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Abstract
It is known that the concept of ratio monotonicity is closely related to log-convexity
and log-concavity. In this paper, by exploring the log-behavior properties of a new
combinatorial sequence defined by Z.-W. Sun, we completely solve a conjecture on
ratio monotonicity by him.
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1 Introduction
To be self-contained in this paper, let us first review some necessary and important con-
cepts.

Let {zn}n≥0 be a number-theoretic or combinatorial sequence of positive numbers. It is
called (strictly) ratio monotonic if the sequence {zn/zn–1}n≥1 is (strictly) monotonically in-
creasing or decreasing. The concept of ratio monotonicity is closely related log-convexity
and log-concavity. A sequence {zn}∞n=0 is called log-convex (resp. log-concave) if for all n ≥ 1,

zn–1zn+1 ≥ z2
n

(
resp.zn–1zn+1 ≤ z2

n
)
. (1.1)

Correspondingly, if the inequality in (1.1) is strict, then we call the sequence {zn}∞n=0 strictly
log-convex (resp. log-concave).

Clearly, a sequence {zn}∞n=0 is (strictly) log-convex (resp. log-concave) if and only if the se-
quence {zn+1/zn}n≥0 is (strictly) increasing (resp. decreasing). So, to study the ratio mono-
tonicity is equivalent to study the log-convexity and log-concavity; see [1].

In recent years, Sun [2, 3] posed a series of conjectures on monotonicity of sequences of
the forms {zn+1/zn}∞n≥0, { n√zn}n≥1, and { n+1√zn+1/ n√zn}n≥1. It is worth mentioning that many
scholars have made valuable progress on this topic, such as Chen et al. [4], Hou et al. [5],
Luca and Stănică [6], Wang an Zhu [1], Sun et al. [7], and Zhao [8].

Sun [2] posed a conjecture on ratio monotonicity of the sequence

Rn =
n∑

k=0

(
n
k

)(
n + k

k

)
1

2k – 1
, n = 0, 1, 2, . . . . (1.2)

He conjectured that the sequence {Rn}∞n=0 is strictly ratio increasing to the limit 3 + 2
√

2
and that the sequence { n√Rn}∞n=1 is strictly ratio decreasing to the limit 1.
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It is worth noting that Sun [2] also put forward a similar conjecture on the ratio mono-
tonicity of the sequence

Sn =
n∑

k=0

(
n
k

)2(2k
k

)
(2k + 1), n = 0, 1, 2, . . . . (1.3)

By using a result on the sequence {Sn}∞n=0 in [9], Sun et al. [7] deduced a three-term recur-
rence for Sn and thus completely solved this conjecture on {Sn}∞n=0.

However, the ratio monotonicity conjecture on the sequence {Rn}∞n=0 can not be attacked
with the methods of Sun et al. [7] since there exists no three-term recurrence for Rn. In
fact, we can easily acquire a four-term recurrence for Rn. For example, using the holonomic
method in [10] or the Zeilberger algorithm [11, 12], we can find the following recurrence:

(n + 3)Rn+3 – (7n + 13)Rn+2 + (7n + 15)Rn+1 – (n + 1)Rn = 0. (1.4)

In this paper, by studying the log-behavior properties of the sequence {Rn}∞n=0 we com-
pletely solve the ratio monotonicity conjecture on {Rn}∞n=0.

Theorem 1.1 The sequence {Rn+1/Rn}∞n=3 is strictly increasing to the limit 3 + 2
√

2, and the
sequence { n+1√Rn+1/ n√Rn}∞n=5 is strictly decreasing to the limit 1.

In what follows, in Section 2 we first introduce the interlacing method which can be used
to verify log-behavior property of a sequence. In Section 3 we establish a lower bound and
an upper bound for Rn+1/Rn. We will give and prove some limits and log-behavior prop-
erties related to the sequence {Rn}∞n=0 in Section 4 and finally prove Theorem 1.1 therein.
In the end, we conclude this paper with some open conjectures for further research.

2 The interlacing method
The interlacing method can be found in [13], yet it was formally considered as a method to
solve logarithmic behavior of combinatorial sequences by Dos̆lić and Veljan [14], in which
it was also called the sandwich method.

Let us give a simple introduction to this method to be self-contained in our paper. Sup-
pose that {zn}∞n≥0 is a sequence of positive numbers and let

qn =
zn

zn–1
, n ≥ 1.

By the inequality in (1.1), the log-convexity or log-concavity of a sequence {zn}n≥0 is
equivalent, respectively, to qn ≤ qn+1 or qn ≥ qn+1 for all n ≥ 1. Generally, it is not easy
to prove the monotonicity of {qn}n≥1, yet if we can find an increasing (resp. a decreasing)
sequence {bn}n≥0 such that

bn–1 ≤ qn ≤ bn (resp. bn–1 ≥ qn ≥ bn) (2.1)

for all n ≥ 1, or at least for all n ≥ N for some positive integer N , then we can show its
monotonicity. Based on these arguments, the following proposition is obvious.
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Proposition 2.1 Suppose that {zn}n≥0 is a sequence of positive numbers. Then for some
positive integer N , the sequence {zn}n≥N is log-convex (resp. log-concave) if there exists an
increasing(resp. a decreasing) sequence {bn}n≥0 such that

bn–1 ≤ qn ≤ bn (resp. bn–1 ≥ qn ≥ bn)

for n ≥ N + 1.

3 Bounds for Rn+1/Rn

In this section, we establish lower and upper bounds for Rn+1/Rn.

Lemma 3.1 Let rn = Rn+1
Rn

and

bn = 3 + 2
√

2 –
3(41

√
2 + 58)

(14
√

2 + 20)n

=
(

3 –
9

2n

)
+

√
2
(

2 –
3
n

)
.

Then, for n ≥ 3, we have

bn < rn < bn+1.

Proof The recurrence relationship (1.4) implies that

Rn+3

Rn+2
=

7n + 13
n + 3

–
7n + 15

n + 3
Rn+1

Rn+2
+

n + 1
n + 3

Rn

Rn+2
for n ≥ 0.

This equation can be rewritten as follows:

rn+2 =
7n + 13

n + 3
–

7n + 15
n + 3

· 1
rn+1

+
n + 1
n + 3

· 1
rnrn+1

. (3.1)

Now we proceed the proof by induction.
First, note that

b3 =
3
2

+
√

2 ≈ 2.91421, b4 =
5
8

(3 + 2
√

2) ≈ 3.64277, r3 =
87
25

≈ 3.48,

so it is easy to verify that b3 < r3 < b4.
Suppose that bn < rn < bn+1 for n ≤ k +1. It suffices to show that rk+2 < bk+3 and rk+2 > bk+2.

We have

rk+2 – bk+3

=
7k + 13

k + 3
–

7k + 15
k + 3

· 1
rk+1

+
k + 1
k + 3

· 1
rkrk+1

– bk+3

<
7k + 13

k + 3
–

7k + 15
k + 3

· 1
bk+2

+
k + 1
k + 3

· 1
bkbk+1

– bk+3

=
(7k + 13)bkbk+1bk+2 – (7k + 15)bkbk+1 + (k + 1)bk+2 – (k + 3)bkbk+1bk+2bk+3

(k + 3)bkbk+1bk+2
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=
3(2k(–4(179 + 127

√
2)k + 1110

√
2 + 1573) – 844

√
2 – 1197)

16k(k + 1)(k + 2)(k + 3)bkbk+1bk+2

=
–24(179 + 127

√
2)k2 + 3(3146 + 2220

√
2)k – 3(1197 + 844

√
2)

16k(1 + k)(2 + k)(k + 3)bkbk+1bk+2
.

Let f (x) = ax2 + bx + c, where a = –24(179 + 127
√

2), b = 3(3146 + 2220
√

2), and c =
–3(1197 + 844

√
2). So we obtain that f (k) ≤ f (3) = –3(4647 + 3328

√
2) < 0 for k ≥ 3 since

– b
2a = 3146+2220

√
2

16(179+127
√

2) ≈ 1.09549. This gives us rk+2 – bk+3 < 0.
The proof of rk+2 > bk+2 is similar, so we omit it for brevity.
According to the above analysis and the inductive argument, it follows that

bn < rn < bn+1 for all n ≥ 3. �

Remark 3.2 This bound was found by a lot of computer experiments. It is interesting to
explore a unified method that can be used to find lower and upper bounds for the sequence
{ zn+1

zn
}n≥0, where {zn}n≥0 is a sequence satisfying a four-term recurrence.

4 Log-behavior of the sequence {Rn}∞n=0

In this section, some log-behavior and limits properties can be deduced by using
Lemma 3.1.

Theorem 4.1 The sequence {Rn}∞n=4 is strictly log-convex. Equivalently, the sequence
{Rn+1/Rn}∞n=3 is strictly increasing.

Proof First, note that R2
3 – R2R4 = 252 – 7 · 87 = 16 > 0. By Lemma 3.1 we have

bn < rn =
Rn+1

Rn
< bn+1 < rn+1 < bn+2 for n ≥ 3.

This gives that the sequence {rn}∞n=3 is strictly increasing, which implies that {Rn}∞n=4 is
log-convex by Proposition 2.1. �

Since

lim
n→∞ bn = lim

n→∞ bn+1 = 3 + 2
√

2,

the following corollary easily follows.

Corollary 4.2 For the sequence {Rn}∞n=0, we have

lim
n→∞

Rn+1

Rn
= 3 + 2

√
2.

Theorem 4.3 The sequence { n√Rn}∞n=1 is strictly increasing. Moreover,

lim
n→∞

n
√

Rn = 3 + 2
√

2. (4.1)
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Proof By Theorem 4.1 we have

Rn+1

Rn
>

Rn

Rn–1
for n ≥ 3.

Since R1 = 1, we can deduce that

Rn =
R2

R1
· R3

R2

[
·R1 · R4

R3
· · · Rn

Rn–1

]
< R3

(
Rn+1

Rn

)n–2

for n ≥ 1. (4.2)

For n ≥ 11, we have

Rn+1

Rn
≥ R12

R11
=

16,421,831
3,242,377

> 5 =
√

R3. (4.3)

Combining (4.2) and (4.3) gives us

Rn+1
n < Rn

n+1 for n ≥ 11.

This is equivalent to

(
Rn+1

n
) 1

n(n+1) <
(
Rn

n+1
) 1

n(n+1) for n ≥ 11,

that is,

n
√

Rn < n+1
√

Rn+1 for n ≥ 11.

For 1 ≤ n ≤ 10, we can simply prove that Rn+1
n < Rn

n+1 by computing the value of Rn+1
n –Rn

n+1.
Here are some examples:

R2
1 – R2 = 1 – 7 = –6;

R3
2 – R2

3 = 343 – 625 = –282;

R4
3 – R3

4 = 390,625 – 658,503 = –267,878;

R5
4 – R4

5 = 4,984,209,207 – 1,268,163,904,241,521 = –673,1904,874;

R6
5 – R5

6 = 1,268,163,904,241,521 – 1,268,163,904,241,521

= –3,367,343,548,629,278.

Moreover, recall that, for a real sequence {zn}∞n=1 with positive numbers, it was shown that

lim
n→∞ inf

zn+1

zn
≤ lim

n→∞ inf n√zn (4.4)

and

lim
n→∞ sup n√zn ≤ lim

n→∞ sup
zn+1

zn
; (4.5)
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see Rudin [15, Section 3.37]. The inequalities in (4.4) and (4.5) imply that

lim
n→∞

n√zn = lim
n→∞

zn

zn–1

if limn→∞ zn
zn–1

exists. Now (4.1) follows by Corollary 4.2.
This completes the proof. �

Theorem 4.4 For the sequence { n√Rn}∞n=1, we have

lim
n→∞

n+1√Rn+1
n√Rn

= 1.

Proof Consider

Rn+1 = R3

n∏

k=3

rk for n ≥ 3.

Hence, by Lemma 3.1 it follows that

R3

n∏

k=3

bk < Rn+1 < R3

n∏

k=3

bk+1.

We have

log

( n+1√Rn+1
n√Rn

)
=

log Rn+1

n + 1
–

log Rn

n

<
log(R3

∏n
k=3 bk+1)

n + 1
–

log(R3
∏n–1

k=3 bk)
n

=
log R3 +

∑n
k=3 log bk+1

n + 1
–

log R3 +
∑n–1

k=3 log bk

n

and

log

( n+1√Rn+1
n√Rn

)
=

log Rn+1

n + 1
–

log Rn

n

>
log(R3

∏n
k=3 bk)

n + 1
–

log(R3
∏n–1

k=3 bk+1)
n

=
log R3 +

∑n
k=3 log bk

n + 1
–

log R3 +
∑n–1

k=3 log bk+1

n
.

Since bn is an increasing function with respect to n and positive for all n ≥ 3, we have

bnbn+1

b3
≥ b3b4

b3
=

5
8

(3 + 2
√

2) > 1.

This gives us that

n∑

k=3

log bk+1 –
n–1∑

k=3

log bk = log
bnbn+1

b3
> 0,
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and thus we have

n∑

k=3

log bk+1 >
n–1∑

k=3

log bk . (4.6)

On the one hand, using inequality (4.6), it follows that, for n ≥ 3,

log R3 +
∑n

k=3 log bk+1

n + 1
–

log R3 +
∑n–1

k=3 log bk

n

>

(

log R3 +
n∑

k=3

log bk+1

)(
1

n + 1
–

1
n

)

= –
log R3 +

∑n
k=3 log bk+1

n(n + 1)

> –
log R3 + (n – 2) log b4

n(n + 1)
.

On the other hand, for n ≥ 3, we can deduce that

log R3 +
∑n

k=3 log bk+1

n + 1
–

log R3 +
∑n–1

k=3 log bk

n

<
log bn + log bn+1 – log b3

n

<
2 log bn+1 – log b3

n
.

Since bn is bounded, we have

lim
n→∞

log R3 + (n – 2) log b4

n(n + 1)
= 0

and

lim
n→∞

2 log bn+1 – log b3

n
= 0,

which implies that

lim
n→∞

(
log R3 +

∑n
k=3 log bk+1

n + 1
–

log R3 +
∑n–1

k=3 log bk

n

)
= 0. (4.7)

Similarly, with the same argument, we can also obtain that

lim
n→∞

(
log R3 +

∑n
k=3 log bk

n + 1
–

log R3 +
∑n–1

k=3 log bk+1

n

)
= 0. (4.8)

The limits (4.7) and (4.8) imply that

lim
n→∞ log

( n+1√Rn+1
n√Rn

)
= 0,
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and thus

lim
n→∞

n+1√Rn+1
n√Rn

= 1. �

Theorem 4.5 The sequence { n√Rn}∞n=5 is strictly log-concave. Equivalently, the sequence
{ n+1√Rn+1

n√Rn
}∞n=5 is strictly decreasing.

Before giving the proof of Theorem 4.5, we have to use to a criterion for log-concavity
of sequences in the form of { n√zn}∞n=1; this criterion was established by Xia [16].

Theorem 4.6 ([16, Theorem 2.1]) Let {zn}∞n=0 be a positive sequence. Suppose that there
exist positive number k0, positive integer N0, and a function f (n) such that k0 < N2

0 + N0 + 2
and, for n ≥ N0,

(i) 0 < f (n) < zn
zn–1

< f (n + 1);
(ii) f (n+1)

f (n+3) > 1 – k0
n2+n+2 ;

(iii) (1 – k0
N2

0 +N0+2 )N2
0 +N0+2f 2N0 (N0) > z2

N0
.

Then the sequence { n√zn}∞n=N0
is strictly log-concave.

We are now in a position to prove Theorem 4.5.

Proof of Theorem 4.5 Let f (n) = bn–1 =
√

2(2 – 3
n–1 ) – 9

2(n–1) + 3. First, by Lemma 3.1 we
have

0 < f (n) <
Rn

Rn–1
< f (n + 1) for n ≥ 5.

Note that

f (n + 1)
f (n + 3)

=
12

2n + 1
–

6
n

+ 1

and
(

12
2n + 1

–
6
n

+ 1
)

–
(

1 –
4

n2 + n + 2

)

=
2(n – 3)(n + 2)

n(2n + 1)(n2 + n + 2)

> 0 for n ≥ 4.

So, taking k0 = 4, condition (ii) in Theorem 4.6 is satisfied.
Moreover, note that

(
1 –

4
82 + 8 + 2

)82+8+2

f 16(8) – R2
8 = –1.5798 × 108

and

(
1 –

4
92 + 9 + 2

)92+9+2

f 18(9) – R2
9 = 6.41905 × 109.
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Therefore, with N0 = 9, k0 = 4, and f (n) = b(n – 1), all conditions (i), (ii), and (iii) in Theo-
rem 4.6 are satisfied. This implies that the sequence { n√Rn}∞n=9 is strictly log-concave, which
is equivalent to that { n+1√Rn+1

n√Rn
}∞n=9 is strictly decreasing by Proposition 2.1.

However, we can verify that, for 5 ≤ n ≤ 8,

n+1√Rn+1
n√Rn

>
n+2√Rn+2
n+1√Rn+1

,

since

6√R6
5√R5

–
7√R7
6√R6

≈ 0.00293164,
7√R7
6√R6

–
8√R8
7√R7

≈ 0.00445875,

8√R8
7√R7

–
9√R9
8√R8

≈ 0.00452784,
9√R9
8√R8

–
10√R10

9√R9
≈ 0.00404051.

This completes the proof. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 By Theorems 4.1 and 4.2 we confirm the first part of Theorem 1.1.
Moreover, Theorems 4.5 and 4.4 imply the second part of Theorem 1.1. This ends the
proof. �

We conclude the paper with some conjectures for further research.

Conjecture 4.7 The sequence {Rn+1
Rn

}n≥4 is log-concave, that is, Rn is ratio log-concave for
n ≥ 4.

Conjecture 4.8 The sequence {R2
n – Rn+1Rn–1}n≥6 is ∞-log-concave.
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14. Došlić, T, Veljan, D: Logarithmic behavior of some combinatorial sequences. Discrete Math. 308, 2182-2212 (2008)
15. Rudin, W: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (2004)
16. Xia, EXW: On the log-concavity of the sequence { n√Sn}∞

n=1. Proc. R. Soc. Edinb., Sect. A, Math., to appear


	On a ratio monotonicity conjecture of a new kind of numbers
	Abstract
	MSC
	Keywords

	Introduction
	The interlacing method
	Bounds for Rn+1/Rn
	Log-behavior of the sequence {Rn}n=0infty
	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


