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Abstract
In this paper, we prove an approximation theorem for equilibrium problems and
provide theoretical support for many algorithms. Simon’s bounded rationality is
illustrated by an approximation theorem, that is, bounded rationality is approaching
full rationality as its ultimate goal. Furthermore, by the methods of set-valued analysis,
we obtain the generic uniqueness and generic convergence of the solutions of
monotone equilibrium problems in the sense of Baire category. As applications, we
investigate the optimization problem, variational inequality problem and saddle point
problem as special cases.
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1 Introduction
Equilibrium problems (in short, EP) by Blum and Oettli [1] provide a mathematical frame-
work which includes optimization, variational inequalities, fixed point and saddle point
problems and noncooperative games as particular cases. Actually, the Ky Fan minimax
inequality [2] is considered to be earlier form of the equilibrium problems. The general
format is as the following:

find x∗ ∈ C such that f
(
x∗, y

) ≥ 0 for all y ∈ C,

where C is a nonempty closed subset of a metric space X and f : X × X → R is a scalar
function. The set C is called a constraint set and the function f is called a bifunction or
objective function.

This general format has received more and more interest in the last decade mainly be-
cause many theoretical and algorithmic results developed through the unifying language.
The research on equilibrium problems itself basically has the following three aspects: the
first is about the existence of the solutions of equilibrium problems, and there are fruit-
ful results achieved in [3–6] and the references therein; the second is to study the stabil-
ity of the equilibrium point of equilibrium problems, including the well-posedness and
generic stability, and many works involved in [7–11]; the third aspect is, in recent years,
the solution of the approximation as the hot topic for many scholars, which involves in the
promotion problems associated with the equilibrium problems, such as quasiequilibrium
problems, quasivariational problem, approximation of vector equilibrium problems, etc.;
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see [8, 12–17] and the literature therein. A lot of different algorithms have been designed
to implement the approximate solution of specific problems. It is natural to ask if one can
make these all kinds of algorithms to a unification of the theory? How does it depend on
the objective function, constraint set and the solving method? This will be answered in
this paper.

On the other hand, according to Simon’s bounded rationality theory [18], there are three
factors to influence the outcome of decisions. They are as follows: each decision maker can
never fully understand all the alternatives in front of himself and may choose approximate
strategies; each decision maker chooses approximate functions as objective functions; the
solving methods are also approximate during the specific calculation process. In a word,
there are three approximate ways. Therefore, the decision maker is to seek “satisfactory
solution” rather than “optimal solution”. From the point of view of practical significance,
it reflects that bounded rationality is approaching full rationality as its ultimate goal.

In this paper, our aim is to construct an approximation theorem of equilibrium prob-
lems and provide theoretical support for a number of algorithms on the equilibrium prob-
lems. The Fort theorem plays a critical role in generic uniqueness and convergence of
approximate solutions under some assumptions of mild continuity. We investigate the ap-
plications of such approximation theorem in optimization problem, variational inequality
problem and saddle point problem as our special cases.

This paper is organized as follows. In Section 2, we recall some definitions and necessary
lemmas which shall be used in the sequel. We prove an important approximation theo-
rem and give the detailed remarks in Section 3. In Section 4, we analyze the uniqueness
of the solution and make use of the Fort theorem to obtain the generic convergence on
monotonous equilibrium problems. Some applications are given to investigate our theo-
retical results in Section 5. Section 6 concludes this paper.

2 Preliminaries
Now let us recall some definitions and lemmas which we will use.

Definition 2.1 ([19, 20]) Let X be a Hausdorff topological space and f : X → R be a func-
tion.

(1) f is said to be upper pseudocontinuous at x0 ∈ X if for all x ∈ X such that
f (x0) < f (x), we have

lim sup
y→x0

f (y) < f (x);

f is said to be upper pseudocontinuous on X if it is upper pseudocontinuous at each
x of X ;

(2) f is said to be lower pseudocontinuous at x0 ∈ X if –f is upper pseudocontinuous at
x0; f is said to be lower pseudocontinuous on X if it is lower pseudocontinuous at
each x of X ;

(3) f is said to be pseudocontinuous at x ∈ X if f is both upper pseudocontinuous and
lower pseudocontinuous at x; f is said to be pseudocontinuous on X if f is
pseudocontinuous at each x of X .

Remark 2.1 Each upper (resp. lower) semicontinuous function is also upper (resp. lower)
pseudocontinuous. But the converse is not true; see the following counterexample.
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Let X = [0, 2], fi : X → R, i = 1, 2,

f1(x) :=

⎧
⎨

⎩
–x, 0 ≤ x < 1,

–2, 1 ≤ x < 2.
; f2(x) :=

⎧
⎨

⎩
x – 1, 0 ≤ x < 1,

1, 1 ≤ x < 2.

We can easily check that f1 is upper pseudocontinuous but not upper semicontinuous
at x = 1 and that f2 is not lower semicontinuous but lower pseudocontinuous at x = 1.

We need to use the methods of set-valued analysis in our paper to investigate the generic
uniqueness and convergence. The following definitions and lemmas are necessary; for
more details, see [21].

Definition 2.2 Let X, Y be two metric spaces. Denote by P0(Y ) the space of all nonempty
subsets of Y . F : X → P0(Y ) is a set-valued mapping. Then (1) F is said to be upper (lower,
respectively) semicontinuous at x ∈ X if for each open set G in Y with G ⊃ F(x) (G∩F(x) 	=
∅, respectively), there exists an open neighborhood O of x such that G ⊃ F(x′) (G ∩ F(x′) 	=
∅, respectively) for each x′ ∈ O; (2) F is said to be continuous at x ∈ X if F is both upper
semicontinuous and lower semicontinuous at x; and F is said to be continuous on X if F
is continuous at each x ∈ X; (3) F is said to be closed if the graph of F Graph(F) = {(x, y) ∈
X × Y : y ∈ F(x)} is closed.

Remark 2.2 If F : X → P0(Y ) is closed and Y is compact, then F is upper semicontinuous
at each x ∈ X.

Remark 2.3 In [21], examples show the difference between the upper semicontinuity and
lower semicontinuity. None of them could include the other one, but the following Fort
theorem [22] refers to the connection between them.

Fort theorem Let X be a Hausdorff topological space, Y be a metric space and F : X →
P0(Y ) be an upper semicontinuous compact mapping. Then there exists a residual subset
Q of X such that, for all x ∈ Q, F is lower semicontinuous at x ∈ Q.

Remark 2.4 If X is a Baire space, then the residual subset of X must be dense in X. Based
on this, the Fort theorem has another form as Lemma 2.3 of [23] by Tan, Yu and Yuan.
Moreover, the Fort theorem has been improved to adapt non-compactness cases by Xiang,
etc (see[24]).

Remark 2.5 If there exists a dense residual subset Q of X such that ∀x ∈ Q, certain property
P depending on x holds, then we say the property P is generic on X. At this point, the reader
should be referred to the recent book by Reich and Zaslavski (see [25]).

The following three lemmas play a critical role for our approximation theorem, which
can be seen as Lemma 2.1.4, Theorem 2.1.2 and Lemma 2.1.6 in [26]. For the completeness
of the structure of the paper, we write down the proofs. Let (X, d) be a metric space and
A, B be nonempty bounded subsets of X, a real number σ > 0, denoted by

U(σ , A) =
{

x ∈ X : there exists a ∈ A such that d(x, a) < σ
}

.
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It is obvious that U(σ , A) is an open subset of X. The Hausdorff distance[21] on X between
the sets A and B is defined as

h(A, B) = inf
{
σ > 0 : A ⊂ U(σ , B) and B ⊂ U(σ , A)

}
.

Lemma 1 Let (X, d) be a metric space and G be an open subset of X, and let A be a
nonempty compact subset of X. If G ⊃ A, then there exists a real number σ > 0 such that
G ⊃ U(σ , A).

Proof Assume that, by contradiction, there exists G 	⊃ U(σn, A) for any σn > 0, σn → 0 (n
is an integer and n → ∞). Then there exists a sequence {xn}∞n=1 ⊂ U(σn, A), but xn /∈ G. By
the definition of U(σn, A), there is a sequence {yn}∞n=1 ⊂ A such that d(xn, yn) ≤ σn for any
n = 1, 2, . . . . By the compactness of A, there exists a subsequence {ynk } of {yn} converging
to y∗ and y∗ ∈ A. Without loss of generality, set yn → y∗, n → ∞. By the metric triangle
inequality,

d
(
xn, y∗) ≤ d(xn, yn) + d

(
yn, y∗) → 0 (n → ∞),

we have xn → y∗. xn /∈ G implies y∗ /∈ G. In fact, y∗ ∈ A ⊂ G, that is a contradiction. �

Lemma 2 Assume that for n = 1, 2, . . . , there is a nonempty bounded subset sequence An of
X and A is a nonempty compact subset of X. If xn ∈ An and h(An, A) → 0, where h(An, A)
means the Hausdorff distance on X, then there exists a subsequence {xnk } of {xn} such that
xnk → x∗ (n → ∞) and x∗ ∈ A.

Proof By the way of contradiction, if the result is not true, then for any point x ∈ A, there
exist a neighborhood O(x) of x and a positive integer N(x) such that for any n ≥ N(x),
xn /∈ O(x). We have

⋃
x∈A O(x) ⊃ A. Since A is compact, there exist finite points denoted

by x1, x2, . . . , xk ∈ A such that
⋃k

i=1 O(xi) ⊃ A. Denote by G =
⋃k

i=1 O(xi), hence G ⊃ A and
G is an open set. By Lemma 1, there exists σ > 0 such that G ⊃ U(σ , A). �

Note that h(An, A) → 0 (n → ∞), there exists a positive integer N such that for any
n ≥ N , h(An, A) < σ . Consequently, An ⊂ U(σ , A) ⊂ G. Setting N0 ≥ max{N(x1), N(x2), . . . ,
N(xk)}, then for any n ≥ N0, xn /∈ O(xi), i = 1, 2, . . . , k. Therefore xn /∈ G, which is a contra-
diction to xn ∈ An ⊂ G.

Lemma 3 For n = 1, 2, . . . , let An be a nonempty bounded subset of X and A be a nonempty
subset of X. Let G be an open set of X. If G ∩ A 	= ∅ and h(An, A) → 0, then there exists a
positive integer N such that, for any n ≥ N , G ∩ An 	= ∅.

Proof Since G ∩ A 	= ∅, we take some point x ∈ G ∩ A, then x ∈ G and x ∈ A. There exists
σ > 0 such that O(x,σ ) ⊂ G by the openness of G. Note that h(An, A) → 0, then there exists
a positive integer N such that, for any n ≥ N , h(An, A) < σ . Hence we have A ⊂ U(σ , An).
Since x ∈ A, there exists xn ∈ An such that xn ∈ O(x,σ ) ⊂ G. Then G ∩ An 	= ∅. �
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3 An approximation theorem
In this section, we are interested in the approximation solutions of (EP) associated with
both the constraint set and the objective function of (EP). To this purpose, we introduce
a definition of approximate equilibrium point. Now we start our analysis with (EP).

Definition 3.1 Let X be a metric space, and given a function f : X × X → R and a real
number ε > 0, x∗ is said to be an ε-equilibrium point of f if

f
(
x∗, y

) ≥ –ε, ∀y ∈ X.

The ε-equilibrium point is strict if the above inequality is strict for all y 	= x∗.

Theorem A Let X be a metric space and all the following assumptions be satisfied:
(1) For any n = 1, 2, . . . , the function sequence f n : X × X → R is satisfied with

sup(x,y)∈X×X |f n(x, y) – f (x, y)| → 0, where the function f : X × X → R is upper
pseudocontinuous;

(2) For any n = 1, 2, . . . , An is a subset sequence of X with h(An, A) → 0 (n → ∞), where
A is a nonempty compact subset of X and f (x, x) = 0 for any x ∈ A;

(3) For any n = 1, 2, . . . , xn ∈ An is an εn-equilibrium point of f n, that is, f n(xn, y) ≥ –εn

for any y ∈ An, where εn > 0 and εn → 0 (n → ∞).
Then
(1) there exists a convergent subsequence {xnk } of the sequence {xn} and the limit belongs

to A, that is, xnk → x∗ (n → ∞) and x∗ ∈ A;
(2) for any y ∈ A, f (x∗, y) ≥ 0.

Proof (1) It is obvious from Lemma 2 and the proof can be omitted.
(2) It follows from (1) that we may assume that xn → x∗. If it is not true, then there exists

some point y0 ∈ A such that f (x∗, y0) < 0. Since f (x∗, x∗) = 0, then f (x∗, y0) < f (x∗, x∗). By
the definition of upper pseudocontinuity of f at (x∗, y0), we have

lim sup
x′→x∗ ,y′→y0

f
(
x′, y′) < f

(
x∗, x∗) = 0.

Hence there exists σ0 > 0 such that

lim sup
x′→x∗ ,y′→y0

f
(
x′, y′) < –σ0.

From Proposition 2.1 of [20], there exist a neighborhood O(x∗) of x∗ and a neighborhood
O(y0) of y0 such that f (x′, y′) < –σ0 for any x′ ∈ O(x∗) and any y′ ∈ O(yo).

Note the conditions that sup(x,y)∈X×X |f n(x, y) – f (x, y)| → 0 and εn → 0 (n → ∞), there
exists a positive integer N1 such that, for any n ≥ N1,

sup
(x,y)∈X×X

∣∣f n(x, y) – f (x, y)
∣∣ <

σ0

2
and εn <

σ0

2
.

Since n → ∞, xn → x∗, h(An, A) → 0 and y0 ∈ A, by Lemma 3, there exists a positive
integer N2 ≥ N1 such that, for any n ≥ N2, xn ∈ O(x∗) and O(y0) ∩ An 	= ∅. We take yn ∈
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O(y0) ∩ An. Hence we have

f (xn, yn) < –σ0

and

f n(xn, yn) < f (xn, yn) +
σ0

2
< –

σ0

2
< –εn.

That is a contradiction since xn is an εn-equilibrium point of f n. Thus this completes the
proof. �

In particular, in Theorem A if An = A, n = 1, 2, . . . , and the assumption of f (x, y) can be
weakened to f is upper pseudocontinuous in the first variable on X for any y ∈ A, then the
result holds, see Corollary 3.1.

Corollary 3.1 Let X be a metric space and all the following assumptions be satisfied:
(1) For any n = 1, 2, . . . , the function sequence f n : X × X → R is satisfied with

sup(x,y)∈X×X |f n(x, y) – f (x, y)| → 0, where the function f : X × X → R is upper
pseudocontinuous in the first variable;

(2) A is a nonempty compact subset of X and f (x, x) = 0 for any x ∈ A;
(3) For any n = 1, 2, . . . , xn ∈ A is an εn-equilibrium point of f n, that is, f n(xn, y) ≥ –εn for

any y ∈ A, where εn > 0 and εn → 0 (n → ∞).
Then
(1) there exists a convergent subsequence {xnk } of the sequence {xn} and the limitation

belongs to A, that is, xnk → x∗ (n → ∞) and x∗ ∈ A;
(2) for any y ∈ A, f (x∗, y) ≥ 0.

Remark 3.1 From Remark 2.1, Theorem A retains its validity when f : X × X → R is con-
tinuous or upper semicontinuous on X × X.

Remark 3.2 Theorem A is meaningful and widely used in all kinds of algorithms of (EP).
The significance is that an approximate sequence {xn} is obtained despite the approximate
functions (f replaced by the approximate functions f n), the approximate feasible set (An

instead of A) and the approximate calculation method (εn-equilibrium point). What is
more important, there exists a convergent subsequence {xnk } of {xn} and the convergence
point is the solutions of objective function f , that is, f (x, y) ≥ 0 for any y ∈ A. If we see the
solutions of f as the optimal solutions under full rationality and εn-equilibrium of f n as the
approximate solutions under bounded rationality, Theorem A reflects that the bounded
rationality is approximate to full rationality (see Simon [18]).

Remark 3.3 In fact Theorem A implies that every sequence {xn} must have a convergent
subsequence and every convergent point belongs to the set A. If the function f (x, y) has a
unique solution x∗ on A, then there must be xn → x∗.

Remark 3.4 We cannot ensure that f n(x, y) must be pseudocontinuous on X × X for n =
1, 2, . . . , even if f (x, y) is pseudocontinuous on X ×X and sup(x,y)∈X×X |f n(x, y) – f (x, y)| → 0
(n → ∞).
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Remark 3.5 We cannot guarantee that the set sequence An must be compact on X, while
A is a nonempty compact set on X and h(An, A) → 0 (n → ∞). There is a simple example
that X = R, A = [0, 1], An = ( 1

n , 1 – 1
n ). It is easy to see that h(An, A) → 0 (n → ∞) but An is

open.

4 Generic convergence
In this section, we transfer our interest to the uniqueness and the convergence solution
of (EP). Firstly we construct an equilibrium problems’ space under some assumptions and
study the continuity of the set of solutions under the uniform metric on the objective
functions. We will show that the set-valued mapping on the solutions of (EP) is upper
semicontinuous and compact on this space. Then we consider a subspace of this space in
which the equilibrium problems have a monotonicity property.

Assume that (X, d) is a nonempty compact metric space.
The problem space C is given by

C =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f : X × X → R :

∀x ∈ X, f (x, x) = 0;
∀y ∈ X, x → f (x, y) is upper semicontinous on X;
∀x, y ∈ X, sup

(x,y)∈X×X
|f (x, y)| < +∞;

there exists x ∈ X such that f (x, y) ≥ 0 for any y ∈ X.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

For any f1, f2 ∈ C, define

ρ(f1, f2) = sup
(x,y)∈X×X

∣∣f1(x, y) – f (x, y)
∣∣.

It is easy to check that (C,ρ) is a complete space.
For any f ∈ C, denote by F(f ) all the solutions of f , i.e., F(f ) = {x ∈ X : ∀y ∈ X, f (x, y) ≥ 0}.

By the definition of C, we know F(f ) 	= ∅. Then the correspondence f → F(f ) defines a
set-valued mapping F : C → P0(X), and the following lemma shows the compactness and
semicontinuity of the set-valued mapping.

Lemma 4.1 The set-valued mapping F : C → P0(X) is compact and upper semicontinuous
on C.

Proof Since X is compact, by Remark 2.2, it suffices to show that the graph of F is closed,
where Graph(F) = {(f , x) ∈ C ×X : x ∈ F(f )}. Suppose that fn ∈ C with fn → f and xn ∈ F(fn)
with xn → x, we shall show x ∈ F(f ).

For any y ∈ X, ∀n = 1, 2, . . . , it follows from xn ∈ F(fn) that fn(xn, y) ≥ 0. Since fn → f ,
xn → x and f is upper semicontinuous at x, we have

f (x, y) ≥ lim sup
n

f (xn, y)

= lim sup
n

[(
f (xn, y) – fn(xn, y)

)
+ fn(xn, y)

]

≥ lim sup
n

[
f (xn, y) – fn(xn, y)

]

≥ lim
n

(–ρ(fn, f ) = 0.

Therefore x ∈ F(f ) and this completes the proof. �
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Remark 4.1 By the Fort theorem and Lemma 4.1, the generic continuity holds, that is,
there exists a dense residual subset Q of C such that ∀f ∈ Q, F is continuous at f .

In the following, we consider the subset C1 of C where the function f has a monotonicity
property for the generic uniqueness.

Denote by

C1 =

{

f ∈ C :
f is monotone on X × X,
i.e.,∀x, y ∈ X, f (x, y) + f (y, x) ≤ 0.

}

It is easy to see that C1 is closed in C and (C1,ρ) is also a complete space.

Theorem 4.1 There exists a dense residual subset Q1 of C1 such that ∀f ∈ Q1, F(f ) is a
singleton set.

Proof By the Fort theorem, there exists a dense residual subset Q1 of C1 such that, for any
f ∈ Q1, the set-valued mapping F is lower semicontinuous at f .

Assume, by contradiction, that F(f ) is not a singleton set for some f ∈ Q1. Then there
exist at least two points x1, x2 ∈ F(f ) and x1 	= x2. And there exist an open neighborhood
V of x1 and an open neighborhood W of x2 such that V ∩ W = ∅.

∀x ∈ X, define the function h : X → [0, 1] as follows:

h(x) =
d(x, x1)

d(x, x1) + d(x, X\V )
,

where d(x, X\V ) = infy∈X\V d(x, y).
It is obvious that h(x) is continuous at each x ∈ X and h(x1) = 0, h(x) = 1 for any x ∈ X\V .

Specially, there must be h(x) = 1 for any x ∈ W since W ⊂ X\V and hence h(x2) = 1.
∀x ∈ X, ∀y ∈ X, ∀n = 1, 2, . . . , define the function fn : X × X → R as follows:

fn(x, y) = f (x, y) +
1
n

[
h(y) – h(x)

]
.

It is easily checked that fn ∈ C1 and ρ(fn, f ) → 0 (n → ∞).
Note that x2 ∈ F(f ) ∩ W , then F(f ) ∩ W 	= ∅. Since F is lower semicontinuous at f and

fn → f , there exists a positive integer n0 large enough such that F(fn0 ) ∩ W 	= ∅. Take xn0 ∈
F(fn0 )∩W , then xn0 ∈ W and xn0 ∈ F(fn0 ). We have h(xn0 ) = 1 and fn0 (xn0 , y) ≥ 0 for any y ∈
X. Especially, fn0 (xn0 , x1) ≥ 0. Since f ∈ C1 and x1 ∈ F(f ), we have f (xn0 , x1) ≤ –f (x1, xn0 ) ≤
0. On the other hand, from the definition of fn0 we get

fn0 (xn0 , x1) = f (xn0 , x1) +
1
n0

[
h(x1) – h(xn0 )

] ≤ –
1
n0

< 0.

That is a contradiction to fn0 (xn0 , y) ≥ 0, ∀y ∈ X. Therefore F(f ) must be a singleton set. �

Remark 4.2 ∀f ∈ C1, f is pseudocontinuous when f is monotone on X × X. Since
sup(x,y)∈X×X |fn(x, y) – f (x, y)| → 0 (n → ∞) and fn(xn, y) ≥ –εn for any y ∈ X, where εn > 0,
εn → 0, there is a sequence {xn} ⊂ X. All the conditions of Theorem A are satisfied and
Theorem A holds.



Qiu et al. Journal of Inequalities and Applications  (2018) 2018:30 Page 9 of 12

Combining Theorem A and Theorem 4.1, we can obtain the generic convergence of
solutions of (EP).

Theorem 4.2 Let xn be an εn-equilibrium point of fn with the convergence function f under
the uniform metric. Then there exists a dense residual subset Q2 of C1 such that, for any
f ∈ Q2, f has a unique solution x∗ with xn → x∗ and f (x∗, y) ≥ 0 for all y ∈ X.

5 Applications
In [1, 17] it is shown that several problems in nonlinear analysis can be written as (EP). In
this section we deal with various such problems as applications of Theorem A.

5.1 Minimization problem
Let h : D ⊆ X → R be a function with D being a closed set. The minimization problem is
defined as

find x ∈ D such that h(y) ≥ h(x), ∀y ∈ D.

Setting f (x, y) = h(y) – h(x), we have that the minimization problem is equivalent to (EP).
By Theorem A, we give the following Proposition 5.1.

Proposition 5.1 Assume that the following assumptions are satisfied:
(1) For each n = 1, 2, . . . , hn : D → R is the function sequence with

supx∈D |hn(x) – h(x)| → 0 (n → ∞), where h : D → R is pseudocontinuous;
(2) For each n = 1, 2, . . . , An is a nonempty subset of D with h(An, A) → 0 (n → ∞),

where A is a nonempty subset of D;
(3) For each n = 1, 2, . . . , xn ∈ An satisfies

hn(xn) ≤ inf
u∈An

hn(u) + εn,

where εn ≥ 0, εn → 0 (n → ∞).
Then
(1) there must exist a convergent subsequence {xnk } of the sequence {xn} such that

xnk → x∗ (n → ∞) and x∗ ∈ A.
(2) h(x∗) = minu∈A h(u).

Proof ∀x, y ∈ D, let f (x, y) = h(y) – h(x) and f n(x, y) = hn(y) – hn(x) for any n = 1, 2, . . . . Then
it is easy to check that all the conditions of Theorem A are satisfied and it is natural to
obtain the results (1) and (2). This completes the proof. �

5.2 Variational inequality problem
Let T : K ⊆ Rn → Rn be a function with K being a closed set, where Rn means an n-
dimensional Euclidean space. The variational inequality problem is defined as follows:

find x ∈ K such that
〈
T(x), y – x

〉 ≥ 0, ∀y ∈ K ,

where 〈·〉 means the product of Rn.
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Setting f (x, y) = 〈T(x), y – x〉 for any x, y ∈ K , we have that the problem is equivalent to
(EP).

For n = 1, 2, . . . , let Tn : K ⊆ Rn → Rn be a function sequence approximate to T with
the uniform metric, where T : K ⊆ Rn → Rn is continuous. And then we define f n(x, y) =
〈Tn(x), y – x〉. According to Theorem A, we obtain the following Proposition 5.2.

Proposition 5.2 Let T , f , {f n}, K , {Kn} be as in the above. If the following assumptions are
satisfied:

(1) For each n = 1, 2, . . . , Tn : K → Rn is the function sequence with
supx∈K |Tn(x) – T(x)| → 0 (n → ∞), where T : K ⊆ Rn → Rn is continuous;

(2) For each n = 1, 2, . . . , Kn is a nonempty subset of Rn with h(Kn, K) → 0 (n → ∞),
where K is a nonempty subset of Rn;

(3) For each n = 1, 2, . . . , xn ∈ Kn satisfies

〈
Tn(xn), y – xn

〉 ≥ –εn, ∀y ∈ Kn,

where εn ≥ 0, εn → 0 (n → ∞);
then

(1) there must exist a convergent subsequence {xnk } of a sequence {xn} such that
xnk → x∗ (n → ∞) and x∗ ∈ K ;

(2) 〈T(x∗), y – x∗〉 ≥ 0, ∀y ∈ K .

Proof In a similar way as in the proof of Theorem A, the conclusion remains. �

5.3 Saddle point problem
Let B, C be nonempty sets and the function φ : B × C → R. The saddle point problem is
to find (x∗, y∗) ∈ B × C such that

φ
(
x, y∗) ≤ φ

(
x∗, y∗) ≤ φ

(
x∗, y

)
, ∀(x, y) ∈ B × C.

Setting f ((x1, x2), (y1, y2)) = φ(x1, y2) – φ(y1, x2), ∀(x1, x2), (y1, y2) ∈ B × C and A = B × C,
we have that the saddle point problem is equivalent to (EP).

For each n = 1, 2, . . . , let φn : An = Bn × Cn → R be a sequence function and f n((x1, x2),
(y1, y2)) = φn(x1, y2) – φn(y1, x2).

Proposition 5.3 Let φ, {φn}, f , {f n}, A, {An} be as in the above note. If the assumptions are
satisfied:

(1) For each n = 1, 2, . . . , φn : An → R is pseudocontinuous with
sup(x,y)∈A |φn(x, y) – φ(x, y)| → 0 (n → ∞);

(2) For each n = 1, 2, . . . , An is a nonempty subset of X with h(An, A) → 0 (n → ∞),
where A is a nonempty subset of X ;

(3) For each n = 1, 2, . . . , (xn, yn) ∈ An satisfies

φn(xn, y) – φn(x, yn) ≥ –εn, ∀(x, y) ∈ An,

where εn ≥ 0, εn → 0 (n → ∞);
then



Qiu et al. Journal of Inequalities and Applications  (2018) 2018:30 Page 11 of 12

(1) there must exist a convergent subsequence {(xnk , ynk )} of a sequence {(xn, yn)} such
that (xnk , ynk ) → (x∗, y∗) (n → ∞) and (x∗, y∗) ∈ A;

(2) φ(x∗, y) – φ(x, y∗) ≥ 0, ∀(x, y) ∈ A.

Proof The proof is straightforward and so we omit it. �

6 Conclusion
In this paper, we have provided an approximation theorem for equilibrium problems. Ac-
cording to the theorem, there are three similar ways, namely approximate functions as
objective functions, similar strategies as practical strategies and approximate calculation
methods as practical methods. In Theorem A, we obtain the convergent subsequence of
an approximate solutions sequence of approximate problems and the limit belongs to the
set of solutions of objective functions. The significance is to illustrate Simon’s bounded
rationality theory, and bounded rationality is an approximate way to full rationality. Fur-
thermore, by the methods of set-valued analysis, especially the Fort theorem, we get the
generic uniqueness and convergence of solutions of a class of equilibrium problems in the
sense of Baire category. Some examples are given to investigate our theoretical results.
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