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Abstract
In this paper, we consider the multiobjective linear programs where coefficients in
the objective function belong to uncertainty sets. We introduce the concept of
robust efficient solutions to uncertain multiobjective linear programming problems.
By using two scalarization methods, the weighted summethod and the ε-constraint
method, we obtain that the robust efficient solutions for uncertain multiobjective
linear programs with ellipsoidal uncertainty sets and general norm uncertainty sets
can be computed by some deterministic optimization problems.
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1 Introduction
The parameter values of optimization problems in real world are usually uncertain due to
prediction errors, estimation errors, or lack of information at the time of decision. There-
fore, it is important to solve such uncertain optimization problems for decision maker. In
1973, Soyster [1] first introduced the robust linear programs where coefficients are uncer-
tain. The main idea is to assume that the coefficients can be any scenario in the uncertainty
set and to find a solution that is feasible for all possible scenarios from the uncertainty set.
The interest of robust optimization was revived in the 1990s (see, e.g., [2–10]). In 2009,
Ben-Tal, El-Ghaoui, and Nemirovski [11] introduced a number of important results in ro-
bust linear optimization, robust conic optimization, and robust multistage optimization.
Robust optimization has become a powerful approach to handle uncertain optimization
problems.

On the other hand, the equilibrium problem provides a general mathematical model for
a wide range of practical problems, such as optimization problems, Nash equilibria prob-
lems, fixed point problems, variational inequality problems, and complementarity prob-
lems, and has been investigated intensively. For more details, we refer to [12–15]. As a
particular case of the vector equilibrium problem, multiobjective optimization problems
arise in a large number of applications such as transportation, finance, communication,
etc. Naturally, the issue of uncertain data affects single objective optimization problems
in the same way as it affects these multiobjective ones. The essential problem in multiob-
jective optimization is to find the Pareto efficient solutions, meaning the feasible solutions
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such that no objective can be improved without sacrificing others; see, for example, Miet-
tinen [16] and Ehrgott [17]. Therefore, in multiobjective optimization problems with data
uncertainty, it is very important how to find robust efficient solutions that are less sensitive
to small perturbations in variables.

In 2006, Deb and Gupta [18] presented two different robust multiobjective optimization
procedures. The first one replaces all objective functions by their mean functions, and ro-
bust solution is defined as the efficient solution to the resulting deterministic optimiza-
tion problem. The second one adds constraints to the predefined limit and optimizes the
original objective functions. Recently, Kuroiwa and Lee [19] defined three kinds of robust
efficient solutions, which are different from Deb and Gupta [18] for the uncertain multi-
objective optimization problems. They also established necessary optimality theorems for
robust efficient solutions and gave scalarization methods for robust efficient solutions of
multiobjective optimization problems. Ehrgott, Ide, and Schobel [20] generalized the con-
cept of minimax robustness introduced by Ben-Tal, El-Ghaoui, and Nemirovski [11] from
single objective optimization problems to multiobjective optimization problems. They
proposed robust Pareto efficiency and discussed how to find robust efficient solutions for
uncertain multiobjective optimization problems. Goherna, Jeyakumar, Li, and Perez [21]
introduced the definition of radius of robust feasibility and analyzed the robust weakly
efficient solution of a multiobjective linear programming problems with data uncertainty
both in the objective function and constraints. They also gave numerically tractable opti-
mality conditions for highly robust weakly efficient solutions. Very recently, Bokrantz and
Fredriksson [22] provided necessary and sufficient conditions for robust efficiency stud-
ied by Ehrgott, Ide, and Schobel [20] to multiobjective optimization problems with data
uncertainty. They also applied these results to the field of therapy for cancer treatment.

Motivated by the works mentioned, in this paper, we consider the multiobjective linear
programs where the coefficients ai and bi in the objective function belong to uncertain
but bounded sets Ui. We introduce the concept of robust efficient solution to uncertain
multiobjective linear programs (UMLPs). Also, we show that two scalarization methods,
the weighted sum method and the ε-constraint method, can be used to find robust effi-
cient solutions of UMLP with ellipsoidal uncertainty sets and general norm uncertainty
sets. The structure of the paper is as follows. In Section 2, we introduce the uncertain mul-
tiobjective linear programming problems and the concept of robust efficient solution to
UMLP. In Section 3, we give the ellipsoidal uncertainty sets and general norm uncertainty
sets. Using the weighted sum method, we show that the robust efficient solution of UMLP
can be found by some deterministic optimization problems. In Section 4, we use the ε-
constraint method to compute the robust efficient solution of UMLP under ellipsoidal
uncertainty sets and general norm uncertainty sets. Finally, we conclude in Section 5.

2 Introduction to uncertain multiobjective linear programs
2.1 Deterministic multiobjective linear programs
Consider the following multiobjective linear programming problem:

min f (x) =
(
aT

1 x + b1, aT
2 x + b2, . . . , aT

mx + bm
)

s.t. x ∈ X,
(MLP)

where f : Rn → Rm, X ⊆ Rn, and (ai, bi) ∈ Rn × R, i = 1, 2, . . . , m, are coefficients.
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In this paper, we use the order relation � (see Ehrgott [17]): For y1, y2 ∈ Rm, we write
y1 � y2 if y1 is greater than or equal to y2 in every component and greater in at least one
component. Furthermore, we define the cone Rm� = {x ∈ Rm : x � 0}.

The Pareto efficient solution to (MLP) is defined as follows:

Definition 1 A feasible solution x∗ ∈ X to (MLP) is Pareto efficient if there is no feasible
solution x ∈ X such that f (x) ∈ f (x∗) – Rm� .

2.2 Robust multiobjective linear programs
Consider the following uncertain multi-objective linear programming problem

min f (x; ãi, b̃i) =
(
ãT

1 x + b̃1, ãT
2 x + b̃2, . . . , ãT

mx + b̃m
)

s.t. x ∈ X,
(UMLP)

where the coefficients (ãi, b̃i), i = 1, . . . , m, are uncertain and belong to the bounded uncer-
tainty set Ui, i = 1, 2, . . . , m, and set U = �m

i=1Ui.
Given an uncertain multiobjective linear programming problem (UMLP), there arises

the same question of how to find feasible solutions x ∈ X as in a single objective optimiza-
tion problem. We cannot take the worst case under all scenarios for evaluating solutions
because in multiobjective optimization problems, we obtain that the objective value for
each scenario is a vector. Therefore, let fU (x) = {f (x; ãi, b̃i) : (ãi, b̃i) ∈ Ui, i = 1, 2, . . . , m} ⊂
Rm. We can generalize the concept of efficiency as given in Definition 1 with this notion.

Definition 2 A feasible solution x∗ ∈ X to problem (UMLP) is robust efficient if there is
no feasible solution x ∈ X \ {x∗} such that fU (x) ⊆ fU (x∗) – Rm� .

Thus, all possible objective values of a solution x∗ are considered over all scenarios,
namely the set fU (x∗).

Example 1 Consider an uncertain multiobjective linear programming problem with two
objectives f1 = ãT

1 x + b̃1 and f2 = ãT
2 x + b̃2. The left picture in Figure 1 refers to (UMLP) with

feasible set X = {x1, x2, x3}, and the three sets fU (x1), fU (x2), fU (x3) are polyhedrons. In the
right picture, we can see that none of fU (x1) – Rm≥ and fU (x2) – Rm≥ contains any other set
fU (xi), and thus x1 and x2 are both robust efficient. On the other hand, fU (x3) – Rm≥ contains
fU (x1) and fU (x2), and thus x3 is not robust efficient.

Having introduced the definition of robust efficient solutions for uncertain multiobjec-
tive linear programs (UMLPs), in Sections 3 and 4, we use two scalarization methods, the
weighted sum method and the ε-constraint method, to find the robust efficient solution
for (UMLP).

3 Weighted sum scalarization
Weighted sum scalarization is the most common approach to evaluate efficient solu-
tions for a deterministic multiobjective optimization problem. The weighted sum prob-
lem (WSP) for a given deterministic multiobjective linear programming problem is given
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Figure 1 Illustration of robust efficient solution.

as follows:

min
m∑

i=1

λi
(
aT

i x + bi
)

s.t.
m∑

i=1

λi = 1,

λi ≥ 0, i = 1, 2, . . . , m,

x ∈ X.

(WSP)

We now use the weighted sum scalarization method to reduce an uncertain multiob-
jective linear programming problem to a single objective uncertain linear programming
problem in order to compute robust efficient solutions by computing robust optimal solu-
tions for the uncertain single objective linear programming problem. Next, we introduce
the robust counterpart of the weighted sum scalarization problem of an uncertain multi-
objective linear programs (RWSPs) as:

min max
(ãi ,b̃i)∈Ui

m∑

i=1

λi
(
ãT

i x + b̃i
)

s.t.
m∑

i=1

λi = 1,

λi ≥ 0, i = 1, 2, . . . , m,

x ∈ X.

(RWSP)
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Lemma 1 Given an uncertain multiobjective linear programming problem (UMLP), if x∗ ∈
X is the unique optimal solution to (RWSP), then x∗ is robust efficient solution for (UMLP).

Proof Assum that x∗ is not robust efficient solution for (UMLP). Then there exists x̂ such
that fU (x̂) ∈ fU (x∗) – Rm� . This implies that, for all (ãi, b̃i) ∈ Ui, there exists (α̃i, β̃i) ∈ Ui such
that

ãT
i x̂ + b̃i ≤ α̃T

i x∗ + β̃i, ∀i = 1, 2, . . . , m.

Now choose arbitrary but fixed λi ≥ 0, i = 1, 2, . . . , m, such that
∑m

i=1 λi = 1. We have

m∑

i=1

λi
(
ãT

i x̂ + b̃i
) ≤

m∑

i=1

λi
(
α̃T

i x∗ + β̃i
) ≤ max

(α̃′
i ,β̃ ′

i )∈Ui

m∑

i=1

λi
(
α̃′T

i x∗ + β̃ ′
i
)

for all (ãi, b̃i) ∈ Ui. This implies that

max
(ã′

i ,b̃
′
i)∈Ui

m∑

i=1

λi
(
ã′T

i x̂ + b̃′
i
) ≤ max

(α̃′
i ,β̃

′
i )∈Ui

m∑

i=1

λi
(
α̃′T

i x∗ + β̃ ′
i
)
,

which contradicts the fact that x∗ is the unique optimal solution to (RWSP). �

We further show that robust efficient solutions for uncertain multiobjective linear pro-
gramming problems with ellipsoidal uncertainty sets and general uncertainty sets can be
found by solving deterministic optimization problems using weighted sum scalarization
and thus can be computed by existing technology of deterministic optimization problems.

3.1 Ellipsoidal uncertainty sets
Consider the ellipsoidal uncertainty sets

Ui =

{

(ãi, b̃i) =
(
a0

i , b0
i
)

+
l∑

j=1

uj(aj
i, bj

i
)|‖u‖2 ≤ 1

}

, (U1)

where i = 1, 2, . . . , m, (a0
i , b0

i ) are nominal values of (RWSP), (aj
i, bj

i) are the given directions
of perturbation, and uj are the uncertain variables with ‖u‖2 ≤ 1.

Theorem 1 Consider the uncertain multiobjective linear programming problem (UMLP)
with ellipsoidal uncertainty sets Ui given as in (U1). If x∗ is the unique optimal solution to
the deterministic second-order cone programming

min
m∑

i=1

λi
{(

a0T
i x + b0

i
)

+ ‖Aix + Bi‖2
}

s.t.
m∑

i=1

λi = 1, ()

λi ≥ 0, i = 1, 2, . . . , m,

x ∈ X,

(DP1)
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where Aix + Bi = (a1T
i x + b1

i , a2T
i x + b2

i , . . . , alT
i x + bl

i)T , then x∗ is a robust efficient solution
for (UMLP).

Proof First, we show that (RWSP) with ellipsoidal uncertainty sets (U1) is equivalent to
(DP1). For x fixed, the worst-case residual of objective function in (RWSP) with ellipsoidal
uncertainty sets (U1) can be rewritten as

max
(ãi ,b̃i)∈Ui

m∑

i=1

λi
(
ãT

i x + b̃i
)

= max
‖u‖2≤1

m∑

i=1

λi

{
(
a0T

i x + b0
i
)

+
l∑

j=1

uj
(
ajT

i x + bj
i
)
}

=
m∑

i=1

λi

{
(
a0T

i x + b0
i
)

+ max
‖u‖2≤1

l∑

j=1

uj
(
ajT

i x + bj
i
)
}

.

Let Aix + Bi = (a1T
i x + b1

i , a2T
i x + b2

i , . . . , alT
i x + bl

i)T . Then we have

m∑

i=1

λi

{
(
a0T

i x + b0
i
)

+ max
‖u‖2≤1

l∑

j=1

uj
(
ajT

i x + bj
i
)
}

=
m∑

i=1

λi

{(
a0T

i x + b0
i
)

+ max
‖u‖2≤1

∥∥uT (Aix + Bi)
∥∥

2

}

=
m∑

i=1

λi
{(

a0T
i x + b0

i
)

+ ‖Aix + Bi‖2
}

.

This implies that (RWSP) with ellipsoidal uncertainty sets (U1) is equivalent to (DP1). By
Lemma 1 we derive that if x∗ is the unique optimal solution to (DP1), then x∗ is a robust
efficient solution for (UMLP). �

3.2 General norm uncertainty sets
Consider the general norm uncertainty sets

Ui =
{

(ãi, b̃i) =
(
a0

i , b0
i
)

+ (�ai,�bi)|
∥∥M(�ai,�bi)T∥∥ ≤ δ

}
, (U2)

where M is an n × 1 invertible matrix, δ is a given positive constant, and ‖ · ‖ is a general
norm. Given a general norm ‖x‖ for a real vector x, its dual norm is given by

‖z‖∗ = max
‖x‖≤1

zT x.

Theorem 2 Consider the uncertain multiobjective linear programming problem (UMLP)
with general norm uncertainty sets Ui given as in (U2). If x∗ is the unique optimal solution
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to the deterministic optimization problem

min
m∑

i=1

λi
{(

a0T
i x + b0

i
)

+ δ
∥
∥M–1(x, 1)T∥

∥∗}

s.t.
m∑

i=1

λi = 1,

λi ≥ 0, i = 1, 2, . . . , m,

x ∈ X,

(DP2)

then x∗ is a robust efficient solution for (UMLP).

Proof First, we show that (RWSP) with general norm uncertainty sets (U2) is equivalent
to (DP2). For x fixed, the worst-case residual of objective function in (RWSP) with general
norm uncertainty sets (U2) can be rewritten as

max
(ãi ,b̃i)∈Ui

m∑

i=1

λi
(
ãT

i x + b̃i
)

= max
‖M(�ai ,�bi)T ‖≤δ

m∑

i=1

λi
{(

a0T
i x + b0

i
)

+
(
�aT

i x + �bi
)}

=
m∑

i=1

λi

{(
a0T

i x + b0
i
)

+ max
‖M(�ai ,�bi)T ‖≤δ

(�ai,�bi)(x, 1)T
}

=
m∑

i=1

λi

{(
a0T

i x + b0
i
)

+ max
y≤1

yTδM–1(x, 1)T
}

=
m∑

i=1

λi
{(

a0T
i x + b0

i
)

+ δ
∥∥M–1(x, 1)T∥∥∗}.

This implies that (RWSP) with general norm uncertainty sets (U2) is equivalent to (DP2).
By Lemma 1 we derive that if x∗ is the unique optimal solution to (DP2), then x∗ is a robust
efficient solution for (UMLP). �

Remark
1. If the general norm uncertainty set is given by the Euclidean norm ‖ · ‖2, then (DP2)

can be formulated as a second-order cone optimization problem because the
Euclidean norm is self-dual.

2. If the general norm uncertainty set is described by either ‖ · ‖1 or ‖ · ‖∞, then (DP2)
can be formulated as a linear programming problem.

3. We consider the uncertainty set described by the D-norm was studied by Bertsimas
and Sim [4–6]. The D-norm of y ∈ Rn is given as follows:

‖y‖p = max
{S∪t|S⊆N ,|S|≤�p�,t∈N\S}

{∑

j∈S

|yj| +
(
p – �p�)|yt|

}
,
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where p ∈ [1, n] is the maximum number of variables, and p is not necessarily integer. In
other words, p is a parameter used for controlling the degree of conservatism of the solu-
tion for (RWSP). Speaking directly, it is unlike that all of the yj, j = 1, 2, . . . , n, will change.
The dual norm of the norm ‖ · ‖p is given by

‖y‖∗
p = max

(‖y‖∞,‖y‖1/p
)
.

By Theorem 2 we can obtain that if the general norm uncertainty set is given by the
D-norm, then (DP2) can also be formulated as a linear programming problem.

4 ε-constraint scalarization
ε-constraint scalarization is another approach for evaluating efficient solutions for deter-
ministic multiobjective optimization problems. For arbitrary t ∈ {1, 2, . . . , m} and a param-
eter vector ε ∈ Rm, the ε-constraint linear programming problem is defined as

min aT
t x + bt

s.t. aT
k x + bk ≤ εk , ∀k ∈ {1, 2, . . . , m}\{t},

x ∈ X.

(ECP)

Note that, the problem (ECP) does not depend on the parameter εk . We now extend the ε-
constraint method by reducing an uncertain multiobjective linear programming problem
to a single objective uncertain linear programming problem. Therefore, we define the ro-
bust counterpart of the ε-constraint scalarization problem of an uncertain multiobjective
linear programming problem as follows:

min max
(ãt ,b̃t )∈Ut

ãT
t x + b̃t

s.t. max
(ãk ,b̃k )∈Uk

ãT
k x + b̃k ≤ εk , ∀k ∈ {1, 2, . . . , m}\{t},

x ∈ X.

(RECP)

Lemma 2 Given an uncertain multiobjective linear programming problem (UMLP), if x∗ ∈
X is the unique optimal solution to (RECP) for some ε ∈ Rm and some t ∈ {1, 2, . . . , m}, then
x∗ is a robust efficient solution for (UMLP).

Proof Assume that x∗ is not a robust efficient solution for (UMLP). Then there exists x̂
such that fU (x̂) ∈ fU (x∗) – Rm� . This implies that, for all (ãi, b̃i) ∈ Ui, there exists (α̃i, β̃i) ∈ Ui

such that

ãT
i x̂ + b̃i ≤ α̃T

i x∗ + β̃i, ∀i = 1, 2, . . . , m.

Then, in the constraints of (RECP), we obtain

max
(ã′

k ,b̃′
k )∈Uk

ã′T
k x̂ + b̃′

k ≤ α̃T
k x∗ + β̃k ≤ max

(α̃′
k ,β̃ ′

k )∈Uk
α̃′T

k x∗ + β̃ ′
k ≤ εk , ∀k ∈ {1, 2, . . . , m}\{t}.
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On the other hand, in the objective function of (RECP), we have

max
(ã′

t ,b̃′
t )∈Ut

ã′T
t x̂ + b̃′

t ≤ α̃T
t x∗ + β̃t ≤ max

(α̃′
t ,β̃ ′

t )∈Ut
α̃′T

t x∗ + β̃ ′
t .

But then x̂ is feasible for (RECP) and has an equal or better objective value than x∗. This
is a contradiction to the assumption that x∗ is the unique optimal solution to (RECP). �

Next, we show that robust efficient solutions for uncertain multiobjective linear pro-
gramming problems with ellipsoidal uncertainty sets and general uncertainty sets can be
found by solving deterministic optimization problems using ε-constraint scalarization and
so can be computed by existing technology of deterministic optimization problems.

Theorem 3 Consider the uncertain multiobjective linear programming problem (UMLP)
with ellipsoidal uncertainty sets Ui given as in (U1). If x∗ is the unique optimal solution to
the deterministic second-order cone programming

min a0T
t x + b0

t + ‖Atx + Bt‖2

s.t. a0T
k x + b0

k + ‖Akx + Bk‖2 ≤ εk , ∀k ∈ {1, 2, . . . , m}\{t},
x ∈ X,

(DP3)

where Aix + Bi = (a1T
i x + b1

i , a2T
i x + b2

i , . . . , alT
i x + bl

i)T , i = 1, 2, . . . , m, then x∗ is a robust
efficient solution for (UMLP).

Proof First, we show that (RECP) with ellipsoidal uncertainty sets (U1) is equivalent to
(DP3). For fixed x, the worst-case residual of objective function in (RECP) with ellipsoidal
uncertainty sets (U1) can be rewritten as

max
(ãt ,b̃t )∈Ut

ãT
t x + b̃t

= max
‖u‖2≤1

{
(
a0T

t x + b0
t
)

+
l∑

j=1

uj
(
ajT

t x + bj
t
)
}

= a0T
t x + b0

t + max
‖u‖2≤1

l∑

j=1

uj
(
ajT

t x + bj
t
)
.

Let Atx + Bt = (a1T
t x + b1

t , a2T
t x + b2

t , . . . , alT
t x + bl

t)T . Then we have

a0T
t x + b0

t + max
‖u‖2≤1

l∑

j=1

uj
(
ajT

t x + bj
t
)

= a0T
t x + b0

t + max
‖u‖2≤1

∥∥uT (Atx + Bt)
∥∥

2

= a0T
t x + b0

t + ‖Atx + Bt‖2.
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Using a similar approach in the objective function, we can derive that the worst-case of
constraints in (RECP) can be rewritten as

max
(ãk ,b̃k )∈Uk

ãT
k x + b̃k = a0T

k x + b0
k + ‖Akx + Bk‖2 ≤ εk , ∀k ∈ {1, 2, . . . , m}\{t}.

From the previous conclusions we have that (RECP) with ellipsoidal uncertainty sets is
equivalent to (DP3). By Lemma 2 we derive that if x∗ is the unique optimal solution to
(DP3), then x∗ is a robust efficient solution for (UMLP). �

Theorem 4 Consider the uncertain multiobjective linear programming problem (UMLP)
with general norm uncertainty sets Ui given as in (U2). If x∗ is the unique optimal solution
to the deterministic optimization problem

min a0T
t x + b0

t + δ
∥∥M–1(x, 1)T∥∥∗

s.t. a0T
k x + b0

k + δ
∥∥M–1(x, 1)T∥∥∗ ≤ εk , ∀k ∈ {1, 2, . . . , m}\{t},

x ∈ X,

(DP4)

then x∗ is a robust efficient solution for (UMLP).

Proof First, we show that (RECP) with general norm uncertainty sets (U2) is equivalent
to (DP4). For fixed x, the worst-case residual of objective function in (RECP) with general
norm uncertainty sets (U2) can be rewritten as

max
(ãt ,b̃t )∈Ui

ãT
t x + b̃t

= a0T
t x + b0

t + max
‖M(�at ,�bt )T ‖≤δ

(�at ,�bt)(x, 1)T

= a0T
t x + b0

t + max
y≤1

yTδM–1(x, 1)T

= a0T
t x + b0

t + δ
∥
∥M–1(x, 1)T∥

∥∗.

Using a similar approach in the objective function, we can derive that the worst-case of
constraints in (RECP) can be rewritten as

max
(ãk ,b̃k )∈Uk

ãT
k x + b̃k = a0T

k x + b0
k + δ

∥
∥M–1(x, 1)T∥

∥∗ ≤ εk , ∀k ∈ {1, 2, . . . , m}\{t}.

From the previous conclusions we have that (RECP) with general norm uncertainty sets
is equivalent to (DP4). By Lemma 2, we derive that if x∗ is the unique optimal solution to
(DP4), then x∗ is a robust efficient solution for (UMLP). �

Remark
1. If the general norm uncertainty set is given by the Euclidean norm ‖ · ‖2, then (DP4)

can be formulated as a second-order cone programming with second-order cone
constraints.

2. If the general norm uncertainty set is given by either ‖ · ‖1 or ‖ · ‖∞, then (DP4) can
be formulated as a linear programming problem.
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3. If the general norm uncertainty set is described by the D-norm ‖ · ‖p, then (DP4) can
also be formulated as a linear programming problem.

5 Conclusions
Multiobjective optimization and robust optimization have been well studied, but they are
rarely considered in combination. In this paper, we consider the multiobjective linear pro-
grams where coefficients in the objective function belong to uncertain-but-bounded sets.
First, we introduce the concept of a robust efficient solution to uncertain multiobjective
linear programs. We also introduce two common scalarization methods, the weighted
sum scalarization and ε-constraint scalarization, to compute robust efficient solutions of
uncertain multiobjective linear programs. Finally, we obtain that the robust efficient solu-
tions of uncertain multiobjective linear programs can be computed by some deterministic
optimization problems using both weighted sum method and ε-constraint method.
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