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Abstract
In 1960, Dvoretzky proved that in any infinite dimensional Banach space X and for any
ε > 0 there exists a subspace L of X of arbitrary large dimension ε-iometric to
Euclidean space. A main tool in proving this deep result was some results concerning
asphericity of convex bodies. In this work, we introduce a simple technique and
rigorous formulas to facilitate calculating the asphericity for each set that has a
nonempty boundary set with respect to the flat space generated by it. We also give a
formula to determine the center and the radius of the smallest ball containing a
nonempty nonsingleton set K in a linear normed space, and the center and the radius
of the largest ball contained in it provided that K has a nonempty boundary set with
respect to the flat space generated by it. As an application we give lower and upper
estimations for the asphericity of infinite and finite cross products of these sets in
certain spaces, respectively.
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1 Introduction and basic definitions
In his profound and famous result, Dvoretzky 1960 [1, 2] proved that in any infinite di-
mensional Banach space X and for any ε > 0 and natural number n there exists a subspace
L of X with dim L = n such that 1 ≤ d(L,Rn) < 1 + ε, where d is the Banch–Mazur dis-
tance. The Banach–Mazur distance of two isomorphic Banach spaces E and F , is defined
by d(E, F) = inf‖T‖‖T–1‖, where the infimum is taken over all isomorphisms T from E
onto F [3]. This result gave an affirmative answer to the conjecture raised by Grothendieck
[4]: ‘Pour n and ε donnés, tout espace de Banach E de dimension assez grande contient
un sous-espace isomorphe à ε près à l’espace de Hilbert de dimension n’. To get this result
he proved that if C is a convex body (compact convex set with non-void interior) sym-
metric about the origin in an Euclidean space of sufficiently high dimension, there exists
a k-dimensional subspace whose intersection with C has arbitrary small asphericity. This
motivated us to give rigorous formulas which facilitate calculating the center and the ra-
dius of the smallest ball containing a set K in a linear normed space, and the center and the
radius of the largest ball contained in it provided that K has a nonempty boundary set with
respect to the flat space generated by it. Also, we use a formula to calculate the asphericity
for each set has a nonempty boundary set with respect to the flat space generated by it.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1624-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1624-z&domain=pdf
http://orcid.org/0000-0003-0375-6295
mailto:ahmad_morsy1@yahoo.com


Faried et al. Journal of Inequalities and Applications  (2018) 2018:31 Page 2 of 10

This allowed us to get lower and upper estimations for the asphericity of infinite and finite
cross product of these sets in certain spaces, respectively.

Definition 1.1 In linear normed space:
(i) A ball of largest diameter that lies entirely in a compact convex set S is called an

inball of S. The ball of smallest diameter that enloses S is called the circumball [5].
(ii) A convex set C is called spherical to within ε, where 1 > ε > 0, if there exist in the

flat space generated by C (the smallest affine subspace that includes C as a subset)
two concentric balls B1 and B2 of radii r(1 – ε) and r such that B1 ⊆ C ⊆ B2. The
greatest lower bound of that ε having the above property is called the asphericity of
C and is denoted by α(C) [1, 2].

Definition 1.2 ([6]) The set A in the Euclidean space Rn is called flat (linear variety, vari-
ety, and affine subspace) if whenever it contains two points, it also contains the entire line
through them i.e. A is flat if λa + μb ∈ A whenever a, b ∈ A and λ + μ = 1.

The condition for a set to be convex is less restrictive than for it to be flat, and so every flat
set is a convex set. The term subspace of a linear space is used only for a flat set containing
the origin.

To calculate the asphericity of any nonempty nonsingleton set C in a linear normed
space such that rbd(C) is a nonempty set where rbd(C) is the boundary of C taken with
respect to the flat space generated by the set C, we use the following formula:

�(C) = inf
x∈rint(C)

[
supy∈C d(x, y)

infz∈rbd(C) d(x, z)

]
. (1)

Remark 1.3 ([7]) Any nonempty nonsingleton bounded convex set C in finite dimensional
linear normed space has nonempty rbd(C) set.

As an application, we give lower and upper estimations for the asphericity of infinite and
finite cross product of sets in certain spaces, respectively, where each set has a nonempty
boundary set with respect to the flat space generated by it.

2 A technical lemma
In this section we mention a lemma that will be frequently used during the rest of the
work.

Lemma 2.1
(i) Let (αn

j )∞j=1, n = 1, 2, 3, . . . , be a countable family of summable sequences of real
numbers, then for any p ≥ 1 we get

( ∞∑
j=1

inf
n

∣∣αn
j
∣∣
)1/p

≤ inf
n

( ∞∑
j=1

∣∣αn
j
∣∣
)1/p

≤ sup
n

( ∞∑
j=1

∣∣αn
j
∣∣
)1/p

≤
( ∞∑

j=1

sup
n

∣∣αn
j
∣∣
)1/p

provided that
∑∞

j=1 supn |αn
j | exists.
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(ii) Let (αi)i∈I and (βj)j∈J be two bounded sequences of two independent sets of indices I
and J , then for any p ≥ 1 we get

sup
i∈I

sup
j∈J

(|αi| + |βj|
)1/p =

(
sup

i
|αi| + sup

j
|βj|

)1/p
and

inf
i∈I

inf
j∈J

(|αi| + |βj|
)1/p =

(
inf

i
|αi| + inf

j
|βj|

)1/p
,

where the supremum and infimum in the LHSs are taken over all possible choices of
i ∈ I and j ∈ J .

(iii) For an infinite sequence of independent sets of indices J(n) and for a countable
number of bounded sequences (αn

jn )jn∈J(n), n = 1, 2, 3, . . . , we get for any p ≥ 1

sup
j1∈J(1)

sup
j2∈J(2)

· · ·
( ∞∑

n=1

∣∣αn
jn

∣∣
)1/p

=

( ∞∑
n=1

sup
jn∈J(n)

∣∣αn
jn

∣∣
)1/p

and

inf
j1∈J(1)

inf
j2∈J(2)

· · ·
( ∞∑

n=1

∣∣αn
jn

∣∣
)1/p

=

( ∞∑
n=1

inf
jn∈J(n)

∣∣αn
jn

∣∣
)1/p

provided that
∑∞

n=1 supjn∈J(n) |αn
jn | exists.

3 Results and discussion
In the following we suggest two formulas to determine the radii and the centers of the
smallest ball containing any nonempty nonsingleton set C in a linear normed space and
the largest ball contained in it provided that rbd(C) is a nonempty set.

Definition 3.1 Let C be a nonempty nonsingleton set in a linear normed space such that
rbd(C) �= ∅ then

�(C) := inf
x∈C

sup
y∈C

‖x – y‖

is the radius of the smallest ball containing the set and

δ(C) := sup
x∈C

inf
y∈rbd(C)

‖x – y‖

is the radius of the largest ball contained in the set.

Proposition 3.2 Let C be a nonempty nonsingleton compact set in a linear normed space
such that rbd(C) �= ∅ then

(i) There exist x0 and y0 ∈ C satisfying �(C) = ‖x0 – y0‖.
(ii) There exist x′

0 ∈ C and y′
0 ∈ rbd(C) satisfying δ(C) = ‖x′

0 – y′
0‖.

Proof The proof is easy and will be omitted. �

Remark 3.3 The center and the radius of the circumball is unique, but for the inball, the
radius is unique but the center may not be unique. For example, the rectangle with ver-
tices (–2, –1), (2, –1), (–2, 1) and (2, 1), any point belongs to the line segment on the x-axis
between (–1, 0) and (1, 0) can be a center for an inball.
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Proposition 3.4 The asphericity α(C) of a nonempty nonsingleton set C in a linear normed
space such that rbd(C) is a nonempty set can be expressed as α(C) = 1 – 1

�(C) .

Proof From the definition of α(C), ∀η > 0 ∃εη , such that

α(C) ≤ εη < α(C) + η

and B1 ⊂ C ⊂ B2 where B1 and B2 are two concentric balls in the flat space generated by
C with center x0 (i.e. x0 is an element of rint(C) (the interior of C with respect to the flat
space generated by C)) and of radii r(1–εη) and r. Then we can say that B′

1 ⊂ C ⊂ B2 where
B′

1 and B2 are two concentric balls in the flat space generated by C with center x0 and of
radii r(1 – α(C) – η) and r. Then r ≥ supy∈C d(x0, y) and infz∈rbd(C) d(x0, z) ≥ r(1 – α(C) – η).
Then

�(C) ≤ supy∈C d(x0, y)
infz∈rbd(C) d(x0, z)

≤ r
r(1 – α(C) – η)

.

So, 1 – α(C) – η ≤ 1
�(C) . Therefore, 1 – 1

�(C) ≤ α(C) + η.
On the other hand, ∀ε > 0 ∃x0 ∈ rint(C), such that

�(C) ≤ supy∈C d(x0, y)
infz∈rbd(C) d(x0, z)

< �(C) + ε.

Then supy∈C d(x0, y) < (�(C) + ε) infz∈rbd(C) d(x0, z). Taking r = supy∈C d(x0, y) and r(1 – ε) =
infz∈rbd(C) d(x0, z), then r

�(C)+ε
< r(1 – ε). So, 1

�(C)+ε
< 1 – ε. So, ε < 1 – 1

�(C)+ε
. Therefore,

α(C) < 1 – 1
�(C)+ε

. Since ε is arbitrary, α(C) ≤ 1 – 1
�(C) . �

Lemma 3.5 For any set C in a linear normed space such that rbd(C) �= ∅, let Cc be the
complement of C taken with respect to the flat space generated by C. Then

sup
x∈C

inf
y∈rbd(C)

d(x, y) = sup
x∈C

inf
y∈Cc

d(x, y).

Proof For every x ∈ C, let αx = infy∈rbd(C) d(x, y), βx = infy∈Cc d(x, y). Then for every ε > 0
there exist yε ∈ rbd(C) and zε ∈ Cc such that

αx ≤ d(x, yε) < αx + ε/2,

d(yε , zε) < ε/2.

Then we have βx ≤ d(x, zε) ≤ d(x, yε)+d(yε , zε) < αx +ε. On the other hand, for every y ∈ Cc

there exists εy such that

d(y, x) – εy ≥ αx.

Therefore infy∈Cc d(y, x) ≥ αx + infy∈Cc εy. Since infy∈Cc εy = 0, we get the result. �



Faried et al. Journal of Inequalities and Applications  (2018) 2018:31 Page 5 of 10

Remark 3.6 For any nonempty nonsingleton set C in a linear normed space such that
rbd(C) �= ∅ and rint(C) �= ∅

�(C) = inf
x∈rint(C)

[
supy∈C d(x, y)

infz∈rbd(C) d(x, z)

]

= inf
x∈int(C)

(
sup
y∈C

d(x, y) ∗ sup
z∈rbd(C)

1
d(x, z)

)

≥ inf
x∈int(C)

sup
y∈C

d(x, y) ∗ inf
x∈int(C)

sup
z∈rbd(C)

1
d(x, z)

=
infx∈int(C) supy∈C d(x, y)

supx∈int(C) infz∈rbd(C) d(x, z)

≥ infx∈C supy∈C d(x, y)
supx∈C infz∈rbd(C) d(x, z)

=
�(C)
δ(C)

.

Definition 3.7 We say that a nonempty nonsingleton set C in a linear normed space such
that rbd(C) and rint(C) are nonempty sets is regular if the center of its circumball is one of
the centers for its inballs and in this case

�(C)
δ(C)

= �(C).

Definition 3.8 ([5]) A compact set C in R
n is said to be of constant width δ if every pair

of parallel supporting hyperplanes are separated by a distance δ.

Example 3.9 If A ⊂ R
n is a compact convex set of constant width σ , then A has a unique

inball, which is concentric with its circumball, and σ = R + r where r and R are the radii of
the inball and the circumball, respectively. So A is a regular set.

Theorem 3.10 Let X1, X2, . . . be a sequence of linear normed spaces. Let Ci be a nonempty
nonsingleton set in a linear normed space Xi such that rbd(Ci) �= ∅, i = 1, 2, 3, . . . , and
rint(Ci) �= ∅ for some i. Let

∏∞
i=1 Ci ⊆ lp(Xi) where lp(Xi) is the linear subspace of the Carte-

sian product X1 × X2 × X3 · · · equipped with the norm ‖x‖p = p
√∑∞

i=1 ‖xi‖p and (�(Ci))∞i=1

and (δ(Ci))∞i=1 ∈ lp then

1. �

( ∞∏
i=1

Ci

)
=

( ∞∑
i=1

�p(Ci)

)1/p

,

2. δ

( ∞∏
i=1

Ci

)
≤

( ∞∑
i=1

δp(Ci)

)1/p

,

3. α

( ∞∏
i=1

Ci

)
≥ 1 –

[ ∞∑
i=1

δp(Ci)/
∞∑
i=1

�p(Ci)

]1/p

.

Proof Let �(Ci) = infx∈Ci supy∈Ci d(x, y) and δ(Ci) = supx∈Ci infz∈Cc
i

d(x, z), i = 1, 2, . . . , be the
radius of the circumball contaning Ci and the radius of the inball contained in Ci, respec-
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tively. From Lemma 2.1(iii) we get

�

( ∞∏
i=1

Ci

)
= inf

x1∈C1,x2∈C2,...
sup

y1∈C1,y2∈C2,...

( ∞∑
i=1

‖xi – yi‖p

)1/p

= inf
x1∈C1,x2∈C2,...

( ∞∑
i=1

sup
yi∈Ci

‖xi – yi‖p

)1/p

=

( ∞∑
i=1

inf
xi∈Ci

sup
yi∈Ci

‖xi – yi‖p

)1/p

=

( ∞∑
i=1

�p(Ci)

)1/p

.

On the other hand, since
∏∞

i=1 rbd(Ci) ⊂ rbd(
∏∞

i=1 Ci) we get

δ

( ∞∏
i=1

Ci

)
= sup

x1∈C1,x2∈C2,...
inf

y∈rbd(
∏∞

i=1 Ci)

( ∞∑
i=1

‖xi – yi‖p

)1/p

≤ sup
x1∈C1,x2∈C2,...

inf
y∈∏∞

i=1 rbd(Ci)

( ∞∑
i=1

‖xi – yi‖p

)1/p

= sup
x1∈C1,x2∈C2,...

( ∞∑
i=1

inf
yi∈rbd(Ci)

‖xi – yi‖p

)1/p

=

( ∞∑
i=1

sup
xi∈Ci

inf
yi∈rbd(Ci)

‖xi – yi‖p

)1/p

=

( ∞∑
i=1

δp(Ci)

)1/p

.

Now, we get a lower estimation for the asphericity α(
∏∞

i=1 Ci) of an infinite cross product
of these sets. We have

�

( ∞∏
i=1

Ci

)
≥

(∑∞
i=1 �p(Ci)∑∞
i=1 δp(Ci)

)1/p

.

Hence,

α

( ∞∏
i=1

Ci

)
≥ 1 –

( ∑∞
i=1 δp(Ci)∑∞

i=1 �p(Ci)

)1/p

. �

Lemma 3.11 Let [ξi : i ∈ I], [ηj : j ∈ J] be two bounded families of real numbers then
max(infi∈I ξi, infj∈J ηj) = infi∈I,j∈J max(ξi,ηj).

Proof Let α = infi∈I,j∈J max(ξi,ηj). Therefore by taking a sequence (εn) convergent to zero
we get α ≤ max(ξn,ηn) < α + εn. Therefore, there exists either a sequence ξnk such that
α ≤ ξnk < α + εnk or a sequence ηnk such that α ≤ ηnk < α + εnk . So, we get either infi∈I ξi = α

or infj∈J ηj = α. So, we get max(infi∈I ξi, infj∈J ηj) ≥ α.
On the other hand, β = max(infi∈I ξi, infj∈J ηj) ≤ max(ξi,ηj) for all i ∈ I and j ∈ J . Then

max(infi∈I ξi, infj∈J ηj) ≤ infi∈I,j∈J max(ξi,ηj). �

Similarly, we can prove the following.
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Lemma 3.12
1. Let (ξ j

ij )ij∈Ij , j = 1, 2, . . . , n be any finite number of bounded families of real numbers,
then max1≤j≤n infij∈Ij ξ

j
ij = infij∈Ij max1≤j≤n ξ

j
ij .

2. Let (ξ j
i )i∈I , j = 1, 2, . . . , n, be any finite number of bounded families of real numbers,

then max1≤j≤n infi∈I ξ
j
i ≥ infi∈I max1≤j≤n ξ

j
i .

Theorem 3.13 Let X1, X2, . . . be a sequence of linear normed spaces and Ci be a nonempty
nonsingleton set in Xi such that rbd(Ci) is a nonempty set, i = 1, 2, 3, . . . . Let

∏
Ci ⊆ l∞(Xi)

where l∞(Xi) is the linear subspace of the Cartesian product X1 × X2 × X3 · · · equipped
with the norm ‖x‖∞ = supi∈N ‖xi‖, then (i)

inf
i

(
�(Ci)

) ≤ �

(∏
i

Ci

)
,

(ii) for any finite number of closed convex sets Ci in a finite dimensional linear normed
space Xi such that rbd(Ci) is a nonempty set, i = 1, 2, . . . , n, and in particular, for any finite
number of convex bodies Ci in a finite dimensional linear normed space Xi, i = 1, . . . , n,

�

( n∏
i=1

Ci

)
≤ max

(
�(C1), . . . ,�(Cn),�(C1)/δ(Cn), . . . ,�(Cn)/δ(C1)

)
).

Proof of (i) For each η > 0 there exists x̃ ∈ rint(
∏∞

i=1 Ci) such that

supy∈∏∞
i=1 Ci ‖x̃ – y‖

infz∈rbd(
∏∞

i=1 Ci) ‖x̃ – z‖ < �

( ∞∏
i=1

Ci

)
+ η.

Since
∏∞

i=1 rbd(Ci) ⊂ rbd(
∏∞

i=1 Ci),

sup
y∈∏

Ci

‖x̃ – y‖ <

(
�

( ∞∏
i=1

Ci

)
+ η

)
inf

z∈rbd(
∏∞

i=1 Ci)
‖x̃ – z‖

≤
(

�

( ∞∏
i=1

Ci

)
+ η

)
inf

z∈∏∞
i=1 rbd(Ci)

‖x̃ – z‖

≤
(

�

( ∞∏
i=1

Ci

)
+ η

)
‖x̃ – z‖ for all z in

∞∏
i=1

rbd(Ci).

For all z ∈ ∏∞
i=1 rbd(Ci),

sup
y∈∏

Ci

‖x̃ – y‖ <

(
�

( ∞∏
i=1

Ci

)
+ η

)
∞

sup
i=1

‖x̃i – zi‖.

Hence there exists i0:

∞
sup
i=1

sup
yi∈Ci

‖x̃i – yi‖ <
(
�

(∏
Ci

)
+ η

)
‖x̃i0 – zi0‖.
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So, supyi∈Ci0
‖x̃i0 – yi‖ < (�(

∏
Ci) + η)‖x̃i0 – zi0‖ and hence we get

sup
yi∈Ci0

‖x̃i0 – yi‖ <
(
�

(∏
Ci

)
+ η

)
inf

z∈rbd(Ci0 )
‖x̃i0 – z‖.

Therefore,

inf
i

�(Ci) ≤
supyi∈Ci0

‖x̃i0 – yi‖
infz∈rbd(Ci0 ) ‖x̃i0 – z‖ < �

(∏
Ci

)
. �

Proof of (ii) It suffices to prove this item for any two closed convex sets Ci in a finite di-
mensional linear normed space Xi such that rbd(Ci) is a nonempty set, i = 1, 2. We have

�

( 2∏
i=1

Ci

)
= inf

(xi)∈rint(
∏2

i=1 Ci)

sup(yi)∈
∏2

i=1 Ci
‖x – y‖

inf(zi)∈rbd(
∏2

i=1 Ci) ‖x – z‖

= inf
(xi)∈rint(

∏2
i=1 Ci)

[
sup

(yi)∈
∏2

i=1 Ci

2
sup
i=1

‖xi – yi‖ ∗ sup
(zi)∈rbd(

∏2
i=1 Ci)

(
1

sup2
i=1 ‖xi – zi‖

)]
.

Since rbd(
∏2

i=1 Ci) = (rbd(C1) × C2) ∪ (C1 × rbd(C2)) we have

α = sup
(zi)∈rbd(

∏2
i=1 Ci)

(
1

sup2
i=1 ‖xi – zi‖

)

= sup
z1∈rbd(C1),z2∈C2 or

z1∈C1,z2∈rbd(C2)

(
1

sup2
i=1 ‖xi – zi‖

)

= max

(
sup

z1∈rbd(C1),z2∈C2

1
sup2

i=1 ‖xi – zi‖ , sup
z1∈C1,z2∈rbd(C2)

1
sup2

i=1 ‖xi – zi‖
)

.

First suppose that α = supz1∈rbd(C1),z2∈C2
1

sup2
i=1 ‖xi–zi‖ . Then, for all η > 0 ∃z1, z2 ∈ rbd(C1), C2,

respectively, such that

1
‖x1 – z1‖ ≥ 2

inf
i=1

1
‖xi – zi‖ > α – η,

we have supz1∈rbd(C1)
1

‖x1–z1‖ > α – η.
Similarly, if we suppose that

α = sup
z1∈C1,z2∈rbd(C2)

1
sup2

i=1 ‖xi – zi‖ then sup
z2∈rbd(C2)

1
‖x2 – z2‖ > α – η.

Then we have

max

(
sup

z1∈rbd(C1)

1
‖x1 – z1‖ , sup

z2∈rbd(C2)

1
‖x2 – z2‖

)
> α – η.

Since η is arbitrary, we have

α ≤ max

(
sup

z1∈rbd(C1)

1
‖x1 – z1‖ , sup

z2∈rbd(C2)

1
‖x2 – z2‖

)
.
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The following is implied by Lemma 3.11 and Lemma 3.12:

�

( 2∏
i=1

Ci

)
≤ inf

(xi)∈rint(
∏2

i=1 Ci)

[
max

(
sup

y1∈C1
‖x1 – y1‖, sup

y2∈C2
‖x2 – y2‖

)

∗ max

(
sup

z1∈rbd(C1)

1
‖x1 – z1‖ , sup

z2∈rbd(C2)

1
‖x2 – z2‖

)]

= inf
(xi)∈rint(

∏2
i=1 Ci)

max

(
sup

y1∈C1
‖x1 – y1‖ ∗ sup

z1∈rbd(C1)

1
‖x1 – z1‖ ,

sup
y2∈C2

‖x2 – y2‖ ∗ sup
z2∈rbd(C2)

1
‖x2 – z2‖ , sup

y1∈C1
‖x1 – y1‖ ∗ sup

z2∈rbd(C2)

1
‖x2 – z2‖ ,

sup
y2∈C2

‖x2 – y2‖ ∗ sup
z1∈rbd(C1)

1
‖x1 – z1‖

)

= inf
(xi)∈rint(

∏2
i=1 Ci)

max

(
supy1∈C1 ‖x1 – y1‖

infz1∈rbd(C1) ‖x1 – z1‖ ,
supy2∈C2 ‖x2 – y2‖

infz2∈rbd(C2) ‖x2 – z2‖ ,

supy1∈C1 ‖x1 – y1‖
infz2∈rbd(C2) ‖x2 – z2‖ ,

supy2∈C2 ‖x2 – y2‖
infz1∈rbd(C1) ‖x1 – z1‖

)

≤ max

(
inf

x1∈rint(C1)

supy1∈C1 ‖x1 – y1‖
infz1∈rbd(C1) ‖x1 – z1‖ , inf

x2∈rint(C2)

supy2∈C2 ‖x2 – y2‖
infz2∈rbd(C2) ‖x2 – z2‖ ,

inf
x1∈rint(C1),
x2∈rint(C2)

supy1∈C1 ‖x1 – y1‖
infz2∈rbd(C2) ‖x2 – z2‖ , inf

x1∈rint(C1),
x2∈rint(C2)

supy2∈C2 ‖x2 – y2‖
infz1∈rbd(C1) ‖x1 – z1‖

)

= max

(
�(C1),�(C2),

infx1∈rint(C1) supy1∈C1 ‖x1 – y1‖
supx2∈rint(C2) infz2∈rbd(C2) ‖x2 – z2‖ ,

infx2∈rint(C2) supy2∈C2 ‖x2 – y2‖
supx1∈rint(C1) infz1∈rbd(C1) ‖x1 – z1‖

)

= max

(
�(C1),�(C2),

�(C1)
δ(C2)

,
�(C2)
δ(C1)

)
. �

4 Conclusion
This study introduces a simple technique and rigorous formulas to facilitate calculating
the asphericity for each set having a nonempty boundary set with respect to the flat space
generated by it. Furthermore, the study gives a formula to determine the center and the
radius of the smallest ball containing a nonempty nonsingleton set C in a linear normed
space, and the center and the radius of the largest ball contained in it, provided that C has
a nonempty boundary set with respect to the flat space generated by it. As an application
we give lower and upper estimations for the asphericity of infinite and finite cross product
of sets in certain spaces, respectively, where each set has a nonempty boundary set with
respect to the flat space generated by it.
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