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1 Introduction
Let B(H) (resp. Bh(H)) be the set of all bounded linear operators (resp. all self-adjoint op-
erators) on a Hilbert space H. A real-valued continuous function f defined on an interval
I is said to be operator convex if f (tA + (1 – t)B) ≤ tf (A) + (1 – t)f (B) for all t ∈ [0, 1] and
all self-adjoint operators A, B in Bh(H) with spectra contained in I . We recall the Davis-
Choi-Jensen inequality (so-called Jensen’s operator inequality): f (�(A)) ≤ �(f (A)) for ev-
ery self-adjoint operator A with m ≤ A ≤ M, where f is an operator convex function on
an interval [m, M], and � : B(H) �→ B(K) is a unital positive linear mapping (see [1–3]).

Jensen’s inequality is one of the most important inequalities. It has many applications
in mathematics and statistics, and some other well-known inequalities are its particular
cases. There is an extensive literature devoted to Jensen’s operator inequality regarding its
variuous generalizations, refinements, and extensions; see, for example, [3–9].

On the other hand, Mond and Pečarić [10, 11] (also see [12, 13]) investigated converses
of Jensen’s inequality. To present these results, we introduce some abbreviations. Let f :
[m, M] →R, m < M. Then a linear function through (m, f (m)) and (M, f (M)) has the form
h(z) = kf z + lf , where

kf :=
f (M) – f (m)

M – m
and lf :=

Mf (m) – mf (M)
M – m

. (1)

Using the Mond-Pečarić method, a generalized complementary inequality of Jensen’s
operator inequality is presented in [14]. A continuous version of this inequality is pre-
sented in [15]. Also, Mićić, Pavić, and Pečarić [16] obtained a better bound than that in

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1616-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1616-z&domain=pdf
http://orcid.org/0000-0002-2613-4037
mailto:jmicic@fsb.hr
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[15] under the assumptions that (xt)t∈T is a bounded continuous field of self-adjoint ele-
ments in a unital C∗-algebraAwith spectra in [m, M], m < M, defined on a locally compact
Hausdorff space T equipped with a bounded Radon measure μ, and (φt)t∈T is a unital field
of positive linear mappings φt : A → B from A to another unital C∗-algebra B. If mx and
Mx, mx ≤ Mx, are the bounds of the self-adjoint operator x =

∫
T φt(xt) dμ(t), f : [m, M] →R

is convex, g : [mx, Mx] →R, F : U × V →R is bounded and operator monotone in the first
variable, with f ([m, M]) ⊆ U, and g([mx, Mx]) ⊆ V , then

F
[∫

T
φt

(
f (xt)

)
dμ(t), g

(∫

T
φt(xt) dμ(t)

)]

≤ C11K ≤ C1K, (2)

where

C1 ≡ C1(F , f , g, m, M, mx, Mx) = sup
mx≤z≤Mx

F
[
kf z + lf , g(z)

]
,

C ≡ C(F , f , g, m, M) = sup
m≤z≤M

F
[
kf z + lf , g(z)

]
.

Moreover, Mićić, Pečarić, and Perić [7] obtained a refinement of (2). For convenience, we
introduce abbreviations x̃ and δf as follows:

x̃ ≡ x̃xt ,φt (m, M) :=
1
2

1K –
1

M – m

∫

T
φt

(∣
∣
∣
∣xt –

m + M
2

1H
∣
∣
∣
∣

)

dμ(t), (3)

where m, M, m < M, are scalars such that the spectra of xt are in [m, M], t ∈ T ;

δf ≡ δf (m, M) := f (m) + f (M) – 2f
(

m + M
2

)

, (4)

where f : [m, M] → R is a continuous function. Obviously, x̃ ≥ 0, and δf ≥ 0 for convex f
or δf ≤ 0 for concave f .

Under the above assumptions, they proved in [7] that

F
[∫

T
φt

(
f (xt)

)
dμ(t), g

(∫

T
φt(xt) dμ(t)

)]

≤ F
[

kf

∫

T
φt(xt) dμ(t) + lf 1K – δf x̃, g

(∫

T
φt(xt) dμ(t)

)]

≤ sup
mx≤z≤Mx

F
[
kf z + lf – δf mx̃, g(z)

]
1K ≤ C11K ≤ C1K, (5)

where mx̃ is the lower bound of the operator x̃. More precisely, they obtained the following
improved difference- and radio-type inequalities (for a convex function f ):

∫

T
φt

(
f (xt)

)
dμ(t) ≤ g

(∫

T
φt(xt) dμ(t)

)

+ max
mx≤z≤Mx

{
kf z + lf – g(z)

}
1K – δf x̃, (6)

∫

T
φt

(
f (xt)

)
dμ(t) ≤ max

mx≤z≤Mx

{
kf z + lf

g(z)

}

g
(∫

T
φt(xt) dμ(t)

)

– δf x̃, (7)
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and

∫

T
φt

(
f (xt)

)
dμ(t) ≤ max

mx≤z≤Mx

{
kf z + lf – δf mx̃

g(z)

}

g
(∫

T
φt(xt) dμ(t)

)

, (8)

where g > 0 on [mx, Mx] in (7) and (8).
In this paper, we obtain some complementary inequalities to Jensen’s operator inequality

for twice differentiable functions. We obtain new inequalities improving the same type
inequalities given in [17]. In particular, we improve inequalities (5), (7), and (8). Applying
the obtained results, we give some inequalities for quasi-arithmetic means.

2 Some auxiliary results without convexity
In this section, we give some results, which we will use in the next sections.

To prove our next result, we need the following lemma.

Lemma A ([7]) Let f be a convex function on an interval I , m, M ∈ I , and p1, p2 ∈ [0, 1]
such that p1 + p2 = 1. Then

min{p1, p2}δf ≤ p1f (m) + p2f (M) – f (p1m + p2M) ≤ max{p1, p2}δf , (9)

where δf := f (m) + f (M) – 2f ( m+M
2 ).

Proof These results follow from [18, Theorem 1, p. 717] for n = 2. For the reader’s conve-
nience, we give an elementary proof.

Since f is convex, we have

f
(

αx + βy
α + β

)

≤ αf (x) + βf (y)
α + β

(10)

for all x, y ∈ I and positive weights α, β .
Suppose that 0 < p1 < p2 < 1, p1 + p2 = 1. Then, applying (10), we obtain

2p2f
(

p2m + p2M
2p2

)

– f (p1m + p2M)

≤ (2p2 – 1)f
(

(p2 – p1)m + (p1 – p1)M
2p2 – 1

)

≤ (p2 – p1)f (m) + (p1 – p1)f (M)

= p2
(
f (m) + f (M)

)
–

(
p1f (m) + p2f (M)

)
.

It follows that

p1f (m) + p2f (M) – f (p1m + p2M)

≤ p2

(

f (m) + f (M) – 2f
(

m + M
2

))

= max{p1, p2}δf ,

which gives the second inequality in (9).
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Also, applying (10), we obtain

f (p1m + p2M) – 2p1f
(

p1m + p1M
2p1

)

≤ (1 – 2p1)f
(

(p1 – p1)m + (p2 – p1)M
1 – 2p1

)

≤ (p1 – p1)f (m) + (p2 – p1)f (M)

= p1f (m) + p2f (M) – p1
(
f (m) + f (M)

)
.

It follows that

p1f (m) + p2f (M) – f (p1m + p2M)

≥ p1

(

f (m) + f (M) – 2f
(

m + M
2

))

= min{p1, p2}δf ,

which gives the first inequality in (9).
If p1 = 0, p2 = 1, or p1 = 1, p2 = 0, then inequality (9) holds, since f is convex. If p1 = p2 =

1/2, then we have an equality in (9). �

Applying Lemma A, we obtain the following inequalities for twice differentiable func-
tions.

Lemma 1 Let A be a self-adjoint operator with σ (A) ⊆ [m, M] for some m < M, let � :
B(H) → B(K) be a unital positive linear mapping, and let f : [m, M] → R be a twice dif-
ferentiable function.

If α ≤ f ′′ on [m, M] for some α ∈ R, then

�
(
f (A)

) ≤ kf �(A) + lf 1K –
α

2
(
(M + m)�(A) – mM1K – �

(
A2))

–
(

δf –
α

4
(M – m)2

)

Ã (11)

and

�
(
f (A)

) ≥ kf �(A) + lf 1K –
α

2
(
(M + m)�(A) – mM1K – �

(
A2))

–
(

δf –
α

4
(M – m)2

)

(1K – Ã), (12)

where kf , lf are defined by (1), δf is defined by (4), and

Ã ≡ ÃA,�(m, M) :=
1
2

1K –
1

M – m
�

(∣
∣
∣
∣A –

m + M
2

1H
∣
∣
∣
∣

)

. (13)

If f ′′ ≤ β on [m, M] for some β ∈R, then the reverse inequalities are valid in (11) and (12)
with β instead of α.
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Proof We prove only the case α ≤ f ′′. Using (9), we obtain

p1g(m) + p2g(M) – max{p1, p2}δg

≤ g(p1m + p2M) ≤ p1g(m) + p2g(M) – min{p1, p2}δg (14)

for every convex function g on [m, M] and p1, p2 ∈ [0, 1], p1 + p2 = 1. For any z ∈ [m, M],
we can write

z =
M – z
M – m

m +
z – m

M – m
M = p1(z)m + p2(z)M.

By (14) we get

g(z) ≤ M – z
M – m

g(m) +
z – m

M – m
g(M) – z̃δg = kgz + lg – z̃δg (15)

and

g(z) ≥ M – z
M – m

g(m) +
z – m

M – m
g(M) – (1 – z̃)δg = kgz + lg – (1 – z̃)δg , (16)

where we denote z̃ := 1
2 – 1

M–m |z – m+M
2 | and use the equalities

min

{
M – z
M – m

,
z – m

M – m

}

=
1
2

–
1

M – m

∣
∣
∣
∣z –

m + M
2

∣
∣
∣
∣ = z̃,

max

{
M – z
M – m

,
z – m

M – m

}

=
1
2

+
1

M – m

∣
∣
∣
∣z –

m + M
2

∣
∣
∣
∣ = 1 – z̃.

Next, since σ (A) ⊆ [m, M], applying the functional calculus to (15) and (16), we obtain

�
(
g(A)

) ≤ kg�(A) + lg1K – δgÃ (17)

and

�
(
g(A)

) ≥ kg�(A) + lg1K – δg(1 – Ã), (18)

respectively. Since gα(z) = f (z) – α
2 z2 is convex on [m, M], (17) and (18) give

�
(
f (A)

) ≤ α

2
�

(
A2) + kf �(A) + lf 1K –

α

2
(
(M + m)�(A) – mM1K

)

–
(

δf –
α

4
(M – m)2

)

Ã

and

�
(
f (A)

) ≥ α

2
�

(
A2) + kf �(A) + lf 1K –

α

2
(
(M + m)�(A) – mM1K

)

–
(

δf –
α

4
(M – m)2

)

(1 – Ã),

respectively, which give the desired inequalities (11) and (12). �
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Remark 1 (1) Observe that, in (11) and (12), (M + m)�(A) – mM1K – �(A2) ≥ 0, 0 ≤ Ã ≤
1
2 1K, 1

2 1K ≤ 1K – Ã ≤ 1K, and δf – α
4 (M – m)2 ≥ 0 ≥ δf – β

4 (M – m)2, since the functions
z �→ f (z) – α

2 z2 and z �→ β

2 z2 – f (z) are convex on [m, M].
Then, (11) improves the first inequality in [17, Lemma 2.1], that is,

f
(
�(A)

) ≤ kf �(A) + lf 1K –
α

2
(
(M + m)�(A) – mM1K – �

(
A2))

–
(

δf –
α

4
(M – m)2

)

Ã

≤ kf �(A) + lf 1K –
α

2
(
(M + m)�(A) – mM1K – �

(
A2)).

Also, the inequality with β improves the second inequality in [17, Lemma 2.1]:

f
(
�(A)

) ≥ kf �(A) + lf 1K –
β

2
(
(M + m)�(A) – mM1K – �

(
A2))

–
(

δf –
β

4
(M – m)2

)

Ã

≥ kf �(A) + lf 1K –
β

2
(
(M + m)�(A) – mM1K – �

(
A2)).

(2) Using (15), we get

f
(
�(A)

) ≤ kf �(A) + lf 1K –
α

2
(
(M + m)�(A) – mM1K – �(A)2)

–
(

δf –
α

4
(M – m)2

)

Â, (19)

where Â := 1
2 1K – 1

M–m |�(A) – m+M
2 1H|. This inequality improves the third inequality in

[17, Lemma 2.1]. Also, using (16), we get its complementary inequality

f
(
�(A)

) ≥ kf �(A) + lf 1K –
α

2
(
(M + m)�(A) – mM1K – �(A)2)

–
(

δf –
α

4
(M – m)2

)

(1K – Â).

(3) Combining (19) with the corresponding inequalities with β in Lemma 1, we can get
improved inequalities [17, Theorem 2.1]. We omit the details.

3 Main results
In this section, we generalize or improve some inequalities in Section 1 and [17].

Applying Lemma (1) and using the Mond-Pečarić method, we present versions of in-
equalities (2) and (5) without convexity and for one operator. We omit the proof.

Lemma 2 Let A, �, m, M, kf , lf , δf , and Ã be as in Lemma 1, and let m�(A) and M�(A),
m�(A) ≤ M�(A), be the bounds of the self-adjoint operator �(A). Let f : [m, M] → R be a
twice differentiable function with f ([m, M]) ⊆ U , g : [m�(A), M�(A)] → R be continuous
with g([m�(A), M�(A)]) ⊆ V , and F : U × V → R be bounded and operator monotone in
the first variable.
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If α ≤ f ′′ on [m, M] for some α ∈ R, then

F
[
�

(
f (A)

)
, g

(
�(A)

)]

≤ F
[

kf �(A) + lf 1K –
α

2
(
(M + m)�(A) – mM1K – �

(
A2))

–
(

δf –
α

4
(M – m)2

)

Ã, g
(
�(A)

)
]

≤ sup
m�(A)≤z≤M�(A)

F
[

kf z + lf –
α(M + m)z – αmM – M1

2

–
(

δf –
α

4
(M – m)2

)

mÃ, g(z)
]

1K

≤ sup
m�(A)≤z≤M�(A)

F
[

kf z + lf –
α(M + m)z – αmM – M1

2
, g(z)

]

1K, (20)

where M1 is the upper bound of the operator α�(A2), M1 ≤ max{αm2,αM2}, and mÃ is the
lower bound of the operator Ã.

Further,

F
[
�

(
f (A)

)
, g

(
�(A)

)]

≥ F
[

kf �(A) + lf 1K –
α

2
(
(M + m)�(A) – mM1K – �

(
A2))

–
(

δf –
α

4
(M – m)2

)

(1K – Ã), g
(
�(A)

)
]

≥ inf
m�(A)≤z≤M�(A)

F
[

kf z + lf –
α(M + m)z – αmM – m1

2

–
(

δf –
α(M – m)2

4

)

(1 – mÃ), g(z)
]

1K

≥ inf
m�(A)≤z≤M�(A)

F
[

kf z + lf –
α(M + m)z – αmM – m1

2
– δf (1 – mÃ), g(z)

]

1K, (21)

where m1 is the lower bound of the operator α�(A2), m1 ≤ min{αm2,αM2}.
However, if f ′′ ≤ β on [m, M] for some β ∈ R, then the reverse inequalities are valid in

(20) and (21) with inf instead of sup, sup instead of inf, β instead of α, M1 instead of m1,
m1 instead of M1, and MÃ instead of mÃ, where MÃ is the upper bound of the operator Ã.

Example 1 To illustrate Lemma 2, let F(u, v) = u – v and f (z) ≡ g(z) = z3 on [m, M]. Since
f ′′(z) = 6z, we can put α = 6m and β = 6M. Then δf = 3

4 (M – m)2(m + M) (he sign which is
not determined) and δf – α

4 (M – m)2 = 3
4 (M – m)3 ≥ 0.

If m < 0 < M, then f is neither convex nor concave on [m, M], and (6) is not in general
valid:

�
(
A3)

� �(A)3 + max
m�(A)≤z≤M�(A)

{
M – z
M – m

m3 +
z – m

M – m
M3 – z3

}

1K

–
3
4

(M – m)2(m + M)Ã, (22)
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but applying the first inequality in (20), we have:

�
(
A3) ≤ �(A)3 + max

m�(A)≤z≤M�(A)

{
M – z
M – m

m3 +
z – m

M – m
M3 – z3

}

1K

– 3m
(
(M + m)�(A) – mM1K – �

(
A2)) –

3
4

(M – m)3Ã

≤ �(A)3 + max
m�(A)≤z≤M�(A)

{
(M – z)m3 + (z – m)M3

M – m
– z3

– 3m(M + m)(z – M) –
3
4

(M – m)3mÃ

}

1K. (23)

It suffices to put

A =
1
2

⎛

⎜
⎝

–5 –3 3
–3 –2 3
3 3 1

⎞

⎟
⎠ , m = –4.32147,

M = 1.5127 and �
(
(aij)1≤i,j≤3

)
= (aij)1≤i,j≤2.

Then (22) and (23) become

1
4

(
–184 –126
–126 –85

)

�
1
8

(
–233 –144
–144 –89

)

– 19.4133I2

+ 71.7032

(
0.116574 –0.136402

–0.136402 0.159602

)

and

1
4

(
–184 –126
–126 –85

)

<
1
8

(
–233 –144
–144 –89

)

– 19.4133I2

+ 12.9644

(
2.80904 –3.28683

–3.28683 3.84587

)

– 148.936

(
0.116574 –0.136402

–0.136402 0.159602

)

<
1
8

(
–233 –144
–144 –89

)

+ 76.434I2,

respectively.

Applying Lemma 2 to a strictly convex function f , we improve inequalities (2) and (5).

Theorem 3 Let the assumptions of Lemma 2 hold.
If f is a strictly convex twice differentiable on [m, M] and 0 < α ≤ f ′′, then

F
[
�

(
f (A)

)
, g

(
�(A)

)]

≤ sup
m�(A)≤z≤M�(A)

F
[

kf z + lf –
α(M + m)z – αmM – M1

2
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–
(

δf –
α

4
(M – m)2

)

mÃ, g(z)
]

1K

≤ sup
m�(A)≤z≤M�(A)

F
[

kf z + lf –
(

δf –
α

4
(M – m)2

)

mÃ, g(z)
]

1K

≤ sup
m�(A)≤z≤M�(A)

F
[
kf z + lf , g(z)

]
1K. (24)

Proof Since (M + m)�(A) – mM1K – �(A2) ≥ 0 and α > 0 gives α(M + m)�(A) – αmM –
M1 ≥ 0, we have

�
(
f (A)

) ≤ kf �(A) + lf 1K –
α

2
(
(M + m)�(A) – mM1K – �

(
A2))

–
(

δf –
α

4
(M – m)2

)

Ã

≤ kf �(A) + lf 1K –
1
2
(
α(M + m)�(A) – αmM – M1

)

–
(

δf –
α

4
(M – m)2

)

mÃ1K

≤ kf �(A) + lf 1K –
(

δf –
α

4
(M – m)2

)

mÃ1K

≤ kf �(A) + lf 1K.

Since F(·, v) is operator monotone in the first variable and m�(A) ≤ �(A) ≤ M�(A), we ob-
tain (24). �

Remark 2 We can easily generalize the above results to a bounded continuous field of
self-adjoint elements in a unital C∗-algebra A. Indeed, replacing A with xt and � with
φt in (11), integrating, and using the equality

∫
T φt(1H) dμ(t) = 1K, we get the following

inequality:

∫

T
φt

(
f (xt)

)
dμ(t) ≤ kf

∫

T
φt(xt) dμ(t) + lf 1K

–
α

2

(

(M + m)
∫

T
φt(xt) dμ(t) – mM1K –

∫

T
φt

(
x2

t
)

dμ(t)
)

–
(

δf –
α

4
(M – m)2

)

x̃.

Next, using the operator monotonicity of F(·, v) in the first variable, we obtain the desired
inequalities.

3.1 Difference-type inequalities
Applying Lemma 2 to the function F(u, v) = u – v, we can obtain complementary inequal-
ities to Jensen’s operator inequality for neither a convex nor a concave function f . These
are versions of the corresponding inequalities for one operator given in [16] and [7]. We
omit the details.

Next, applying this result to a convex function f , we obtain an improved inequality (6)
and its complementary inequality for one operator.
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Theorem 4 Let A, �, Ã, and the bounds be as in Lemma 2.
If g : [m�(A), M�(A)] → R is a continuous function, f : [m, M] → R is a strictly convex

twice differentiable function, and 0 < α ≤ f ′′, then

�
(
f (A)

) ≤ g
(
�(A)

)
+ max

m�(A)≤z≤M�(A)

{(

kf –
α

2
(M + m)

)

z + lf +
αmM + M1

2
– g(z)

}

1K

–
(

δf –
α

4
(M – m)2

)

mÃ1K

≤ g
(
�(A)

)
+ max

m�(A)≤z≤M�(A)

{
kf z + lf – g(z)

}
1K –

(

δf –
α

4
(M – m)2

)

mÃ1K

≤ g
(
�(A)

)
+ max

m�(A)≤z≤M�(A)

{
kf z + lf – g(z)

}
1K (25)

and

�
(
f (A)

) ≥ g
(
�(A)

)
+ min

m�(A)≤z≤M�(A)

{
kf z + lf – g(z)

}
–

α

2

(
M – m

2

)2

1K

–
(

δf –
α

4
(M – m)2

)

(1 – mÃ)1K

≥ g
(
�(A)

)
+ min

m�(A)≤z≤M�(A)

{
kf z + lf – g(z)

}
1K – δf (1 – mÃ)1K. (26)

Proof Using Theorem 3, we obtain (25). Next, (26) follows from the following inequalities:

α

2
(
�

(
A2) + mM1K – (M + m)�(A)

)
–

(

δf –
α

4
(M – m)2

)

(1K – Ã)

≥ α

2
(
�(A)2 + mM1K – (M + m)�(A)

)
–

(

δf –
α

4
(M – m)2

)

(1 – mÃ)1K

=
α

2
(
�(A) – M

)(
�(A) – m

)
–

(

δf –
α

4
(M – m)2

)

(1 – mÃ)1K

≥ –
α

2

(
M – m

2

)2

1K –
(

δf –
α

4
(M – m)2

)

(1 – mÃ)1K

≥ –δf (1K – Ã). �

Remark 3 (i) Using elementary calculus, we can precisely determine the values of the
constants

C = max
m�(A)≤z≤M�(A)

{
az + b – g(z)

}
,

c = min
m�(A)≤z≤M�(A)

{
az + b – g(z)

}
for all a, b ∈ R,

provided that g is a convex or concave function:
� if g is concave, then

C = max
{

am�(A) + b – g(m�(A)), aM�(A) + b – g(M�(A))
}

(27)
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and

c =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

am�(A) + b – g(m�(A)) if g ′
–(z) ≤ a for every z ∈ (m�(A), M�(A)),

az0 + b – g(z0) if g ′
–(z0) ≥ a ≥ g ′

+(z0)

for some z ∈ (m�(A), M�(A)),

aM�(A) + b – g(M�(A)) if g ′
+(z) ≥ a for every z ∈ (m�(A), M�(A));

(28)

� if g is convex, then C is equal to RHS in (28) with reverse inequality signs, and c is
equal to RHS in (27) with min instead of max.

(ii) Using the same technique as in Remark 2, we can obtain generalizations of the above
results for a bounded continuous field of self-adjoint elements in a unital C∗-algebra. We
omit the details.

(iii) If f ≡ g is strictly convex twice differentiable on [m, M] and 0 < α ≤ f ′′ on [m, M],
then (25) improves inequality in [16, Theorem 3.4]. If f is operator convex, then Jensen’s
operator inequality holds, but if f is not operator convex, then (26) gives its complemen-
tary inequality.

Applying Lemma 2 and Theorem 4 to the functions f (z) = zp and g(z) = zq for selected
integers p and q, we obtain the following example. These inequalities are generalizations
of some inequalities in [7, Corollary 7] for nonpositive operators.

Example 2 Let A be self-adjoint operator with σ (A) ⊆ [m, M] for some m < 0 < M, � :
B(H) → B(K) be a unital positive linear mapping, Ã be defined by (13), and let m�(A),
M�(A), mÃ, MÃ, m1, and M1 be the bounds as before.

(i) Let p > 1 be an odd number (see LHS of Figure 1), and let q > 0 be an integer. Then
f ′′(z) = p(p – 1)zp–2 is a monotone function. So we can take α = f ′′(m) and β = f ′′(M) in
Lemma 2 and obtain

�
(
Ap) ≤ �(A)q + C�1K +

1
2
(
M1 + α�mM

)
1K

–
(

mp + Mp – 21–p(m + M)p –
α�

4
(M – m)2

)

mÃ1K

≤ �(A)q + C�1K +
1
2
(
M1 + α�mM

)
1K, (29)

Figure 1 The power function f (z) = zp and bounds of a nonpositive self-adjoint operator.
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where α� = p(p – 1)mp–2,

C� =

⎧
⎪⎪⎨

⎪⎪⎩

kpm�(A) + lp – mq
�(A) if (q/kp)1/(1–q) ≤ m�(A),

lp + (q – 1)(q/kp)q/(1–q) if m�(A) ≤ (q/kp)1/(1–q) ≤ M�(A),

kpM�(A) + lp – Mq
�(A) if (q/kp)1/(1–q) ≥ M�(A),

(30)

kp := Mp–mp

M–m – α�

2 (M + m), and lp := (Mmp – mMp)/(M – m).
Also,

�
(
Ap) ≥ �(A)q + c�1K +

1
2
(
m1 + α�mM

)
1K

–
(

mp + Mp – 21–p(m + M)p –
α�

4
(M – m)2

)

(1 – mÃ)1K, (31)

where

c� = min
{

kpm�(A) + lp – mq
�(A), kpM�(A) + lp – Mq

�(A)
}

. (32)

Moreover, the reverse inequalities are valid in (29) and (31) with c� instead of C�, m1

instead of M1, M1 instead of m1, C� instead of c�, and β� = p(p – 1)Mp–2 instead of α�.
(ii) Let p > 1 be an even number (see RHS of Figure 1), and let q > 0 be an integer. Then

f ′′(z) ≥ 0 is an even function. So we can put α = p(p–1) ·min{mp–2, Mp–2} > 0 in Theorem 4.
Applying (25) and (26), we obtain

�
(
Ap) ≤ �(A)q + C�1K +

1
2
(
M1 + α�mM

)
1K

–
(

mp + Mp – 21–p(m + M)p –
α

4
(M – m)2

)

mÃ1K

≤ �(A)q + C�
11K –

(

mp + Mp – 21–p(m + M)p –
α

4
(M – m)2

)

mÃ1K

≤ �(A)q + C�
11K –

(
mp + Mp – 21–p(m + M)p)mÃ1K

≤ �(A)q + C�
11K, (33)

where C� and C�
1 are defined by (30) with kp := Mp–mp

M–m – α�

2 (M + m) and kp := Mp–mp

M–m , re-
spectively, and

�
(
Ap) ≥ �(A)q + c�1K –

α

2

(
M – m

2

)2

1K

–
(

mp + Mp – 21–p(m + M)p –
α

4
(M – m)2

)

(1 – mÃ)1K

≥ �(A)q + c�1K –
(
mp + Mp – 21–p(m + M)p)(1 – mÃ)1K, (34)

where c� is defined by (32).

Remark 4 Applying Theorem 4 to strictly positive operators and the functions f (z) = zp

and g(z) = zq, p, q ∈R, we obtain an improvement of inequalities given in [7, Corollary 7].
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Let A be a self-adjoint operator with σ (A) ⊆ [m, M] for some 0 < m < M.
(i) If p ∈ (–∞, 0] ∪ [1,∞), then (33) and (34) hold with α = p(p – 1)mp–2. If

q = p ∈ [–1, 0] ∪ [1, 2], then the inequality �(A)p ≤ �(Ap) is tighter than (34).
(ii) If p ∈ (0, 1), then the reverse inequalities are valid in (33) and (34) with

α = p(p – 1)Mp–2. If q = p, then the inequality �(Ap) ≤ �(A)p is tighter than (33).
In all these inequalities the constants C� and c� are determined as follows:
� if q ∈ (–∞, 0]∪ [1,∞), then C� (or C�

1) and c� are defined by (30) and (32), respectively.
� if q ∈ (0, 1), then C� (or C�

1) is equal to RHS in (32) with max instead of min and c� is
equal to the right side in (30) with reverse inequality signs.

3.2 Ratio-type converse inequalities
Applying Lemma 2, similarly to the previous subsection, we can obtain complementary
inequalities to Jensen’s operator inequality for neither a convex nor a concave function f .
These are versions of the corresponding inequalities for one operator given in [16] and
[7]. We omit the details.

Moreover, applying this result to a convex function f , we improve inequality (7) and
obtain its complementary inequality for one operator.

Theorem 5 Let A, �, Ã, and the bounds be as in Lemma 2.
If g : [m�(A), M�(A)] → (0,∞) is a continuous function, f : [m, M] →R is a strictly convex

twice differentiable function, and 0 < α ≤ f ′′, then

�
(
f (A)

) ≤ max
m�(A)≤z≤M�(A)

{ (kf – α
2 (M + m))z + lf + αmM+M1

2
g(z)

}

g
(
�(A)

)

–
(

δf –
α

4
(M – m)2

)

mÃ1K

≤ max
m�(A)≤z≤M�(A)

{
kf z + lf

g(z)

}

g
(
�(A)

)
–

(

δf –
α

4
(M – m)2

)

mÃ1K

≤ max
m�(A)≤z≤M�(A)

{
kf z + lf

g(z)

}

g
(
�(A)

)
(35)

and

�
(
f (A)

) ≥ min
m�(A)≤z≤M�(A)

{
kf z + lf

g(z)

}

g
(
�(A)

)
–

α

2

(
M – m

2

)2

1K

–
(

δf –
α

4
(M – m)2

)

(1 – mÃ)1K

≥ min
m�(A)≤z≤M�(A)

{
kf z + lf

g(z)

}

g
(
�(A)

)
– δf (1 – mÃ)1K. (36)

Proof We only prove the first inequality in (35). The function

z �→ (kf – α
2 (M + m))z + lf + αmM+M1

2
g(z)
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is continuous on [m�(A), M�(A)], and its global extremes exist. So, there are λ ∈ R and
z0 ∈ [m�(A), M�(A)] such that

λ = max
m�(A)≤z≤M�(A)

{ (kf – α
2 (M + m))z + lf + αmM+M1

2
g(z)

}

=
(kf – α

2 (M + m))z0 + lf + αmM+M1
2

g(z0)
.

Then

(kf – α
2 (M + m))z + lf + αmM+M1

2
g(z)

≤ λ for all z ∈ [m�(A), M�(A)].

Since g > 0, we have

(

kf –
α

2
(M + m)

)

z + lf +
αmM + M1

2
– λg(z) ≤ 0 for all z ∈ [m�(A), M�(A)].

It follows that

max
m�(A)≤z≤M�(A)

{(

kf –
α

2
(M + m)

)

z + lf +
αmM + M1

2
– λg(z)

}

= 0.

Now, applying (25) to the functions f and λ · g , we obtain the desired inequality. �

Remark 5 (i) Similarly to Theorem 5, we improve inequality (8) and give its complemen-
tary inequality for one operator. For example, under the assumptions of Lemma 2, if f is
strictly convex and twice differentiable on [m, M] and 0 < α ≤ f ′′, then we have

�
(
f (A)

) ≤ max
m�(A)≤z≤M�(A)

{ (kf – α
2 (M + m))z + lf + αmM+M1

2 – (δf – α
4 (M – m)2)mÃ

g(z)

}

× g
(
�(A)

)

≤ max
m�(A)≤z≤M�(A)

{
kf z + lf – δf mÃ

g(z)

}

g
(
�(A)

)
.

(ii) Using elementary calculus, we can precisely determine the values of the constants

K = max
m�(A)≤z≤M�(A)

{
az + b
g(z)

}

, k = min
m�(A)≤z≤M�(A)

{
az + b
g(z)

}

for every a, b ∈R,

provided that g is a convex or concave function:
� if g > 0 is concave, then

K = max

{
am�(A) + b
g(m�(A))

,
aM�(A) + b
g(M�(A))

}

(37)
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and

k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

am�(A)+b
g(m�(A)) if g ′

–(z) ≥ ag(z)
az+b for every z ∈ (m�(A), M�(A)),

az0+b
g(z0) if g ′

–(z0) ≤ ag(z0)
az0+b ≤ g ′

+(z0) for some z ∈ (m�(A), M�(A)),
aM�(A)+b
g(M�(A)) if g ′

+(z) ≤ ag(z)
az+b for every z ∈ (m�(A), M�(A));

(38)

� if g > 0 is convex, then K is equal to RHS in (38) with reverse inequality signs, and k is
equal to RHS in (37) with min instead of max.

(iii) If f ≡ g is strictly convex twice differentiable on [m, M] and 0 < α ≤ f ′′ on [m, M],
then (35) improves [7, Theorem 12, ineq. (37)]. If f is an operator convex function, then
Jensen’s operator inequality is tighter than (36). Otherwise, (36) gives complementary in-
equality to (36).

Applying Lemma 2 and Theorem 5 to the functions f (z) = zp and g(z) = zq for selected
integers p and q, we can obtain inequalities of ratio type similar to Example 2. If we put
p = q, then we can obtain generalizations of some inequalities in [7, Corollary 13] for non-
positive operators. We omit the details.

Applying Theorem 5 to strictly positive operators and the functions f (z) ≡ g(z) = zp, we
obtain the following corollary, which improves [7, Corollary 13] and [17, Corollary 3.2].

Corollary 6 Let A be a self-adjoint operator with σ (A) ⊆ [m, M] for some 0 < m < M, and
let � and the bounds be as before. If p ∈ (0, 1), then �(Ap) ≤ �(A)p, and if p ∈ [–1, 0]∪[1, 2],
then �(A)p ≤ �(Ap). However, if p ∈ (–∞, –1) ∪ (2,∞) and α = p(p – 1)mp–2, then

�
(
Ap) ≤ K�

1 �(A)p –
(

mp + Mp – 21–p(m + M)p –
α

4
(M – m)2

)

mÃ1K

≤ K��(A)p –
(

mp + Mp – 21–p(m + M)p –
α

4
(M – m)2

)

mÃ1K

≤ K��(A)p,

where

K� =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

kpm�(A)+lp
mp

�(A)
if plp

m�(A)
≥ (1 – p)kp,

K(m, M, p) if plp
m�(A)

< (1 – p)kp < plp
M�(A)

,
kpM�(A)+lp

Mp
�(A)

if plp
M�(A)

≤ (1 – p)kp,

(39)

kp := (Mp – mp)/(M – m), lp := (Mmp – mMp)/(M – m), and K(m, M, p) is the well-known
Kantorovich constant (see [3, Section 2.7]):

K(m, M, p) :=
mMp – Mmp

(p – 1)(M – m)

(
p – 1

p
Mp – mp

mMp – Mmp

)p

, p ∈R.

The constant K�
1 is calculated by (39) replacing kp with kp – α

2 (M + m) and lp with lp +
αmM+M1

2 .
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4 Quasi-arithmetic mean
As a continuation of our previous considerations, we study the order between quasi-
arithmetic operator means defined by

Mϕ ≡Mϕ(x,�) := ϕ–1
(∫

T
�t

(
ϕ(xt)

)
dμ(t)

)

, (40)

where (xt)t∈T is a bounded continuous field of self-adjoint operators in a C∗-algebra B(H)
with spectra in [m, M] for some scalars m < M, (φt)t∈T is a unital field of positive linear
mappings φt : B(H) → B(K), and ϕ ∈ C([m, M]) is a strictly monotone function.

There is an extensive literature devoted to quasi-arithmetic means; see, for example, [3,
18–29].

First, we recall the operator order between quasi-arithmetic means (see e.g. [27, Theo-
rem 2.1]): Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-arithmetic mean (40), and
let ψ ,ϕ ∈ C([m, M]) be strictly monotone functions. Then

Mϕ(x,�) ≤Mψ (x,�), (41)

provided that
(i) ψ ◦ ϕ–1 is operator convex, and ψ–1 is operator monotone, or

(ii) ψ ◦ ϕ–1 is operator concave, and –ψ–1 is operator monotone, or
(iii) ϕ–1 is operator convex, and ψ–1 is operator concave.
The order (41) without operator convexity or operator concavity is given in [27, Theo-

rem 3.1]) under spectra conditions. In [30], some techniques are used while manipulating
some inequalities related to continuous fields of operators.

Complementary inequalities to (41) are observed in [27]. We give a general result, which
is tighter than that given in [27, Theorem 2.2]: Let (xt)t∈T , (φt)t∈T , m, and M be as in
the definition of the quasi-arithmetic mean (40), let ψ ,ϕ ∈ C([m, M]) be strictly monotone
functions, and let F : [m, M] × [m, M] →R be a bounded and operator monotone function
in its first variable.

If (i) ψ ◦ϕ–1 is convex and ψ–1 is operator monotone, or (i′) ψ ◦ϕ–1 is concave and –ψ–1

is operator monotone, then

F
[
Mψ (x,�),Mϕ(x,�)

] ≤ sup
mϕ≤z≤Mϕ

F
[
ψ–1(kϕ,ψϕ(z) + lϕ,ψ

)
, z

]
1K

≤ sup
m≤z≤M

F
[
ψ–1(kϕ,ψϕ(z) + lϕ,ψ

)
, z

]
1K. (42)

where mϕ and Mϕ , mϕ < Mϕ , are bounds of the mean Mϕ(x,�), and

kϕ,ψ :=
ψ(Mϕ) – ψ(mϕ)
ϕ(Mϕ) – ϕ(mϕ)

,

lϕ,ψ :=
ϕ(Mϕ)ψ(mϕ) – ϕ(mϕ)ψ(Mϕ)

ϕ(Mϕ) – ϕ(mϕ)
.

(43)

Now we will study an extension and improvement of (42).
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For convenience, we introduce some notation corresponding to δf in (4) and Ã in
(13):

δϕ,ψ := ψ(mϕ) + ψ(Mϕ) – 2ψ ◦ ϕ–1
(

ϕ(mϕ) + ϕ(Mϕ)
2

)

,

δ̃ϕ,ψ := δϕ,ψ –
α

4
(
ϕ(Mϕ) – ϕ(mϕ)

)2,

x̃ϕ :=
1
2

1K –
1

|ϕ(Mϕ) – ϕ(mϕ)|
∣
∣
∣
∣ϕ(Mϕ) –

ϕ(Mϕ) + ϕ(mϕ)
2

1K
∣
∣
∣
∣.

(44)

First, we give a version of Lemma 2 for means. This is an extension of (42) without
convexity or concavity.

Lemma 7 Let (xt)t∈T , (φt)t∈T , m, and M be as in the definition of the quasi-arithmetic
mean (40), let ψ ,ϕ ∈ C(I) be strictly monotone functions on an interval I ⊇ [m, M], let
F : [m, M]× [m, M] →R be a bounded and operator monotone function in its first variable,
and let mϕ and Mϕ , mϕ < Mϕ , be bounds of Mϕ(x,�).

(i) If ψ ◦ ϕ–1 is a twice differentiable function such that α ≤ (ψ ◦ ϕ–1)′′ for some α ∈ R,
ψ–1 is operator monotone, and

σ

((

kϕ,ψ –
α(ϕ(Mϕ) + ϕ(mϕ))

2

)

ϕ(z)1K

+
(

lϕ,ψ +
αϕ(Mϕ)ϕ(mϕ)

2

)

1K +
α

2
ϕ(Mϕ)2 – δx̃ϕ

)

⊆ ψ(I) (45)

for all z ∈ [mϕ , Mϕ], then

F
[
Mψ (x,�),Mϕ(x,�)

]

≤ sup
mϕ≤z≤Mϕ

F
[

ψ–1
((

kϕ,ψ –
α(ϕ(Mϕ) + ϕ(mϕ))

2

)

ϕ(z)

+ lϕ,ψ +
αϕ(Mϕ)ϕ(mϕ) + M̃1

2
– δ̃ϕ,ψmx̃ϕ

)

, z
]

1K

≤ sup
mϕ≤z≤Mϕ

F
[

ψ–1
((

kϕ,ψ –
α(ϕ(Mϕ) + ϕ(mϕ))

2

)

ϕ(z)

+ lϕ,ψ +
αϕ(Mϕ)ϕ(mϕ) + M̃1

2

)

, z
]

1K, (46)

where M̃1 is the upper bound of αϕ(Mϕ)2, and mx̃ϕ is the lower bound of x̃ϕ .
If, in addition,

σ

((

kϕ,ψ –
α(ϕ(Mϕ) + ϕ(mϕ))

2

)

ϕ(z)1K

+
(

lϕ,ψ +
αϕ(Mϕ)ϕ(mϕ)

2

)

1K +
α

2
ϕ(Mϕ)2 – δ(1 – x̃ϕ)

)

⊆ ψ(I) (47)
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for all z ∈ [mϕ , Mϕ] then

F
[
Mψ (x,�),Mϕ(x,�)

]

≥ inf
mϕ≤z≤Mϕ

F
[

ψ–1
((

kϕ,ψ –
α(ϕ(Mϕ) + ϕ(mϕ))

2

)

ϕ(z)

+ lϕ,ψ +
αϕ(Mϕ)ϕ(mϕ) + m̃1

2
– δ̃ϕ,ψ (1 – mx̃ϕ )

)

, z
]

1K

≥ inf
mϕ≤z≤Mϕ

F
[

ψ–1
((

kϕ,ψ –
α(ϕ(Mϕ) + ϕ(mϕ))

2

)

ϕ(z)

+ lϕ,ψ +
αϕ(Mϕ)ϕ(mϕ) + m̃1

2
– δϕ,ψ (1 – mx̃ϕ )

)

, z
]

1K, (48)

where m̃1 is the lower bound of αϕ(Mϕ)2.
(ii) If (ψ ◦ ϕ–1)′′ ≤ β for some β ∈ R and –ψ–1 is operator monotone, then (46) and (48)

are valid with β instead of α, m̃1 instead of M̃1, M̃1 instead of m̃1, and Mx̃ϕ instead of mx̃ϕ ,
where Mx̃ϕ is the upper bound of x̃ϕ .

Proof We prove only case (i).
Replacing A with ϕ(Mϕ) and � with the identical mapping in (11), we obtain

ψ(Mψ ) ≤ ψ(Mϕ) – ψ(Mϕ)
ϕ(Mϕ) – ϕ(mϕ)

ψ(mϕ) +
ψ(Mϕ) – ψ(mϕ)
ϕ(Mϕ) – ϕ(mϕ)

ψ(Mϕ)

–
α

2
((

ϕ(Mϕ) + ϕ(mϕ)
)
ϕ(Mϕ) – ϕ(Mϕ)ϕ(mϕ)1K – ϕ(Mϕ)2)

–
(

δϕ,ψ –
α

4
(
ϕ(Mϕ) – ϕ(mϕ)

)2
)

x̃ϕ .

Next, applying the operator monotonicity of ψ–1 and taking into account (45), we obtain

Mψ ≤ ψ–1
(

kϕ,ψψ(Mϕ) + lϕ,ψ

–
α

2
((

ϕ(Mϕ) + ϕ(mϕ)
)
ϕ(Mϕ) – ϕ(Mϕ)ϕ(mϕ)1K – ϕ(Mϕ)2) – δ̃ϕ,ψ x̃ϕ

)

.

Now, by the operator monotonicity of F(·, v), since m1K ≤ mϕ1K ≤Mϕ ≤ Mϕ1K ≤ M1K,
we obtain the desired sequence of inequalities (46). �

Example 3 We can apply Lemma 7 for the functions ϕ(z) = sin z and ψ(z) = ez and one
operator. We denote the appropriate means by

Msin(A,�) = arcsin
(
�(sin A)

)
and Me(A,�) = ln

(
�

(
eA))

,

where A is a self-adjoint operator with σ (A) ⊆ [m, M] for some – π
2 < m < – 1√

2 , 0 < M < π
2 ,

and � : B(H) → B(K) is a unital positive linear mapping. Let ms and Ms, ms ≤ Ms, be the
bounds of the mean Msin, and let Ã be defined by (13).

The function ψ ◦ ϕ–1(z) = earcsin z is neither convex nor concave on [–1, 1], but the
function (ψ ◦ ϕ–1)′′(z) = earcsin z z+

√
1–z2√

(1–z2)3
is monotone increasing. So we can put α = (ψ ◦

ϕ–1)′′(sin ms) and β = (ψ ◦ ϕ–1)′′(sin Ms).
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Applying Lemma 7 and using a simple operator account, we can obtain a ratio-type order
or difference-type order between these means.

Applying Lemma 7 to a strictly convex function ψ ◦ ϕ–1, we obtain improvements of
inequality (42) and appropriate inequalities in [26]. We omit the proof.

Theorem 8 Let the assumptions of Lemma 7 hold.
(i) If ψ ◦ ϕ–1 is a strictly convex twice differentiable function, 0 < α ≤ (ψ ◦ ϕ–1)′′ for some

α ∈ R, ψ–1 is operator monotone, and (45) holds, then

F
[
Mψ (x,�),Mϕ(x,�)

]

≤ sup
mϕ≤z≤Mϕ

F
[

ψ–1
((

kϕ,ψ –
α(ϕ(Mϕ) + ϕ(mϕ))

2

)

ϕ(z)

+ lϕ,ψ +
αϕ(Mϕ)ϕ(mϕ) + M̃1

2
– δ̃ϕ,ψmx̃ϕ

)

, z
]

1K

≤ sup
mϕ≤z≤Mϕ

F
[
ψ–1(kϕ,ψϕ(z) + lϕ,ψ – δ̃ϕ,ψmx̃ϕ

)
, z

]
1K

≤ sup
mϕ≤z≤Mϕ

F
[
ψ–1(kϕ,ψϕ(z) + lϕ,ψ

)
, z

]
1K. (49)

(ii) If ψ ◦ ϕ–1 is a strictly concave twice differentiable function, (ψ ◦ ϕ–1)′′ ≤ β < 0, and
–ψ–1 is operator monotone, then (49) is valid with β instead of α, m̃1 instead of M̃1, and
Mx̃ϕ instead of mx̃ϕ .

5 Results and discussion
In this paper, we obtain some complementary inequalities to Jensen’s inequality for a real-
valued twice differentiable functions f . We obtain a generalization of known inequalities
for a wider class of twice differentiable functions. Also, we obtain a refinement of some
known inequalities for a class of continuous concave or convex functions. Finally, we ob-
tain some complementary inequalities to quasi-arithmetic means with weaker conditions.

Our results have enriched the theory for the complementary inequality to Jensen’s op-
erator inequality.

6 Conclusions
Jensen’s inequality is one of the most important inequalities. It has many applications in
mathematics and statistics and some other well-known inequalities are its particular cases.

This paper conducts a further study to the development of the existing theory of Jensen’s
inequality for self-adjoint operators in a Hilbert space. The main contribution is the ob-
tained complementary to Jensen’s inequality for general real-valued twice differentiable
functions. The numerical examples confirm that the proposed method gives new inequal-
ities for functions that are neither convex nor concave.

Moreover, our method gives improvements of inequalities given in [10–13] for convex
or concave functions. The conditions in this paper are weaker than those in the previous
research.

Finally, using the same method, we obtained new inequalities with quasi-arithmetic
means. For further research, we should study improved inequalities given in [27].
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28. Mitrinović, DS: Analytic Inequalities. Springer, Berlin (1970)
29. Zhao, X, Li, L, Zuo, H: Operator iteration on the Young inequality. J. Inequal. Appl. 2016, 302 (2016)
30. Moslehian, MS: An operator extension of the parallelogram law and related norm inequalities. Math. Inequal. Appl.

14(3), 717-725 (2011)

http://arxiv.org/abs/arXiv:1705.09784

	Some complementary inequalities to Jensen's operator inequality
	Abstract
	MSC
	Keywords

	Introduction
	Some auxiliary results without convexity
	Main results
	Difference-type inequalities
	Ratio-type converse inequalities

	Quasi-arithmetic mean
	Results and discussion
	Conclusions
	Acknowledgements
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


