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Abstract
For the quasi-equilibrium problem where the players’ costs and their strategies both
depend on the rival’s decisions, an alternative extragradient projection method for
solving it is designed. Different from the classical extragradient projection method
whose generated sequence has the contraction property with respect to the solution
set, the newly designed method possesses an expansion property with respect to a
given initial point. The global convergence of the method is established under the
assumptions of pseudomonotonicity of the equilibrium function and of continuity of
the underlying multi-valued mapping. Furthermore, we show that the generated
sequence converges to the nearest point in the solution set to the initial point.
Numerical experiments show the efficiency of the method.
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1 Introduction
The equilibrium problem has been considered as an important and general framework
for describing various problems arising in different areas of mathematics, including op-
timization problems, mathematical economic problems and Nash equilibrium problems.
As far as we know, this formulation has been followed for a long time by several studies
on equilibrium problems considered under different headings such as quasi-equilibrium
problem, mixed equilibrium problem, ordered equilibrium problem, vector equilibrium
problem and so on [1–4]. It should be noted that one of the interests of this common for-
mulation is that many techniques developed for a particular case may be extended, with
suitable adaptations, to the equilibrium problem, and then they can be applied to other
particular cases [5–16]. In this paper, we mainly deal with existence of solutions and ap-
proximate solutions of the quasi-equilibrium problem.

Let X ⊂ R
n be a nonempty closed convex set, K be a point-to-set mapping from X

onto itself such that, for any x ∈ X, K(x) is a nonempty closed convex set of X, and
let f : X × X → R be a function such that, for any x ∈ X, f (x, x) = 0 and f (x, ·) is con-
vex on X. The quasi-equilibrium problem QEP(K , f ) is to find a vector x∗ ∈ K(x∗) such
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that

f
(
x∗, y

) ≥ 0, ∀y ∈ K
(
x∗). (1.1)

Throughout this paper, we denote the solution set by K∗.
Certainly, when f (x, y) = 〈F(x), y – x〉 with F being a vector-valued mapping from X to

R
n, then the quasi-equilibrium problem reduces to the generalized variational inequality

or quasi-variational inequality problem [17–20] which is to find vector x∗ ∈ K(x∗) such
that

〈
F
(
x∗), y – x∗〉 ≥ 0, ∀y ∈ K

(
x∗). (1.2)

To move on, we recall the classical equilibrium problem, and classical Nash equilibrium
problem (NEP) [21]. Assume the function fi : Rn → R is continuous, and suppose Ki is
a nonempty closed set in Rni for i = 1, 2, . . . , N with n =

∑N
i=1 ni. Suppose that there are

N players such that each player controls the variables xi ∈ Rni . Denote x = (x1, . . . , xN ),
and x–i = (x1, . . . , xi–1, xi+1, . . . , xN ). Player i needs to take an xi ∈ Ki ⊂ Rni that solves the
following optimization problem:

min
xi∈Ki

fi(xi, x–i)

based on the other players’ strategies x–i. If these N players do not cooperate, then each
players’ strategy set may vary with other players’ strategies, that is, the ith player’s strategy
set varies with the other players’ strategies x–i. In this case, we need to use Ki(x–i) instead
of Ki to indicate the ith player’s strategy set, and the ith player needs to choose a strategy
x∗

i ∈ Ki(x–i) that solves the following optimization problem:

min
xi∈Ki(x–i)

fi(xi, x–i).

In [22], the non-cooperative game model is called generalized Nash equilibrium problem
(GNEP), which can be formulated as the quasi-equilibrium problem where the involved
functions are nondifferentiable [23].

For the problem GNEP, when the functions fi(·, x–i) are convex and differentiable, then
the problem can be equivalently formulated as the quasi-variational inequalities (1.2) by
setting

F(x) =
(∇xi fi(x)

)N
i=1

and K(x) =
∏N

i=1 Ki(x–i). When the function fi(·, x–i) is convex and nondifferentiable, then
the GNEP reduces to the quasi-equilibrium problem (1.1) [24] via the Nikaido Isoda fun-
tion

f (x, y) =
N∑

i=1

[
fi(yi, x–i) – fi(xi, x–i)

]
.

On the other hand, the quasi-equilibrium problem (QEP) has received much attention of
researchers in mathematics, economics, engineering, operations research, etc. [17, 22]; for
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more information see [19, 25, 26]. There are many solution methods for solving QEP. Re-
cently, [27] considered an optimization reformulation approach with the regularized gap
function. Different from the variational inequalities problem, the regularized gap function
is in general not differentiable, but only directional differentiable. Furthermore, supple-
mentary conditions must be imposed to guarantee that any stationary point of these func-
tions is a global minimum, since the gap functions is nonconvex [28]. It should be noted
that such conditions are known for variational inequality problem but not for QEP. So,
[23] proposed several projection and extragradient methods rather than methods based
on gap functions, which generalized the double-projection methods for variational in-
equality problem to equilibrium problems with a moving constraint set K(x).

It is well known that the extragradient projection method is an efficient solution method
for variational inequalities due to its low memory and low cost of computing [29, 30].
Based on those advantages, it was extended to solve QEP recently [20, 23, 31] and this
opened a new approach for solving the problem. An important feature of this method is
that it has the contraction property in the sense that the generated sequence has contrac-
tion property with respect to the solution set of the problem [29], i.e.

∥
∥xk+1 – x∗∥∥ ≤ ∥

∥xk – x∗∥∥, ∀k ≥ 0, x∗ ∈ K∗.

The numerical experiments given in [20, 23, 31] show that the extragradient projection
method is a practical solution method for the QEP.

It should be noted that not all the extragradient projection methods have the contrac-
tion property [32]. In that case, it may not slow down the convergence rate significantly. Al-
though the extragradient projection method has no contraction property, it still has a good
numerical performance [32]. Now, a question can be posed naturally, can this method be
applied to solve the QEP? And if so, how about its performance? This constitutes the main
motivation of this paper.

Inspired by the work [23, 32], we propose a new type of extragradient projection method
for the QEP in this paper. Different from the extragradient projection method proposed
in [23], the generated sequence by the newly designed method possesses an expansion
property with respect to the initial point, i.e.,

∥∥xk+1 – xk∥∥2 +
∥∥xk – x0∥∥2 ≤ ∥∥xk+1 – x0∥∥2.

The existence results for (1.1) are established under pseudomonotonicity condition of the
equilibrium function and the continuity of the underlying multi-valued mapping. Further-
more, we show that the generated sequence converges to the nearest point in the solution
set to the initial point. Numerical experiments show the efficiency of the method.

The remainder of this paper is organized as follows. In Section 2, we recall some con-
cepts and related conclusions to be used in the sequel. The newly designed method and its
global convergence are developed in Section 3. Some preliminary computational results
and experiments are presented in Section 4.



Chen et al. Journal of Inequalities and Applications  (2018) 2018:26 Page 4 of 15

2 Preliminaries
Let X be a nonempty closed convex set in R

n. For any x ∈ R
n, the orthogonal projection

of x onto X is defined as

y0 = arg min
{‖y – x‖ | y ∈ X

}
,

and denote PX(x) = y0. A basic property of the projection operator is as follows [33].

Lemma 2.1 Suppose X is a nonempty, closed and convex subset in R
n. For any x, y ∈ R

n,
and z ∈ X, we have

(i) 〈PX(x) – x, z – PX(x)〉 ≥ 0;
(ii) ‖PX(x) – PX(y)‖2 ≤ ‖x – y‖2 – ‖PX(x) – x + y – PX(y)‖2.

Remark 2.1 The first statement in Lemma 2.1 also provides a sufficient condition for vec-
tor y ∈ X to be the projection of vector x, i.e., y = PX(x) if and only if

〈y – x, z – y〉 ≥ 0, ∀z ∈ X.

To proceed, we present the following definitions [34].

Definition 2.1 Suppose X is a nonempty subset of Rn. The bifunction f : X × X → R is
said to be

(i) strongly monotone on X with β > 0 iff

f (x, y) + f (y, x) ≤ –β‖x – y‖2, ∀x, y ∈ X;

(ii) monotone on X iff

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ X;

(iii) pseudomonotone on X iff

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0, ∀x, y ∈ X.

Definition 2.2 Suppose X is a nonempty, closed and convex subset of Rn. A multi-valued
mapping K : X → 2R

n is said to be
(i) upper semicontinuous at x ∈ X if for any convergent sequence {xk} ⊂ X with x̄

being the limit, and for any convergent sequence {yk} with yk ∈ K(xk) and ȳ being
the limit, then ȳ ∈ K(x̄);

(ii) lower semicontinuous at x ∈ X if given any sequence {xk} converging to x and any
y ∈ K(x), there exists a sequence {yk} with yk ∈ K(xk) converges to y;

(iii) continuous at x ∈ X if it is both upper semicontinuous and lower semicontinuous
at x.

To end this section, we make the following blanket assumption on bifunction f : X ×
X → R and multi-valued mapping K : X → 2R

n [20, 23].
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Assumption 2.1 For the closed convex set X ⊂ R
n, the bifunction f and multi-valued

mapping K satisfy:
(i) f (x, ·) is convex for any fixed x ∈ X , f is continuous on X × X and f (x, x) = 0 for all

x ∈ X ;
(ii) K is continuous on X and K(x) is a nonempty closed convex subset of X for all

x ∈ X ;
(iii) x ∈ K(x) for all x ∈ X ;
(iv) S∗ = {x ∈ S | f (x, y) ≥ 0,∀y ∈ T} is nonempty for S =

⋂
x∈X K(x) and T =

⋃
x∈X K(x);

(v) f is pseudomonotone on X with respect to S∗ i.e. f (x∗, y) ≥ 0 ⇒ f (y, x∗) ≤ 0,
∀x∗ ∈ S∗, ∀y ∈ X .

As noted in [23], the assumption (iv) in Assumption 2.1 guarantees that the solution set
of problem (1.1) K∗ is nonempty.

3 Algorithm and convergence
In this section, we mainly develop a new type of extragradient projection method for solv-
ing QEP. The basic idea of the algorithm is as follows. At each step of the algorithm, we
obtain a solution yk by solving a convex subproblem. If xk = yk , then stop with xk being a
solution of the QEP; otherwise, find a trial point zk by a back-tracking search at xk along
the direction xk – yk , and the new iterate is obtained by projecting x0 onto the intersection
of K(xk) of two halfspaces which are, respectively, associated with zk and xk . Repeat the
process until xk = yk . The detailed description of our designed algorithm is as follows.

Algorithm 3.1
Step 0. Choose c,γ ∈ (0, 1), x0 ∈ X , k = 0.
Step 1. For current iterate xk , compute yk by solving the following optimization problem:

min
y∈K (xk )

{
f
(
xk , y

)
+

1
2
∥
∥y – xk∥∥2

}
.

If xk = yk , then stop. Otherwise, let zk = (1 – ηk)xk + ηkyk , where ηk = γ mk with
mk being the smallest nonnegative integer such that

f
((

1 – γ m)
xk + γ myk , xk) – f

((
1 – γ m)

xk + γ myk , yk) ≥ c
∥∥xk – yk∥∥2. (3.1)

Step 2. Compute xk+1 = PH1
k ∩H2

k ∩X(x0) where

H1
k =

{
x ∈R

n | f
(
zk , x

) ≤ 0
}

,

H2
k =

{
x ∈R

n | 〈x – xk , x0 – xk 〉 ≤ 0
}

.

Set k = k + 1 and go to Step 1.

Indeed, for every xk ∈ K(xk), since yk ∈ K(xk), zk ∈ K(xk), so we have K(xk) ∩ H1
k �= ∅

and K(xk) ∩ H2
k �= ∅. To establish the convergence of the algorithm, we first discuss the

relationship of the halfspace H1
k with xk and the solution set K∗.
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Lemma 3.1 If xk �= yk , then the halfspace H1
k in Algorithm 3.1 separates the point xk from

the set K∗ under Assumption 2.1. Moreover,

K∗ ⊆ H1
k ∩ X, ∀k ≥ 0.

Proof First, by the fact that f (x, ·) is convex and

zk = (1 – ηk)xk + ηkyk ,

we obtain

0 = f
(
zk , zk) ≤ (1 – ηk)f

(
zk , xk) + ηkf

(
zk , yk),

which can be written as

–f
(
zk , yk) ≤

(
1
ηk

– 1
)

f
(
zk , xk).

By (3.1), we have

f
(
zk , xk) ≥ cηk

∥
∥xk – yk∥∥2 > 0,

which means xk /∈ H1
k .

On the other hand, by Assumption 2.1, it follows that K∗ is nonempty. For any x ∈ K∗,
from the definition of K∗ and the pseudomonotone property of f , one has

f
(
zk , x

) ≤ 0,

which implies that the curve ∂H1
k separates the point xk from the set X∗. Furthermore, by

the definition of K∗, it is easy to see that

K∗ ⊆ H1
k ∩ X, ∀k ≥ 0,

and the desired result follows. �

The justification of the termination criterion can be seen from Proposition 2 in [23], and
the feasibility of the stepsize rule (3.1), i.e., the existence of point mk can be guaranteed
from Proposition 7 in [23].

Next, to show that the algorithm is well defined, we will show that the nonempty set K∗

is always contained in H1
k ∩ H2

k ∩ X for the projection step.

Lemma 3.2 Let Assumption 2.1 be true. Then we have K∗ ⊆ H1
k ∩ H2

k ∩ X for all k ≥ 0.

Proof From the analysis in Lemma 3.1, it is sufficient to prove that K∗ ⊆ H2
k for all k ≥ 0.

By induction, if k = 0, it is obvious that

K∗ ⊆ H2
0 = R

n.
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Suppose that

K∗ ⊆ H2
k

holds for k = l ≥ 0. Then

K∗ ⊆ H1
l ∩ H2

l ∩ X.

For any x∗ ∈ K∗, by Lemma 2.1 and the fact that

xl+1 = PH1
l ∩H2

l ∩X
(
x0),

we know that

〈
x∗ – xl+1, x0 – xl+1〉 ≤ 0.

Thus K∗ ⊆ H2
l+1, which means that K∗ ⊆ H2

k for all k ≥ 0 and the desired result follows. �

In the following, we show the expansion property of the algorithm with respect to the
initial point.

Lemma 3.3 Suppose {xk} is the generated sequence of Algorithm 3.1, we have

∥
∥xk+1 – xk∥∥2 +

∥
∥xk – x0∥∥2 ≤ ∥

∥xk+1 – x0∥∥2.

Proof By Algorithm 3.1, one has

xk+1 = PH1
k ∩H2

k ∩X
(
x0).

So xk+1 ∈ H2
k and

PH2
k

(
xk+1) = xk+1.

By the definition of H2
k , we have

〈
z – xk , x0 – xk 〉 ≤ 0, ∀z ∈ H2

k .

Thus, xk = PH2
k
(x0) from the Remark 2.1. Then, from Lemma 2.1, we obtain

∥
∥PH2

k

(
xk+1) – PH2

k

(
x0)∥∥ ≤ ∥

∥xk+1 – x0∥∥2 –
∥
∥PH2

k

(
xk+1) – xk+1 + x0 – PH2

k

(
x0)∥∥2,

which can be written as

∥∥xk+1 – xk∥∥2 ≤ ∥∥xk+1 – x0∥∥2 –
∥∥xk – x0∥∥2,
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i.e.,

∥
∥xk+1 – xk∥∥2 +

∥
∥xk – x0∥∥2 ≤ ∥

∥xk+1 – x0∥∥2,

and the proof is completed. �

To prove the boundedness of the generated sequence {xk}, we assume that the algorithm
generates an infinite sequence for simple.

Lemma 3.4 Suppose Assumption 2.1 is true. Then the generated sequence {xk} of Algo-
rithm 3.1 is bounded.

Proof By Assumption 2.1, we know that K∗ �= ∅. Since xk+1 is the projection of x0 onto
H1

k ∩ H2
k ∩ X, by Lemma 3.2 and the definition of projection, we have

∥∥xk+1 – x0∥∥ ≤ ∥∥x∗ – x0∥∥, ∀x∗ ∈ K∗.

So, {xk} is a bounded sequence. �

Since {xk} is bounded, it has an accumulation point. Without loss of generality, assume
that the subsequence {xkj} converges to x̄. Then the sequences {ykj}, {zkj} and {gkj} are
bounded from the Proposition 10 in [23], where gkj ∈ ∂f (zkj , xkj ).

Before given the next result, the following lemma is needed (for details see [23]).

Lemma 3.5 For every y ∈ K(xk), we have

f
(
xk , y

) ≥ f
(
xk , yk) +

〈
xk – yk , y – yk 〉.

In particular, f (xk , yk) + ‖xk – yk‖2 ≤ 0.

Lemma 3.6 Suppose {xkj} is the sequence presented as in Lemma 3.4. If xkj �= ykj , then

∥
∥xkj – ykj

∥
∥ → 0

as j → ∞.

Proof We distinguish for the proof two cases.
(1) If lim infk→∞ ηk > 0, by Lemma 3.4, one has

∥∥xk+1 – xk∥∥2 +
∥∥xk – x0∥∥2 ≤ ∥∥xk+1 – x0∥∥2.

Thus, the sequence {‖xk – x0‖} is nondecreasing and bounded, and hence convergent,
which implies that

lim
k→∞

∥
∥xk+1 – xk∥∥ = 0.
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On the other hand, by Assumption 2.1(i) and the fact that

zkj = (1 – ηkj )x
kj + ηkj y

kj ,

we have

0 = f
(
zkj , zkj

) ≤ (1 – ηkj )f
(
zkj , xkj

)
+ ηkj f

(
zkj , ykj

)
,

which can be written as

–f
(
zkj , ykj

) ≤
(

1
ηkj

– 1
)

f
(
zkj , xkj

)
.

By (3.1), one has

f
(
zkj , xkj

) ≥ cηkj

∥∥xkj – ykj
∥∥2 > 0.

Then we will prove that

PH1
kj

(
xkj

)
= xkj –

f (zkj , xkj )
‖gkj‖2

gkj , (3.2)

where gkj ∈ ∂f (zkj , xkj ). For all x ∈ H1
kj

, from the remark of Lemma 2.1, we only need to
prove

〈
xkj –

(
xkj –

f (zkj , xkj )
‖gkj‖2

gkj

)
,
(

xkj –
f (zkj , xkj )
‖gkj‖2

gkj

)
– x

〉
≥ 0,

i.e.,

f (zkj , xkj )
‖gkj‖2

〈
gkj , xkj – x

〉
–

f 2(zkj , xkj )
‖gkj‖2

≥ 0,

which is equivalent to

〈
gkj , x – xkj

〉
+ f

(
zkj , xkj

) ≤ 0. (3.3)

Since gkj ∈ ∂f (zkj , xkj ), by the definition of subdifferential we have

f
(
zkj , x

) ≥ f
(
zkj , xkj

)
+

〈
gkj , x – xkj

〉
, ∀x ∈ R

n.

So, from the definition of H1
kj

, for all x ∈ H1
kj

we have

f
(
zkj , x

) ≤ 0,

which implies that (3.3) holds. Moreover, (3.2) is right.
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By (3.2) and the fact that there is a constant M > 0 such that ‖gkj‖ ≤ M, we obtain

∥∥xkj – xkj+1∥∥ ≥ ∥∥xkj – PH1
kj

(
xkj

)∥∥ =
f (zkj , xkj )

‖gkj‖ ≥ cηkj

M
∥∥xkj – ykj

∥∥2,

which implies that ‖xkj – ykj‖ → 0, j → ∞, and the desired result holds.
(2) Suppose that lim infk→∞ ηk = 0, and for any subsequence {ηkj} of {ηk}, it satisfies

lim
j→∞ηkj = 0.

Let {xkj} → x̄ as j → ∞, it follows that

z̄kj =
(

1 –
ηkj

γ

)
xkj +

ηkj

γ
ykj → x̄, j → ∞.

By the definition of {ηkj}, one has

f
(
z̄kj , xkj

)
– f

(
z̄kj , ykj

)
< c

∥∥xkj – ykj
∥∥2.

Let ȳ be the limit of {ykj}. By Lemma 3.5 we have

f
(
z̄kj , xkj

)
– f

(
z̄kj , ykj

)
< c

∥
∥xkj – ykj

∥
∥2 ≤ –cf

(
xkj , ykj

)
.

Taking j → ∞ and remembering the fact that f is continuous, we obtain

f (x̄, x̄) – f (x̄, ȳ) ≤ –cf (x̄, ȳ),

which implies that f (x̄, ȳ) ≥ 0. So ‖xkj – ykj‖ → 0, j → ∞ and the desired result follows. �

Based on the analysis above, we can establish the main results of this section that the
generated sequence {xk} globally converge to a solution of the problem (1.1).

Theorem 3.1 Suppose {xk} is an infinite sequence generated in Algorithm 3.1. Let condi-
tions of Lemma 3.6 be true. Then each accumulation point of {xk} is a solution of the QEP
under the Assumption 2.1.

Proof By Lemma 3.4, without loss of generality, assume that the subsequence {xkj} con-
verges to x̄. By Lemma 3.6, one has ‖xkj – ykj‖ → 0 and

ykj = ykj – xkj + xkj → x̄,

where ykj ∈ K(xkj ) for every j. Thus x̄ ∈ K(x̄) from the fact that K is upper semicontinuous.
To prove that x̄ is a solution of the problem (1.1), since

yk = arg min
y∈K (xk )

[
f
(
xk , y

)
+

1
2
∥∥y – xk∥∥2

]
,
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the optimality condition implies that there exists ω ∈ ∂f (xk , yk) such that

0 = ω + yk – xk + sk ,

where sk ∈ NK (xk )(yk) is a vector in the normal cone to K(xk) at yk . Then we have

〈
yk – xk , y – yk 〉 ≥ 〈

ω, yk – y
〉
, ∀y ∈ K

(
xk). (3.4)

On the other hand, since ω ∈ ∂f (xk , yk) and by the well-known Moreau–Rockafellar the-
orem [35], one has

f
(
xk , y

)
– f

(
xk , yk) ≥ 〈

ω, y – yk 〉. (3.5)

By (3.4) and (3.5), we have

f
(
xk , y

)
– f

(
xk , yk) ≥ 〈

xk – yk , y – yk 〉, ∀y ∈ K
(
xk). (3.6)

Letting k = kj in (3.6)

f
(
xkj , y

)
– f

(
xkj , ykj

) ≥ 〈
xkj – ykj , y – ykj

〉
, ∀y ∈ K

(
xkj

)
.

Taking j → ∞ and remembering that f is continuous, we obtain

f (x̄, y) ≥ 0, ∀y ∈ K(x̄),

that is, x̄ is a solution of the QEP and the proof is completed. �

Theorem 3.2 Under the assumption of Theorem 3.1, the generated sequence {xk} converges
to a solution x∗ such that

x∗ = PK∗
(
x0)

under the Assumption 2.1.

Proof By Theorem 3.1, we know that the sequence {xk} is bounded and that every ac-
cumulation point x∗ of {xk} is a solution of the problem (1.1). Let {xkj} be a convergent
subsequence of {xk}, and let x∗ ∈ K∗ be its limit. Let x̄ = PK∗ (x0). Then by Lemma 3.2,

x̄ ∈ H1
kj–1 ∩ H2

kj–1 ∩ X,

for all j. So, from the iterative procedure of Algorithm 3.1,

xkj = PH1
kj–1∩H2

kj–1∩X
(
x0),

one has

∥∥xkj – x0∥∥ ≤ ∥∥x̄ – x0∥∥. (3.7)
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Thus,

∥∥xkj – x̄
∥∥2 =

∥∥xkj – x0 + x0 – x̄
∥∥2

=
∥
∥xkj – x0∥∥2 +

∥
∥x0 – x̄

∥
∥2 + 2

〈
xkj – x0, x0 – x̄

〉

≤ ∥
∥x̄ – x0∥∥2 +

∥
∥x0 – x̄

∥
∥2 + 2

〈
xkj – x0, x0 – x̄

〉
,

where the inequality follows from (3.7). Letting j → ∞, it follows that

lim sup
j→∞

∥∥xkj – x̄
∥∥2 ≤ 2

∥∥x̄ – x0∥∥2 + 2
〈
x∗ – x0, x0 – x̄

〉

= 2
〈
x∗ – x̄, x0 – x̄

〉
. (3.8)

Due to Lemma 2.1 and the fact that x̄ = PK∗ (x0) and x∗ ∈ K∗, we have

〈
x∗ – x̄, x0 – x̄

〉 ≤ 0.

Combining this with (3.8) and the fact that x∗ is the limit of {xkj}, we conclude that the
sequence {xkj} converges to x̄ and

x∗ = x̄ = PK∗
(
x0).

Since x∗ was taken as an arbitrary accumulation point of {xk}, it follows that x̄ is the
unique accumulation point of this sequence. Since {xk} is bounded, the whole sequence
{xk} converges to x̄. �

4 Numerical experiment
In this section, we will make some numerical experiments and give a numerical compari-
son with the method proposed in [23] to test the efficiency of the proposed method. The
MATLAB codes are run on a PIV 2.0 GHz personal computer under MATLAB version
7.0.1.24704(R14). In the following, ‘Iter.’ denotes the number of iteration, and ‘CPU’ de-
notes the running time in seconds. The tolerance ε means the iterative procedure termi-
nates when ‖xk – yk‖ ≤ ε.

Example 4.1 The bifunction f of the quasi-equilibrium problem is defined for each x, y ∈
R5 by

f (x, y) = 〈Px + Qy + q, y – x〉,

where q, P, Q are chosen as follows:

q =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

1
–2
–1
2

–1

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

; P =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

; Q =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

.
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Table 1 Numerical results for Example 4.1

Initial point x0

(0, 0, 0, 0, 0)T (1, 3, 1, 1, 2)T (1, 1, 1, 1, 2)T (1, 0, 1, 0, 2)T (0, 1, 1, 0, 2)T

Iter. 5 13 9 7 8
CPU 0.2060 0.5340 0.3590 0.2190 0.3430

Table 2 Numerical results for Example 4.2

Alg.31 Initial point x0

(10, 10) (10, 0) (9, 1) (9, 3) (9, 9) (8, 10)

Iter. 53 2 2 8 51 48
CPU(s) 0.7030 0.0160 0.0310 0.2030 0.8440 0.7810

The moving set K(x) =
∏

1≤i≤5 Ki(x) where for each x ∈ R5 and each i, the set Ki(x) is de-
fined by

Ki(x) =
{

yi ∈ R | yi +
∑

1≤j≤5,j �=i

xj ≥ 1
}

.

This problem was tested in [36] with initial point x0 = (1, 3, 1, 1, 2)T . They obtained the
appropriate solution after 21 iterates with the tolerance ε = 10–3.

By the algorithm proposed in this paper, the numerical results obtained for this example
are listed in Table 1 with c = γ = 0.5, ε = 10–3 and X = K(x), and with different initial points.

Now, we consider a quasi-variational inequality problems and we solve it by using Al-
gorithm 3.1 with the equilibrium function f (x, y) = 〈F(x), y – x〉.

Example 4.2 Consider a two-person game whose QVI formulation involves the function
F = (F1, F2) and the multi-valued mapping K(x) = K1(x2)×K2(x1) for each x = (x1, x2) ∈ R2,
where

F1(x) = 2x1 +
8
3

x2 – 34, F2(x) = 2x2 +
5
4

x1 – 24.25,

and

K1(x2) = {y1 ∈ R | 0 ≤ y1 ≤ 10, y1 ≤ 15 – x2},
K2(x1) = {y2 ∈ R | 0 ≤ y2 ≤ 10, y2 ≤ 15 – x1}.

This problem was tested in [23]. The numerical results of Algorithm 3.1, abbreviated as
Alg. 31, for this example are shown in Table 2 with different initial points.

For this example, we choose X = K(x) and take c = γ = 0.5. During the experiments, we
set the stopping criterion ε = 10–6. The numerical comparison of our proposed method
with the algorithms, i.e., Alg.1, Alg.1a, Alg.1b, proposed in [23] are given in Tables 3 and 4.

5 Conclusions
In this paper, we have proposed a new type of extragradient projection method for the
quasi-equilibrium problem. The generated sequence by the newly designed method pos-
sesses an expansion property with respect to the initial point. The existence results of the
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Table 3 Iterations from Alg.31, Alg.1, Alg.1a and Alg.1b respectively

Initial point Number of iterations

Alg.31 Alg.1 Alg.1a Alg.1b

(10, 0) 2 3 2 2
(10, 10) 53 255 120 120

Table 4 The CPU time from Alg.31, Alg.1, Alg.1a and Alg.1b respectively

Initial point CPU (s)

Alg.31 Alg.1 Alg.1a Alg.1b

(10, 0) 0.02 0.26 0.20 0.15
(10, 10) 0.70 8.43 3.70 2.57

problem is established under pseudomonotonicity condition of the equilibrium function
and the continuity of the underlying multi-valued mapping. Furthermore, we have shown
that the generated sequence converges to the nearest point in the solution set to the initial
point. The given numerical experiments show the efficiency of the proposed method.
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