see [20, 29–31] for the relevant results).

For general dimension d ≥ 1, Carneiro and Hughes [32] studied the endpoint regularity
of the discrete centered Hardy–Littlewood maximal operator associated with �2-balls

Mf (
n) = sup
r>0

1
N(Br(
n))

∑


k∈Br (
n)∩Zd

∣

∣f (
k)
∣

∣,

where Br(
n) is the open ball in R
d centered at 
n with radius r and N(Br(
n)) is the number

of the lattice points in the set Br(
n). Carneiro and Hughes [32] first proved that M and
its uncentered version map �1(Zd) into BV(Zd) boundedly and continuously. The above
result was later extended to a fractional setting in [18] and to a multisublinear setting in
[33]. In particular, Liu and Wu [33] investigated the regularity of the discrete centered
multisublinear fractional maximal operator associated with �2-balls

Mα(
f )(
n) = sup
r>0

m
∏

j=1

1
N(Br(
n))1– α

md

∑


k∈Br(
n)∩Zd

∣

∣fj(
k)
∣

∣,

where m ≥ 1 and 0 ≤ α < md. Precisely, they proved the following result.

Theorem B ([33]) Let d ≥ 1 and 0 ≤ α < (m–1)d +1. Then Mα maps �1(Zd)×· · ·×�1(Zd)
into BV(Zd) boundedly and continuously.

1.3 Main results
It is well known that the geometry of �1-balls in Z

d is more intricate than that of �2-balls.
Especially, the number of lattice points in the �1-ball is more complex than that of �2-ball.
This makes the investigation of the discrete multisublinear maximal operators associated
with �1-balls very complex and interesting. The primary purpose of this paper is to explore
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the regularity properties of the discrete multisublinear maximal operators associated with
�1-balls. Let m ≥ 1 and 
f = (f1, . . . , fm) with each fj being a discrete function on Z

d . For
0 ≤ α < md, we define the discrete centered m-sublinear fractional maximal operator Mα

associated with �1-balls by

Mα(
f )(
n) = sup
r>0

m
∏

j=1

1
N(�r(
n))1– α

md

∑


k∈�r(
n)

∣

∣fj(
k)
∣

∣,

where �r(
n) is the �1-ball centered at 
n with radius r, i.e. �r(
n) = {
k ∈ Z
d;‖
k – 
n‖1 < r}, and

N(�r(
n)) denotes the number of elements in the set �r(
n). The uncentered version of Mα

is given by

˜Mα(
f )(
n) = sup
r>0,
l∈Zd

n∈�r (
l)

m
∏

j=1

1
N(�r(
l))1– α

md

∑


k∈�r(
l)

∣

∣fj(
k)
∣

∣.

Clearly, when α = 0 and m = d = 1, Mα = M and ˜Mα = ˜M. For the bounds of Mα and ˜Mα ,
we have

∥

∥˜Mα(
f )
∥

∥

�q(Zd) +
∥

∥Mα(
f )
∥

∥

�q(Zd) �α,m,d

m
∏

j=1

‖fj‖�
pj (Zd) (1.7)

if 1 < p1, . . . , pm ≤ ∞, 1 ≤ q ≤ ∞ for α = 0, and 1 < p1, . . . , pm < ∞, 1 ≤ q < ∞ for 0 < α <
md, and 1

q ≤ 1
p1

+ · · · + 1
pm

– α
d . To see (1.7), we notice that

B r√
d

(
n) ∩Z
d ⊂ �r(
n) ⊂ Br(
n) ∩Z

d, (1.8)

N
(

B r√
d

(
n)
) ≤ N

(

�r(
n)
) ≤ N

(

Br(
n)
)

. (1.9)

Here Br(
n) is the open ball in R
d centered at 
n with radius r and N(Br(
n)) is the number

of lattice points in the set Br(
n). On the other hand, it was shown in [34] that

cd

(

r –
√

d
2

)d

≤ N
(

Br(
0)
) ≤ cd

(

r +
√

d
2

)d

∀r >
√

d
2

. (1.10)

Here cd = 2πd/2

�(d/2)d . (1.10) yields that

N(Br(
n))
N(B r√

d
(
n))

≤ C0 ∀r > 0. (1.11)

Here C0 > 1 depends only on the dimension d. It follows from (1.8)–(1.9) and (1.11) that

C
–m+ α

d
0 Mα(
f )(
n) ≤ Mα(
f )(
n) ≤ C

m– α
d

0 Mα(
f )(
n). (1.12)

(1.8), (1.10) and (1.12) imply that

Mα(
f )(
n) ≤ ˜Mα(
f )(
n) �α,m,d Mα(
f )(
n) �α,m,d Mα(
f )(
n) ∀
n ∈ Z
d. (1.13)

(1.13) together with the bounds for Mα leads to (1.7).
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Based on the above, a natural question, which arises from the above results, is the fol-
lowing:

Question C Are both Mα and ˜Mα bounded and continuous from �1(Zd) × · · · × �1(Zd)
to BV(Zd)?

This problem is the main motivation for this work. We will give an affirmative answer
by our next theorem.

Theorem 1.1 Let d ≥ 1 and 0 ≤ α < (m – 1)d + 1. Then Mα maps �1(Zd) × · · · × �1(Zd)
into BV(Zd) boundedly and continuously. Moreover, if 
f = (f1, . . . , fm) with each fj ∈ �1(Zd),
then

Var
(

Mα(
f )
)

�α,m,d

m
∏

i=1

‖fi‖�1(Zd). (1.14)

The same results hold for the operator ˜Mα .

Remark 1.1 (i) By (1.4) and Theorem 1.1, we know that both 
f �→ |∇Mα(
f )| and 
f �→
|∇ ˜Mα(
f )| are bounded and continuous from �1(Zd) × �1(Zd) × · · · × �1(Zd) to �1(Zd) if
d ≥ 1 and 0 ≤ α < (m – 1)d + 1.

(ii) Both Mα and ˜Mα are not bounded from �1(Zd) × �1(Zd) × · · · × �1(Zd) into BV(Zd)
when (m – 1)d + 1 < α < md.

(iii) Both Mα and ˜Mα are not bounded from BV(Zd) × BV(Zd) × · · · × BV(Zd) into
BV(Zd) when (m – 1)(d – 1) < α < md.

To see the above claims (ii) and (iii), let us only consider the centered case. Let l ∈ N\ {0}
with l > 2(�0 + 1) and 
f = (f1, . . . , fm) with each fj(
n) = χ{0≤‖
n‖1≤l}(
n). Here �0 is given as in
(2.3). One can easily check that ‖fj‖�1(Zd) = N1,d(l) �d ld , ‖∇f ‖�1(Zd) �d ld–1 and Mα(
f )(
n) =
(N1,d(l – ‖
n‖1))

α
d when 0 ≤ ‖
n‖1 ≤ l. Then we have

∥

∥D1Mα(
f )
∥

∥

�1(Zd) ≥
∑

�0≤‖(n′ ,nd )‖1≤ l–1
2

nd≥0

((

N1,d
(

l –
∥

∥n′∥
∥

1 – |nd|
))α/d

–
(

N1,d
(

l –
∥

∥n′∥
∥

1 – |nd| – 1
))α/d).

Since l – ‖n′‖1 – |nd| – 1 > �0 when �0 ≤ ‖(n′, nd)‖1 ≤ l–1
2 . Then, by (2.11) with γ = α

d and
(2.3),

∥

∥∇Mα(
f )
∥

∥

�1(Zd) �α,d
∑

�0≤‖(n′ ,nd )‖1≤ l–1
2

nd≥0

(

l –
∥

∥n′∥
∥

1 – |nd| – 1
)α–1

�α,d

(

l – 1
2

)α–1((

l – 1
2

)d

– �d
0

)

.

Consequently,

‖∇Mα(
f )‖�1(Zd)
∏m

j=1 ‖fj‖�1(Zd)
�α,m,d

lα+d–1 – �d
0 lα–1

lmd �α,m,d lα+d–1–md – �d
0 lα–1–md,
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‖∇Mα(
f )‖�1(Zd)
∏m

j=1 ‖∇fj‖�1(Zd)
�α,m,d

lα+d–1 – �d
0 lα–1

lm(d–1) �α,m,d lα–(m–1)(d–1) – �d
0 lα–1–m(d–1).

Letting l → +∞, the claims (ii) and (iii) follow.

Remark 1.2 It should be pointed out that our main results are new even in the special case
m = 1 and α = 0.

The rest of this paper is organized as follows. Section 2 contains some notation and nec-
essary lemmas. The proof of Theorem 1.1 is given in Section 3. It should be pointed out
that the main method employed in this paper is a combination of ideas and arguments
from [18, 33], but our methods and techniques in the proof of Theorem 1.1 are more sim-
ple, direct and different than those in [18, 33]. In particular, the proof of Theorem B is
highly dependent on a summability argument over the sequence of local maximal and lo-
cal minima of discrete multisublinear fractional maximal functions and two summability
estimates (see [33, Lemmas 2.1–2.2]). In [18, 33], the proofs of the corresponding conti-
nuity results are highly dependent on the Brezis–Lieb lemma [35]. Moreover, the discrete
versions of Luiro’s lemma (see [18, Lemmas 4–5]) have also played key roles in the proof
of the corresponding continuity results in [18]. However, these tools and lemmas are un-
necessary in our proof. We would like to remark that the proposed method in this paper
can be extended to study the convergence of the parameter estimation algorithms for lin-
ear and bilinear systems (see [36–38]). Throughout this paper, the letter C will denote a
positive constant that may vary at each occurrence but is independent of the essential vari-
ables. If there exists a constant C > 0 depending only on ϑ such that A ≤ CB, we then write
A �ϑ B or B �ϑ A; and if A �ϑ B �ϑ A, we then write A ∼ϑ B. We also use the conventions
∏

i∈∅ ai = 1 and
∑

i∈∅ ai = 0.

2 Preliminary notations and lemmas
Let N = {0, 1, 2, . . .}. For any r ∈ N, we denote by N1,d(r) the number of elements in the set
{
n = (n1, . . . , nd) ∈ Z

d : ‖
n‖1 ≤ r}. It is obvious that N1,d(0) = 1 and N1,d(r + 1) > N1,d(r) ≥ 1
for all r ∈ N. Fix 
n ∈ Z

d , since ‖
n‖2 ≤ ‖
n‖1 ≤ √
d‖
n‖2, then

N
(

B r–1√
d

(
0)
) ≤ N1,d(r) ≤ N

(

Br+1(
0)
) ∀r ∈N \ {0, 1}. (2.1)

(2.1) and (1.10) give that

cd

(

r – 1√
d

–
√

d
2

)d

+
≤ N1,d(r) ≤ cd

(

r +
√

d
2

+ 1
)d

∀r ∈N \ {0, 1}. (2.2)

Here cd is given as in (1.10) and r+ := max{r, c–1/d
d } for any r > 0. By (2.2), there exists �0 ∈

N \ {0} such that

N1,d(r) ∼d rd ∀r ≥ �0; (2.3)

N1,d(r + 1) – N1,d(r) ∼d rd–1 ∀r ≥ �0. (2.4)

The following lemmas will play key roles in the proof of Theorem 1.1.



Liu Journal of Inequalities and Applications  (2018) 2018:33 Page 7 of 17

Lemma 2.1 Let γ > 0, d ≥ 1 and �0 is given as in (2.3). Define the function 
γ : N → R

by 
γ (r) = (N1,d(r))–γ – (N1,d(r + 1))–γ . Then
(i) 
γ is strictly decreasing on N.

(ii) 
γ (r) ∼γ ,d,�0 
(2r) for any r ∈ N.
(iii) 
γ (r) ∼γ ,d,�0 (N1,d(r + 1))–γ – 1

d for any r ∈N.

Proof When d = 1. It is obvious that 
γ (r) = (2r + 1)–γ – (2r + 3)–γ is strictly decreasing
on r ∈N. To prove (i) for the case d ≥ 2, it suffices to show that


γ (r) > 
γ (r + 1) ∀r ∈ N. (2.5)

(2.5) reduces to the following:

(N1,d(r + 1))γ

(N1,d(r))γ
+

(N1,d(r + 1))γ

(N1,d(r + 2))γ
> 2 ∀r ∈N. (2.6)

It was shown in [28, Lemma 4] that

N1,d(r + 1)
N1,d(r)

>
N1,d(r + 2)
N1,d(r + 1)

∀r ∈ N. (2.7)

Combining (2.7) with the arithmetic mean-geometric mean inequality yields (2.6).
To prove (ii), it suffices to show that

(

N1,d(r)
)–γ –

(

N1,d(r + 1)
)–γ ∼γ ,d,�0 (r + 1)–1–dγ ∀r ∈N. (2.8)

Let us begin with proving the following:

(

N1,d(r + 1)
)γ –

(

N1,d(r)
)γ

∼γ ,d rdγ –1 ∀r ≥ �0. (2.9)

We consider the following two cases.
Case A. γ ∈N \ {0}. When γ = 1, (2.9) is obvious by (2.4). When γ ≥ 2, we have

(

N1,d(r + 1)
)γ –

(

N1,d(r)
)γ

=
(

N1,d(r + 1) – N1,d(r)
)(

N1,d(r + 1)γ –1 + N1,d(r + 1)γ –2N1,d(r) + · · · +
(

N1,d(r)
)γ –1).

This together with (2.3) and (2.4) yields (2.9) for the case γ ≥ 2.
Case B. γ /∈N. We can write γ = p

q for some p, q ∈N with p ≥ 1 and q ≥ 2. Observe that

a – b =
(

a
1
n
)n –

(

b
1
n
)n =

(

a
1
n – b

1
n
)(

a
n–1

n + a
n–2

n b
1
n + · · · + a

1
n b

n–2
n + b

n–1
n

)

for any a, b > 0. It follows that

a
1
n – b

1
n =

a – b
a n–1

n + a n–2
n b 1

n + · · · + a 1
n b n–2

n + b n–1
n

for any a, b > 0. Then

aγ – bγ =
(

ap) 1
q –

(

bp) 1
q =

ap – bp

a
p(q–1)

q + a
p(q–2)

q b
p
q + · · · + a

p
q b

p(q–2)
q + b

p(q–1)
q

(2.10)
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for any a, b > 0. From (2.3), (2.10) and Case A with γ = p, we have

(

N1,d(r + 1)
)γ –

(

N1,d(r)
)γ ∼γ ,d rdp–1q–1r–d p(q–1)

q ∼γ ,d rdγ –1 ∀r ≥ �0,

which establishes (2.9) in this case.
It follows from (2.3) and (2.9) that

(

N1,d(r)
)–γ –

(

N1,d(r + 1)
)–γ =

(N1,d(r + 1))γ – (N1,d(r))γ

(N1,d(l + 1))γ (N1,d(r))γ

∼γ ,d (r + 1)–1–dγ ∀r ≥ �0. (2.11)

When 0 ≤ r < �0. By (i) and (2.11), we get

(

N1,d(r)
)–γ –

(

N1,d(r + 1)
)–γ ≥ (

N1,d(�0)
)–γ –

(

N1,d(�0 + 1)
)–γ

�γ ,d (�0 + 1)–1–dγ �γ ,d,�0 (r + 1)–1–dγ .

This together with the trivial inequality (N1,d(r))–γ – (N1,d(r + 1))–γ �γ ,d,�0 (r + 1)–1–dγ for
any 0 ≤ r < �0 yields that

(

N1,d(r)
)–γ –

(

N1,d(r + 1)
)–γ ∼γ ,d,�0 (r + 1)–1–dγ ∀0 ≤ r < �0. (2.12)

Combining (2.12) with (2.11) yields (2.8).
It remains to prove (iii). By (2.3) and (2.8), we get


γ (r) ∼γ ,d
(

N1,d(r + 1)
)–γ – 1

d ∀r ≥ �0. (2.13)

On the other hand, we get from (2.2) that

(

N1,d(r + 1)
)–γ – 1

d �γ ,d (r + 1)–1–dγ ∀0 ≤ r < �0.

This together with (2.10) and the trivial fact that (N1,d(r + 1))–γ – 1
d ≤ 1 �γ ,d,�0 (r + 1)–1–dγ

for 0 ≤ r < �0 implies that

(

N1,d(r + 1)
)–γ – 1

d ∼γ ,d,�0 
γ (r) ∀0 ≤ r < �0,

which together with (2.13) yields (iii). �

Lemma 2.2 Let d ≥ 2, γ > 1 and R ∈N with R ≥ �0. Then

∑

‖
n‖1≥R

(

N1,d
(‖
n‖1

))–γ �γ ,d Rd–dγ ; (2.14)

∑


n∈Zd

(

N1,d
(‖
n‖1

))–γ �γ ,d 1. (2.15)
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Proof We only prove (2.14), since (2.15) follows from (2.14) and the following:

∑

‖
n‖1<�0

(

N1,d
(‖
n‖1

))–γ ≤ N1,d(�0) �d �d
0 ,

where in the last inequality of the above inequality we have used (2.3). For s ∈N, let r1,d(s)
denote the number of elements in the set {
n = (n1, n2, . . . , nd) ∈ Z

d : ‖
n‖1 = s}. Since d –
dγ < 0, then by (2.3) and (2.4) we have

∑

‖
n‖1≥R

(

N1,d
(‖
n‖1

))–γ =
+∞
∑

l=R

(

N1,d(l)
)–γ r1,d(l) �γ ,d

+∞
∑

l=R

l–dγ
(

N1,d(l) – N1,d(l – 1)
)

�γ ,d

+∞
∑

l=R

l–dγ (l – 1)d–1 �γ ,d

+∞
∑

l=R

ld–1–dγ �γ ,d Rd–dγ ,

which gives (2.14) and completes the proof of Lemma 2.2. �

3 Proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1. Let 
γ be defined as in Lemma 2.1.
It is clear that

(

N
(

�r(
n)
)) α

d –m –
(

N
(

�r+1(
n)
)) α

d –m = 
m– α
d

(

[r]
) ∀
n ∈ Z

d and r ∈ [0,∞). (3.1)

3.1 Proof of Theorem 1.1—boundedness part
Let 
f = (f1, . . . , fm) with each fj ∈ �1(Zd). Without loss of generality, we assume that all fj ≥ 0.
We divide the proof of this part into two cases.

3.1.1 Centered case
To prove (1.14), it suffices to show that

∥

∥DlMα(
f )
∥

∥

�1(Zd) �α,m,d

m
∏

i=1

‖fi‖�1(Zd) (3.2)

for all 1 ≤ l ≤ d. We shall work with (3.2) for l = d and the other cases are analogous. In
what follows, we set 
n = (n′, nd) ∈ Z

d with n′ = (n1, . . . , nd–1) ∈ Z
d–1. It is clear that

∥

∥DdMα(
f )
∥

∥

�1(Zd) =
∑

n′∈Zd–1

∑

nd∈Z

∣

∣Mα(
f )
(

n′, nd + 1
)

– Mα(
f )
(

n′, nd
)∣

∣.

For each n′ ∈ Z
d–1, let

Xn′ =
{

nd ∈ Z : Mα(
f )
(

n′, nd + 1
)

= Mα(
f )
(

n′, nd
)}

.

X+
n′ =

{

nd ∈ Z : Mα(
f )
(

n′, nd + 1
)

> Mα(
f )
(

n′, nd
)}

,

X–
n′ =

{

nd ∈ Z : Mα(
f )
(

n′, nd + 1
)

< Mα(
f )
(

n′, nd
)}

.
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Then we can write

∥

∥DdMα(
f )
∥

∥

�1(Zd) =
∑

n′∈Zd–1

∑

nd∈X+
n′

(

Mα(
f )
(

n′, nd + 1
)

– Mα(
f )
(

n′, nd
))

+
∑

n′∈Zd–1

∑

nd∈X–
n′

(

Mα(
f )
(

n′, nd
)

– Mα(
f )
(

n′, nd + 1
))

.

Thus, to prove (3.2), it suffices to show that

∑

n′∈Zd–1

∑

nd∈X+
n′

(

Mα(
f )
(

n′, nd + 1
)

– Mα(
f )
(

n′, nd
))

�α,m,d

m
∏

i=1

‖fi‖�1(Zd); (3.3)

∑

n′∈Zd–1

∑

nd∈X–
n′

(

Mα(
f )
(

n′, nd
)

– Mα(
f )
(

n′, nd + 1
))

�α,m,d

m
∏

i=1

‖fi‖�1(Zd). (3.4)

We only prove (3.3) since (3.4) can be obtained similarly. For r ∈ N, we define the func-
tion Ar(
f ) : Zd →R by

Ar(
f )(
n) =
(

N
(

�r(
n)
)) α

d –m
m

∏

j=1

∑


k∈�r(
n)

fj(
k) ∀
n ∈ Z
d.

Since all fj ∈ �1(Zd), then limr→∞ Ar(
f )(
n) = 0. It follows that for any n′ ∈ Z
d–1 and nd ∈ X+

n′ ,
there exists r(n′, nd) > 0 such that Mα(
f )(n′, nd) = Ar(n′ ,nd)(
f )(n′, nd). This together with (3.1)
yields that

Mα(
f )
(

n′, nd + 1
)

– Mα(
f )
(

n′, nd
)

≤ Ar(n′ ,nd+1)(
f )
(

n′, nd + 1
)

– Ar(n′ ,nd+1)+1(
f )
(

n′, nd
)

≤ 

([

r
(

n′, nd + 1
)])

m
∏

j=1

∑


k∈�r(n′ ,nd+1)(n′ ,nd+1)

fj(
k)

≤
(m–1

∏

i=1

‖fi‖�1(Zd)

)

∑


k∈�r(n′ ,nd+1)(n′ ,nd+1)


m– α
d

([

r
(

n′, nd + 1
)])

fm(
k). (3.5)

It follows that
∑

n′∈Zd–1

∑

nd∈X+
n′

(

Mα(
f )
(

n′, nd + 1
)

– Mα(
f )
(

n′, nd
))

≤
(m–1

∏

i=1

‖fi‖�1(Zd)

)

∑

n′∈Zd–1

∑

nd∈X+
n′

∑


k∈�r(n′ ,nd+1)(n′ ,nd+1)


m– α
d

([

r
(

n′, nd + 1
)])

fm(
k)

≤
(m–1

∏

i=1

‖fi‖�1(Zd)

)

∑


k∈Zd

fm(
k)

×
∑

n′∈Zd–1

∑

nd∈X+
n′


m– α
d

([

r
(

n′, nd + 1
)])

χ{‖
k–(n′ ,nd+1)‖1≤[r(n′ ,nd+1)]}
(

n′, nd
)

. (3.6)
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Fix 
k ∈ Z
d . Invoking Lemmas 2.1–2.2, we have

∑

n′∈Zd–1

∑

nd∈X+
n′


m– α
d

([

r
(

n′, nd + 1
)])

χ{‖
k–(n′ ,nd+1)‖1≤[r(n′ ,nd+1)]}
(

n′, nd
)

≤
∑

n′∈Zd–1

∑

nd∈X+
n′


m– α
d

(∥

∥
k –
(

n′, nd + 1
)∥

∥

1

)

≤
∑


n∈Zd


m– α
d

(‖
n‖1
)

�α,m,d
∑


n∈Zd

(

N1,d
(‖
n‖1

)) α–1
d –m �α,m,d 1. (3.7)

In the last inequality of (3.7) we have used the fact α < (m – 1)d + 1. Then (3.3) follows
from (3.6) and (3.7).

3.1.2 Uncentered case
In this case the arguments are similar to those in the centered case, but the arguments are
more complex than those in the centered case. We want to show that

∥

∥Dd ˜Mα(
f )
∥

∥

�1(Zd) �α,m,d

m
∏

i=1

‖fi‖�1(Zd). (3.8)

For each n′ ∈ Z
d–1, let

Yn′ =
{

nd ∈ Z : ˜Mα(
f )
(

n′, nd + 1
)

= ˜Mα(
f )
(

n′, nd
)}

,

Y +
n′ =

{

nd ∈ Z : ˜Mα(
f )
(

n′, nd + 1
)

> ˜Mα(
f )
(

n′, nd
)}

,

Y –
n′ =

{

nd ∈ Z : ˜Mα(
f )
(

n′, nd + 1
)

< ˜Mα(
f )
(

n′, nd
)}

.

Fix n′ ∈ Z
d–1. Since all fj ∈ �1(Zd), then for any nd ∈ Y +

n′ , there exist r(n′, nd + 1) > 0 and

l ∈ Z

d such that ˜Mα(
f )(n′, nd + 1) = Ar(n′ ,nd+1)(
f )(
l) and ‖(n′, nd + 1) –
l‖1 < r(n′, nd + 1). By
the arguments similar to those used in deriving (3.5), we obtain

˜Mα(
f )
(

n′, nd + 1
)

– ˜Mα(
f )
(

n′, nd
)

≤ Ar(n′ ,nd+1)(
f )(
l) – Ar(n′ ,nd+1)+1(
f )(
l – 
ed)

≤ 

([

r
(

n′, nd + 1
)])

m
∏

j=1

∑


k∈�r(n′ ,nd+1)(
l)
fj(
k)

≤
(m–1

∏

i=1

‖fi‖�1(Zd)

)

∑


k∈�2r(n′ ,nd+1)(n′ ,nd+1)


m– α
d

([

r
(

n′, nd + 1
)])

fm(
k). (3.9)

Note that 8[r] ≥ [2r] for r ≥ 2 and 
(r) ≤ 1 for all r ∈N. By Lemma 2.1, one can get that

∑


k∈�2r(n′ ,nd+1)(n′ ,nd+1)


m– α
d

([

r
(

n′, nd + 1
)])

fm(
k)

�α,m,d
∑


k∈�2r(n′ ,nd+1)(n′ ,nd+1)


m– α
d

(

8
[

r
(

n′, nd + 1
)])

fm(
k)



Liu Journal of Inequalities and Applications  (2018) 2018:33 Page 12 of 17

�α,m,d
∑


k∈�2r(n′ ,nd+1)(n′ ,nd+1)

fm(
k)χ{‖
k–(n′ ,nd+1)‖1<2r(n′ ,nd+1)<4}
(

n′, nd
)

+
∑


k∈�2r(n′ ,nd+1)(n′ ,nd+1)


m– α
d

([

2r
(

n′, nd + 1
)])

fm(
k)χ{r(n′ ,nd+1)≥2}
(

n′, nd
)

�α,m,d
∑


k∈Zd

fm(
k)χ{‖
k–(n′ ,nd+1)‖1<4}
(

n′, nd
)

+
∑


k∈Zd

fm(
k)
m– α
d

([

2r
(

n′, nd + 1
)])

χ{‖
k–(n′ ,nd+1)‖1≤[2r(n′ ,nd+1)]}
(

n′, nd
)

. (3.10)

By the arguments similar to those used to derive (3.7), we get

sup

k∈Zd

∑

n′∈Zd–1

∑

nd∈X+
n′


m– α
d

([

2r
(

n′, nd + 1
)])

χ{‖
k–(n′ ,nd+1)‖1≤[2r(n′ ,nd+1)]}
(

n′, nd
)

�α,m,d 1. (3.11)

It follows from (3.9)–(3.11) that

∑

n′∈Zd–1

∑

nd∈Y +
n′

(

˜Mα(
f )
(

n′, nd + 1
)

– ˜Mα(
f )
(

n′, nd
))

�α,m,d

(m–1
∏

i=1

‖fi‖�1(Zd)

)

×
(

∑

n′∈Zd–1

∑

nd∈Y +
n′

∑


k∈�2r(n′ ,nd+1)(n′ ,nd+1)

fm(
k)χ{‖
k–(n′ ,nd+1)‖1<4}
(

n′, nd
)

+
∑

n′∈Zd–1

∑

nd∈Y +
n′

∑


k∈Zd

fm(
k)
m– α
d

([

2r
(

n′, nd + 1
)])

× χ{‖
k–(n′ ,nd+1)‖1≤[2r(n′ ,nd+1)]}
(

n′, nd
)

)

�α,m,d

( m
∏

i=1

‖fi‖�1(Zd)

)

(

sup

k∈Zd

∑

n′∈Zd–1

∑

nd∈Y +
n′

χ{‖
k–(n′ ,nd+1)‖1<4}
(

n′, nd
)

+ sup

k∈Zd

∑

n′∈Zd–1

∑

nd∈Y +
n′


m– α
d

([

2r
(

n′, nd + 1
)])

× χ{‖
k–(n′ ,nd+1)‖1≤[2r(n′ ,nd+1)]}
(

n′, nd
)

)

�α,m,d

m
∏

i=1

‖fi‖�1(Zd). (3.12)

Similarly, we can obtain

∑

n′∈Zd–1

∑

nd∈Y –
n′

(

˜Mα(
f )
(

n′, nd
)

– ˜Mα(
f )
(

n′, nd + 1
))

�α,m,d

m
∏

i=1

‖fi‖�1(Zd). (3.13)
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It follows from (3.12) and (3.13) that

∥

∥Dd ˜Mα(
f )
∥

∥

�1(Zd) =
∑

n′∈Zd–1

∑

nd∈Y +
n′

(

˜Mα(
f )
(

n′, nd + 1
)

– ˜Mα(
f )
(

n′, nd
))

+
∑

n′∈Zd–1

∑

nd∈Y –
n′

(

˜Mα(
f )
(

n′, nd
)

– ˜Mα(
f )
(

n′, nd + 1
))

�α,m,d

m
∏

i=1

‖fi‖�1(Zd).

This proves (3.8) and completes the proof of the boundedness part.

3.2 Proof of Theorem 1.1—continuity part
3.2.1 Centered case
Let 
f = (f1, . . . , fm) with each fj ∈ �1(Zd) and gi,j → fj in �1(Zd) for any 1 ≤ j ≤ m as i → ∞.
Let 
gi = (gi,1, . . . , gi,m) for i ∈ Z. We may assume without loss of generality that all gi,j ≥ 0
and fj ≥ 0 since ||gi,j| – |fj|| ≤ |gi,j – fj| for all 1 ≤ j ≤ d. Without loss of generality, we shall
prove that

lim
i→∞‖DdMα(
gi) – DdMα(
f )‖�1(Zd) = 0. (3.14)

Given ε ∈ (0, 1), there exists N1 = N1(ε, 
f ) ∈N such that

‖gi,j – fj‖�1(Zd) < ε and ‖gi,j‖�1(Zd) ≤ ‖fj‖�1(Zd) + 1 ∀i ≥ N1 and 1 ≤ j ≤ m. (3.15)

By the boundedness part, we have that DdMα(
f ) ∈ �1(Zd). We also note that α <
(m – 1)d + 1. Then, for above ε > 0, there exists an integer � with � > �0 such that

max
{

∥

∥DdMα(
f )χ{‖
n‖1≥4�}
∥

∥

�1(Zd), sup
1≤i≤m

‖fiχ{‖
n‖1≥�}‖�1(Zd),�α–(m–1)d–1
}

< ε. (3.16)

One can easily check that

∣

∣Mα(
gi)(
n) – Mα(
f )(
n)
∣

∣

≤ sup
r>0

N
(

�r(
n)
) α

d –m

∣

∣

∣

∣

∣

m
∏

j=1

∑


k∈�r(
n)

gi,j(
k) –
m

∏

j=1

∑


k∈�r(
n)

fj(
k)

∣

∣

∣

∣

∣

≤
m

∑

l=1

( l–1
∏

μ=1

‖fμ‖�1(Zd)

)( m
∏

ν=l+1

‖gi,ν‖�1(Zd)

)

‖gi,l – fl‖�1(Zd) ∀
n ∈ Z
d.

This together with (3.15) implies that Mα(
gi)(
n) → Mα(
f )(
n) as i → ∞ for any 
n ∈ Z.
Therefore, we have

DdMα(
gi)(
n) → DdMα(
f )(
n) as i → ∞ ∀
n ∈ Z
d.
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It follows that there exists N2 = N2(ε, 
f ,�) > 0 such that

∣

∣DdMα(
gi)(
n) – DdMα(
f )(
n)
∣

∣ ≤ ε

N(�4�(
0))
∀i ≥ N2 and 
n ∈ �4�(
0). (3.17)

(3.17) together with (3.16) implies that

∥

∥DdMα(
gi) – DdMα(
f )
∥

∥

�1(Zd)

=
∥

∥

(

DdMα(
gi) – DdMα(
f )
)

χ{‖
n‖1<4�}
∥

∥

�1(Zd)

+
∥

∥

(

DdMα(
gi) – DdMα(
f )
)

χ{‖
n‖1≥4�}
∥

∥

�1(Zd)

≤ 2ε +
∥

∥DdMα(
gi)χ{‖
n‖1≥4�}
∥

∥

�1(Zd) ∀i ≥ N2. (3.18)

We now prove

∥

∥DdMα(
gi)χ{‖
n‖1≥2�}
∥

∥

�1(Zd) �α,m,d,
f ε ∀i ≥ N1. (3.19)

Fix i ≥ N1. We can write

∥

∥DdMα(
gi)χ{‖
n‖1≥4�}
∥

∥

�1(Zd)

≤
∑

‖n′‖1≥2�

n′∈Zd–1

∑

nd∈Z

∣

∣Mα(
gi)
(

n′, nd + 1
)

– Mα(
gi)
(

n′, nd
)∣

∣

+
∑

n′∈Zd–1

∑

|nd |≥2�

nd∈Z

∣

∣Mα(
gi)
(

n′, nd + 1
)

– Mα(
gi)
(

n′, nd
)∣

∣

=: A1 + A2. (3.20)

For A1, fix i ∈ {1, 2, . . . , m} and n′ ∈ Z
d–1 with |n′| ≥ 2�, let

Zn′ =
{

nd ∈ Z; Mα(
gi)
(

n′, nd + 1
)

= Mα(
gi)
(

n′, nd
)}

;

Z+
n′ =

{

nd ∈ Z; Mα(
gi)
(

n′, nd + 1
)

> Mα(
gi)
(

n′, nd
)}

;

Z–
n′ =

{

nd ∈ Z; Mα(
gi)
(

n′, nd + 1
)

< Mα(
gi)
(

n′, nd
)}

.

We can write

A1 =
∑

‖n′‖1≥2�

n′∈Zd–1

∑

nd∈Z+
n′

(

Mα(
gi)
(

n′, nd + 1
)

– Mα(
gi)
(

n′, nd
))

+
∑

‖n′‖1≥2�

n′∈Zd–1

∑

nd∈Z–
n′

(

Mα(
gi)
(

n′, nd
)

– Mα(
gi)
(

n′, nd + 1
))

. (3.21)
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By the arguments similar to those used in deriving (3.6), we have

∑

‖n′‖1≥2�

n′∈Zd–1

∑

nd∈Z+
n′

(

Mα(
gi)
(

n′, nd + 1
)

– Mα(
gi)
(

n′, nd
))

≤
(m–1

∏

i=1

‖gi,j‖�1(Zd)

)

∑

‖n′‖1≥2�

n′∈Zd–1

∑

nd∈Z+
n′

∑


k∈�r(n′ ,nd+1)(n′ ,nd+1)



([

r
(

n′, nd + 1
)])

gi,m(
k)

≤
(m–1

∏

j=1

‖gi,j‖�1(Zd)

)

∑


k∈Zd

gi,m(
k)I(
k), (3.22)

where

I(
k) :=
∑

‖n′‖1≥2�

n′∈Zd–1

∑

nd∈Z+
n′


m– α
d

([

r
(

n′, nd + 1
)])

χ{‖
k–(n′ ,nd+1)‖1≤[r(n′ ,nd+1)]}
(

n′, nd
)

.

Fix 
k = (k′, kd) ∈ Z
d . By a similar argument as that in getting (3.7), we can get

I
(

k′, kd
)

�α,m,d 1. (3.23)

When ‖k′‖1 < � and ‖n′‖1 ≥ 2�, then ‖
k – (n′, nd + 1)‖1 ≥ ‖k′ – n′‖ ≥ �. Note that m +
1–α

d > 1. Then, by Lemmas 2.1–2.2 and (3.16),

I
(

k′, kd
) ≤

∑

‖n′‖1≥2�

n′∈Zd–1

∑

nd∈Z+
n′


m– α
d

([

r
(

n′, nd + 1
)])

χ{�≤‖
k–(n′ ,nd+1)‖1≤[r(n′ ,nd+1)]}
(

n′, nd
)

≤
∑

‖n′‖1≥2�

n′∈Zd–1

∑

nd∈Z+
n′


m– α
d

(∥

∥
k –
(

n′, nd + 1
)∥

∥

1

)

χ{�≤‖
k–(n′ ,nd+1)‖1}
(

n′, nd
)

≤
∑

‖
n‖1≥�


m– α
d

(‖
n‖1
)

�α,m,d
∑

‖
n‖1≥�

(

N1,d
(‖
n‖1

)) α–1
d –m

�α,m,d �α–(m–1)d–1 �α,m,d ε. (3.24)

Combining (3.24) with (3.23) and (3.15)–(3.16) implies that

∑


k∈Zd

gi,m(
k)I(
k)

≤
∑

‖k′‖1≥�

∑

kd∈Zd

gi,m
(

k′, kd
)

I
(

k′, kd
)

+
∑

‖k′‖1<�

∑

kd∈Zd

gi,m
(

k′, kd
)

I
(

k′, kd
)

�α,m,d
(‖gi,mχ{‖
k‖1≥�}‖�1(Zd) + ‖gi,m‖�1(Zd)ε

)

�α,m,d
(∥

∥(gi,m – fm)χ{‖
k‖1≥�}
∥

∥

�1(Zd) + ‖fmχ{‖
k‖1≥�}‖�1(Zd) +
(‖fm‖�1(Zd) + 1

)

ε
)

�α,m,d,fm ε.
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This together with (3.22) and (3.15) yields that

∑

‖n′‖1≥2�

n′∈Zd–1

∑

nd∈Z+
n′

(

Mα(
gi)
(

n′, nd + 1
)

– Mα(
gi)
(

n′, nd
))

�α,m,d,
f ε. (3.25)

Similarly,

∑

‖n′‖1≥2�

n′∈Zd–1

∑

nd∈Z–
n′

(

Mα(
gi)
(

n′, nd
)

– Mα(
gi)
(

n′, nd + 1
))

�α,m,d,
f ε. (3.26)

It follows from (3.21) and (3.25)–(3.26) that

A1 �α,m,d,
f ε ∀i ≥ N1. (3.27)

By the arguments similar to those used to derive (3.27),

A2 �α,m,d,
f ε ∀i ≥ N1. (3.28)

Then (3.19) follows from (3.20) and (3.27)–(3.28). From (3.18) and (3.19) we have

∥

∥DdMα(
gi) – DdMα(
f )
∥

∥

�1(Zd) �α,m,d,
f ε ∀i ≥ max{N1, N2},

which yields (3.14).

3.2.2 Uncentered case
The proof is essentially analogous to Section 3.2.1. We leave the details to the interested
reader.
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